snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sk
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class GaussianNB(BaseTransformer):
71
64
  r"""Gaussian Naive Bayes (GaussianNB)
72
65
  For more details on this class, see [sklearn.naive_bayes.GaussianNB]
@@ -203,12 +196,7 @@ class GaussianNB(BaseTransformer):
203
196
  )
204
197
  return selected_cols
205
198
 
206
- @telemetry.send_api_usage_telemetry(
207
- project=_PROJECT,
208
- subproject=_SUBPROJECT,
209
- custom_tags=dict([("autogen", True)]),
210
- )
211
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianNB":
199
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianNB":
212
200
  """Fit Gaussian Naive Bayes according to X, y
213
201
  For more details on this function, see [sklearn.naive_bayes.GaussianNB.fit]
214
202
  (https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB.fit)
@@ -235,12 +223,14 @@ class GaussianNB(BaseTransformer):
235
223
 
236
224
  self._snowpark_cols = dataset.select(self.input_cols).columns
237
225
 
238
- # If we are already in a stored procedure, no need to kick off another one.
226
+ # If we are already in a stored procedure, no need to kick off another one.
239
227
  if SNOWML_SPROC_ENV in os.environ:
240
228
  statement_params = telemetry.get_function_usage_statement_params(
241
229
  project=_PROJECT,
242
230
  subproject=_SUBPROJECT,
243
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianNB.__class__.__name__),
231
+ function_name=telemetry.get_statement_params_full_func_name(
232
+ inspect.currentframe(), GaussianNB.__class__.__name__
233
+ ),
244
234
  api_calls=[Session.call],
245
235
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
246
236
  )
@@ -261,27 +251,24 @@ class GaussianNB(BaseTransformer):
261
251
  )
262
252
  self._sklearn_object = model_trainer.train()
263
253
  self._is_fitted = True
264
- self._get_model_signatures(dataset)
254
+ self._generate_model_signatures(dataset)
265
255
  return self
266
256
 
267
257
  def _batch_inference_validate_snowpark(
268
258
  self,
269
259
  dataset: DataFrame,
270
260
  inference_method: str,
271
- ) -> List[str]:
272
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
273
- return the available package that exists in the snowflake anaconda channel
261
+ ) -> None:
262
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
274
263
 
275
264
  Args:
276
265
  dataset: snowpark dataframe
277
266
  inference_method: the inference method such as predict, score...
278
-
267
+
279
268
  Raises:
280
269
  SnowflakeMLException: If the estimator is not fitted, raise error
281
270
  SnowflakeMLException: If the session is None, raise error
282
271
 
283
- Returns:
284
- A list of available package that exists in the snowflake anaconda channel
285
272
  """
286
273
  if not self._is_fitted:
287
274
  raise exceptions.SnowflakeMLException(
@@ -299,9 +286,7 @@ class GaussianNB(BaseTransformer):
299
286
  "Session must not specified for snowpark dataset."
300
287
  ),
301
288
  )
302
- # Validate that key package version in user workspace are supported in snowflake conda channel
303
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
304
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
289
+
305
290
 
306
291
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
307
292
  @telemetry.send_api_usage_telemetry(
@@ -337,7 +322,9 @@ class GaussianNB(BaseTransformer):
337
322
  # when it is classifier, infer the datatype from label columns
338
323
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
339
324
  # Batch inference takes a single expected output column type. Use the first columns type for now.
340
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
325
+ label_cols_signatures = [
326
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
327
+ ]
341
328
  if len(label_cols_signatures) == 0:
342
329
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
343
330
  raise exceptions.SnowflakeMLException(
@@ -345,25 +332,23 @@ class GaussianNB(BaseTransformer):
345
332
  original_exception=ValueError(error_str),
346
333
  )
347
334
 
348
- expected_type_inferred = convert_sp_to_sf_type(
349
- label_cols_signatures[0].as_snowpark_type()
350
- )
335
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
351
336
 
352
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
353
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
337
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
338
+ self._deps = self._get_dependencies()
339
+ assert isinstance(
340
+ dataset._session, Session
341
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
354
342
 
355
343
  transform_kwargs = dict(
356
- session = dataset._session,
357
- dependencies = self._deps,
358
- drop_input_cols = self._drop_input_cols,
359
- expected_output_cols_type = expected_type_inferred,
344
+ session=dataset._session,
345
+ dependencies=self._deps,
346
+ drop_input_cols=self._drop_input_cols,
347
+ expected_output_cols_type=expected_type_inferred,
360
348
  )
361
349
 
362
350
  elif isinstance(dataset, pd.DataFrame):
363
- transform_kwargs = dict(
364
- snowpark_input_cols = self._snowpark_cols,
365
- drop_input_cols = self._drop_input_cols
366
- )
351
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
367
352
 
368
353
  transform_handlers = ModelTransformerBuilder.build(
369
354
  dataset=dataset,
@@ -403,7 +388,7 @@ class GaussianNB(BaseTransformer):
403
388
  Transformed dataset.
404
389
  """
405
390
  super()._check_dataset_type(dataset)
406
- inference_method="transform"
391
+ inference_method = "transform"
407
392
 
408
393
  # This dictionary contains optional kwargs for batch inference. These kwargs
409
394
  # are specific to the type of dataset used.
@@ -433,24 +418,19 @@ class GaussianNB(BaseTransformer):
433
418
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
434
419
  expected_dtype = convert_sp_to_sf_type(output_types[0])
435
420
 
436
- self._deps = self._batch_inference_validate_snowpark(
437
- dataset=dataset,
438
- inference_method=inference_method,
439
- )
421
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
422
+ self._deps = self._get_dependencies()
440
423
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
441
424
 
442
425
  transform_kwargs = dict(
443
- session = dataset._session,
444
- dependencies = self._deps,
445
- drop_input_cols = self._drop_input_cols,
446
- expected_output_cols_type = expected_dtype,
426
+ session=dataset._session,
427
+ dependencies=self._deps,
428
+ drop_input_cols=self._drop_input_cols,
429
+ expected_output_cols_type=expected_dtype,
447
430
  )
448
431
 
449
432
  elif isinstance(dataset, pd.DataFrame):
450
- transform_kwargs = dict(
451
- snowpark_input_cols = self._snowpark_cols,
452
- drop_input_cols = self._drop_input_cols
453
- )
433
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
454
434
 
455
435
  transform_handlers = ModelTransformerBuilder.build(
456
436
  dataset=dataset,
@@ -469,7 +449,11 @@ class GaussianNB(BaseTransformer):
469
449
  return output_df
470
450
 
471
451
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
472
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
452
+ def fit_predict(
453
+ self,
454
+ dataset: Union[DataFrame, pd.DataFrame],
455
+ output_cols_prefix: str = "fit_predict_",
456
+ ) -> Union[DataFrame, pd.DataFrame]:
473
457
  """ Method not supported for this class.
474
458
 
475
459
 
@@ -494,22 +478,104 @@ class GaussianNB(BaseTransformer):
494
478
  )
495
479
  output_result, fitted_estimator = model_trainer.train_fit_predict(
496
480
  drop_input_cols=self._drop_input_cols,
497
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
481
+ expected_output_cols_list=(
482
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
483
+ ),
498
484
  )
499
485
  self._sklearn_object = fitted_estimator
500
486
  self._is_fitted = True
501
487
  return output_result
502
488
 
489
+
490
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
491
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
492
+ """ Method not supported for this class.
493
+
503
494
 
504
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
505
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
506
- """
495
+ Raises:
496
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
497
+
498
+ Args:
499
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
500
+ Snowpark or Pandas DataFrame.
501
+ output_cols_prefix: Prefix for the response columns
507
502
  Returns:
508
503
  Transformed dataset.
509
504
  """
510
- self.fit(dataset)
511
- assert self._sklearn_object is not None
512
- return self._sklearn_object.embedding_
505
+ self._infer_input_output_cols(dataset)
506
+ super()._check_dataset_type(dataset)
507
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
508
+ estimator=self._sklearn_object,
509
+ dataset=dataset,
510
+ input_cols=self.input_cols,
511
+ label_cols=self.label_cols,
512
+ sample_weight_col=self.sample_weight_col,
513
+ autogenerated=self._autogenerated,
514
+ subproject=_SUBPROJECT,
515
+ )
516
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
517
+ drop_input_cols=self._drop_input_cols,
518
+ expected_output_cols_list=self.output_cols,
519
+ )
520
+ self._sklearn_object = fitted_estimator
521
+ self._is_fitted = True
522
+ return output_result
523
+
524
+
525
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
526
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
527
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
528
+ """
529
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
530
+ # The following condition is introduced for kneighbors methods, and not used in other methods
531
+ if output_cols:
532
+ output_cols = [
533
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
534
+ for c in output_cols
535
+ ]
536
+ elif getattr(self._sklearn_object, "classes_", None) is None:
537
+ output_cols = [output_cols_prefix]
538
+ elif self._sklearn_object is not None:
539
+ classes = self._sklearn_object.classes_
540
+ if isinstance(classes, numpy.ndarray):
541
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
542
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
543
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
544
+ output_cols = []
545
+ for i, cl in enumerate(classes):
546
+ # For binary classification, there is only one output column for each class
547
+ # ndarray as the two classes are complementary.
548
+ if len(cl) == 2:
549
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
550
+ else:
551
+ output_cols.extend([
552
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
553
+ ])
554
+ else:
555
+ output_cols = []
556
+
557
+ # Make sure column names are valid snowflake identifiers.
558
+ assert output_cols is not None # Make MyPy happy
559
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
560
+
561
+ return rv
562
+
563
+ def _align_expected_output_names(
564
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
565
+ ) -> List[str]:
566
+ # in case the inferred output column names dimension is different
567
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
568
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
569
+ output_df_columns = list(output_df_pd.columns)
570
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
571
+ if self.sample_weight_col:
572
+ output_df_columns_set -= set(self.sample_weight_col)
573
+ # if the dimension of inferred output column names is correct; use it
574
+ if len(expected_output_cols_list) == len(output_df_columns_set):
575
+ return expected_output_cols_list
576
+ # otherwise, use the sklearn estimator's output
577
+ else:
578
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
513
579
 
514
580
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
515
581
  @telemetry.send_api_usage_telemetry(
@@ -543,24 +609,26 @@ class GaussianNB(BaseTransformer):
543
609
  # are specific to the type of dataset used.
544
610
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
545
611
 
612
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
613
+
546
614
  if isinstance(dataset, DataFrame):
547
- self._deps = self._batch_inference_validate_snowpark(
548
- dataset=dataset,
549
- inference_method=inference_method,
550
- )
551
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
615
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
616
+ self._deps = self._get_dependencies()
617
+ assert isinstance(
618
+ dataset._session, Session
619
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
552
620
  transform_kwargs = dict(
553
621
  session=dataset._session,
554
622
  dependencies=self._deps,
555
- drop_input_cols = self._drop_input_cols,
623
+ drop_input_cols=self._drop_input_cols,
556
624
  expected_output_cols_type="float",
557
625
  )
626
+ expected_output_cols = self._align_expected_output_names(
627
+ inference_method, dataset, expected_output_cols, output_cols_prefix
628
+ )
558
629
 
559
630
  elif isinstance(dataset, pd.DataFrame):
560
- transform_kwargs = dict(
561
- snowpark_input_cols = self._snowpark_cols,
562
- drop_input_cols = self._drop_input_cols
563
- )
631
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
564
632
 
565
633
  transform_handlers = ModelTransformerBuilder.build(
566
634
  dataset=dataset,
@@ -572,7 +640,7 @@ class GaussianNB(BaseTransformer):
572
640
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
573
641
  inference_method=inference_method,
574
642
  input_cols=self.input_cols,
575
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
643
+ expected_output_cols=expected_output_cols,
576
644
  **transform_kwargs
577
645
  )
578
646
  return output_df
@@ -604,29 +672,30 @@ class GaussianNB(BaseTransformer):
604
672
  Output dataset with log probability of the sample for each class in the model.
605
673
  """
606
674
  super()._check_dataset_type(dataset)
607
- inference_method="predict_log_proba"
675
+ inference_method = "predict_log_proba"
676
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
608
677
 
609
678
  # This dictionary contains optional kwargs for batch inference. These kwargs
610
679
  # are specific to the type of dataset used.
611
680
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
612
681
 
613
682
  if isinstance(dataset, DataFrame):
614
- self._deps = self._batch_inference_validate_snowpark(
615
- dataset=dataset,
616
- inference_method=inference_method,
617
- )
618
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
683
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
684
+ self._deps = self._get_dependencies()
685
+ assert isinstance(
686
+ dataset._session, Session
687
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
619
688
  transform_kwargs = dict(
620
689
  session=dataset._session,
621
690
  dependencies=self._deps,
622
- drop_input_cols = self._drop_input_cols,
691
+ drop_input_cols=self._drop_input_cols,
623
692
  expected_output_cols_type="float",
624
693
  )
694
+ expected_output_cols = self._align_expected_output_names(
695
+ inference_method, dataset, expected_output_cols, output_cols_prefix
696
+ )
625
697
  elif isinstance(dataset, pd.DataFrame):
626
- transform_kwargs = dict(
627
- snowpark_input_cols = self._snowpark_cols,
628
- drop_input_cols = self._drop_input_cols
629
- )
698
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
630
699
 
631
700
  transform_handlers = ModelTransformerBuilder.build(
632
701
  dataset=dataset,
@@ -639,7 +708,7 @@ class GaussianNB(BaseTransformer):
639
708
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
640
709
  inference_method=inference_method,
641
710
  input_cols=self.input_cols,
642
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
711
+ expected_output_cols=expected_output_cols,
643
712
  **transform_kwargs
644
713
  )
645
714
  return output_df
@@ -665,30 +734,32 @@ class GaussianNB(BaseTransformer):
665
734
  Output dataset with results of the decision function for the samples in input dataset.
666
735
  """
667
736
  super()._check_dataset_type(dataset)
668
- inference_method="decision_function"
737
+ inference_method = "decision_function"
669
738
 
670
739
  # This dictionary contains optional kwargs for batch inference. These kwargs
671
740
  # are specific to the type of dataset used.
672
741
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
673
742
 
743
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
744
+
674
745
  if isinstance(dataset, DataFrame):
675
- self._deps = self._batch_inference_validate_snowpark(
676
- dataset=dataset,
677
- inference_method=inference_method,
678
- )
679
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
746
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
747
+ self._deps = self._get_dependencies()
748
+ assert isinstance(
749
+ dataset._session, Session
750
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
680
751
  transform_kwargs = dict(
681
752
  session=dataset._session,
682
753
  dependencies=self._deps,
683
- drop_input_cols = self._drop_input_cols,
754
+ drop_input_cols=self._drop_input_cols,
684
755
  expected_output_cols_type="float",
685
756
  )
757
+ expected_output_cols = self._align_expected_output_names(
758
+ inference_method, dataset, expected_output_cols, output_cols_prefix
759
+ )
686
760
 
687
761
  elif isinstance(dataset, pd.DataFrame):
688
- transform_kwargs = dict(
689
- snowpark_input_cols = self._snowpark_cols,
690
- drop_input_cols = self._drop_input_cols
691
- )
762
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
692
763
 
693
764
  transform_handlers = ModelTransformerBuilder.build(
694
765
  dataset=dataset,
@@ -701,7 +772,7 @@ class GaussianNB(BaseTransformer):
701
772
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
702
773
  inference_method=inference_method,
703
774
  input_cols=self.input_cols,
704
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
775
+ expected_output_cols=expected_output_cols,
705
776
  **transform_kwargs
706
777
  )
707
778
  return output_df
@@ -730,17 +801,17 @@ class GaussianNB(BaseTransformer):
730
801
  Output dataset with probability of the sample for each class in the model.
731
802
  """
732
803
  super()._check_dataset_type(dataset)
733
- inference_method="score_samples"
804
+ inference_method = "score_samples"
734
805
 
735
806
  # This dictionary contains optional kwargs for batch inference. These kwargs
736
807
  # are specific to the type of dataset used.
737
808
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
738
809
 
810
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
811
+
739
812
  if isinstance(dataset, DataFrame):
740
- self._deps = self._batch_inference_validate_snowpark(
741
- dataset=dataset,
742
- inference_method=inference_method,
743
- )
813
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
814
+ self._deps = self._get_dependencies()
744
815
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
745
816
  transform_kwargs = dict(
746
817
  session=dataset._session,
@@ -748,6 +819,9 @@ class GaussianNB(BaseTransformer):
748
819
  drop_input_cols = self._drop_input_cols,
749
820
  expected_output_cols_type="float",
750
821
  )
822
+ expected_output_cols = self._align_expected_output_names(
823
+ inference_method, dataset, expected_output_cols, output_cols_prefix
824
+ )
751
825
 
752
826
  elif isinstance(dataset, pd.DataFrame):
753
827
  transform_kwargs = dict(
@@ -766,7 +840,7 @@ class GaussianNB(BaseTransformer):
766
840
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
767
841
  inference_method=inference_method,
768
842
  input_cols=self.input_cols,
769
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
843
+ expected_output_cols=expected_output_cols,
770
844
  **transform_kwargs
771
845
  )
772
846
  return output_df
@@ -801,17 +875,15 @@ class GaussianNB(BaseTransformer):
801
875
  transform_kwargs: ScoreKwargsTypedDict = dict()
802
876
 
803
877
  if isinstance(dataset, DataFrame):
804
- self._deps = self._batch_inference_validate_snowpark(
805
- dataset=dataset,
806
- inference_method="score",
807
- )
878
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
879
+ self._deps = self._get_dependencies()
808
880
  selected_cols = self._get_active_columns()
809
881
  if len(selected_cols) > 0:
810
882
  dataset = dataset.select(selected_cols)
811
883
  assert isinstance(dataset._session, Session) # keep mypy happy
812
884
  transform_kwargs = dict(
813
885
  session=dataset._session,
814
- dependencies=["snowflake-snowpark-python"] + self._deps,
886
+ dependencies=self._deps,
815
887
  score_sproc_imports=['sklearn'],
816
888
  )
817
889
  elif isinstance(dataset, pd.DataFrame):
@@ -876,11 +948,8 @@ class GaussianNB(BaseTransformer):
876
948
 
877
949
  if isinstance(dataset, DataFrame):
878
950
 
879
- self._deps = self._batch_inference_validate_snowpark(
880
- dataset=dataset,
881
- inference_method=inference_method,
882
-
883
- )
951
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
952
+ self._deps = self._get_dependencies()
884
953
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
885
954
  transform_kwargs = dict(
886
955
  session = dataset._session,
@@ -913,50 +982,84 @@ class GaussianNB(BaseTransformer):
913
982
  )
914
983
  return output_df
915
984
 
985
+
986
+
987
+ def to_sklearn(self) -> Any:
988
+ """Get sklearn.naive_bayes.GaussianNB object.
989
+ """
990
+ if self._sklearn_object is None:
991
+ self._sklearn_object = self._create_sklearn_object()
992
+ return self._sklearn_object
993
+
994
+ def to_xgboost(self) -> Any:
995
+ raise exceptions.SnowflakeMLException(
996
+ error_code=error_codes.METHOD_NOT_ALLOWED,
997
+ original_exception=AttributeError(
998
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
999
+ "to_xgboost()",
1000
+ "to_sklearn()"
1001
+ )
1002
+ ),
1003
+ )
1004
+
1005
+ def to_lightgbm(self) -> Any:
1006
+ raise exceptions.SnowflakeMLException(
1007
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1008
+ original_exception=AttributeError(
1009
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1010
+ "to_lightgbm()",
1011
+ "to_sklearn()"
1012
+ )
1013
+ ),
1014
+ )
1015
+
1016
+ def _get_dependencies(self) -> List[str]:
1017
+ return self._deps
1018
+
916
1019
 
917
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1020
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
918
1021
  self._model_signature_dict = dict()
919
1022
 
920
1023
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
921
1024
 
922
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1025
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
923
1026
  outputs: List[BaseFeatureSpec] = []
924
1027
  if hasattr(self, "predict"):
925
1028
  # keep mypy happy
926
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1029
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
927
1030
  # For classifier, the type of predict is the same as the type of label
928
- if self._sklearn_object._estimator_type == 'classifier':
929
- # label columns is the desired type for output
1031
+ if self._sklearn_object._estimator_type == "classifier":
1032
+ # label columns is the desired type for output
930
1033
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
931
1034
  # rename the output columns
932
1035
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
933
- self._model_signature_dict["predict"] = ModelSignature(inputs,
934
- ([] if self._drop_input_cols else inputs)
935
- + outputs)
1036
+ self._model_signature_dict["predict"] = ModelSignature(
1037
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1038
+ )
936
1039
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
937
1040
  # For outlier models, returns -1 for outliers and 1 for inliers.
938
- # Clusterer returns int64 cluster labels.
1041
+ # Clusterer returns int64 cluster labels.
939
1042
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
940
1043
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
941
- self._model_signature_dict["predict"] = ModelSignature(inputs,
942
- ([] if self._drop_input_cols else inputs)
943
- + outputs)
944
-
1044
+ self._model_signature_dict["predict"] = ModelSignature(
1045
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1046
+ )
1047
+
945
1048
  # For regressor, the type of predict is float64
946
- elif self._sklearn_object._estimator_type == 'regressor':
1049
+ elif self._sklearn_object._estimator_type == "regressor":
947
1050
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
948
- self._model_signature_dict["predict"] = ModelSignature(inputs,
949
- ([] if self._drop_input_cols else inputs)
950
- + outputs)
951
-
1051
+ self._model_signature_dict["predict"] = ModelSignature(
1052
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1053
+ )
1054
+
952
1055
  for prob_func in PROB_FUNCTIONS:
953
1056
  if hasattr(self, prob_func):
954
1057
  output_cols_prefix: str = f"{prob_func}_"
955
1058
  output_column_names = self._get_output_column_names(output_cols_prefix)
956
1059
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
957
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
958
- ([] if self._drop_input_cols else inputs)
959
- + outputs)
1060
+ self._model_signature_dict[prob_func] = ModelSignature(
1061
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1062
+ )
960
1063
 
961
1064
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
962
1065
  items = list(self._model_signature_dict.items())
@@ -969,10 +1072,10 @@ class GaussianNB(BaseTransformer):
969
1072
  """Returns model signature of current class.
970
1073
 
971
1074
  Raises:
972
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1075
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
973
1076
 
974
1077
  Returns:
975
- Dict[str, ModelSignature]: each method and its input output signature
1078
+ Dict with each method and its input output signature
976
1079
  """
977
1080
  if self._model_signature_dict is None:
978
1081
  raise exceptions.SnowflakeMLException(
@@ -980,35 +1083,3 @@ class GaussianNB(BaseTransformer):
980
1083
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
981
1084
  )
982
1085
  return self._model_signature_dict
983
-
984
- def to_sklearn(self) -> Any:
985
- """Get sklearn.naive_bayes.GaussianNB object.
986
- """
987
- if self._sklearn_object is None:
988
- self._sklearn_object = self._create_sklearn_object()
989
- return self._sklearn_object
990
-
991
- def to_xgboost(self) -> Any:
992
- raise exceptions.SnowflakeMLException(
993
- error_code=error_codes.METHOD_NOT_ALLOWED,
994
- original_exception=AttributeError(
995
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
996
- "to_xgboost()",
997
- "to_sklearn()"
998
- )
999
- ),
1000
- )
1001
-
1002
- def to_lightgbm(self) -> Any:
1003
- raise exceptions.SnowflakeMLException(
1004
- error_code=error_codes.METHOD_NOT_ALLOWED,
1005
- original_exception=AttributeError(
1006
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1007
- "to_lightgbm()",
1008
- "to_sklearn()"
1009
- )
1010
- ),
1011
- )
1012
-
1013
- def _get_dependencies(self) -> List[str]:
1014
- return self._deps