snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
snowflake/ml/modeling/svm/svr.py
CHANGED
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.",
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class SVR(BaseTransformer):
|
71
64
|
r"""Epsilon-Support Vector Regression
|
72
65
|
For more details on this class, see [sklearn.svm.SVR]
|
@@ -263,12 +256,7 @@ class SVR(BaseTransformer):
|
|
263
256
|
)
|
264
257
|
return selected_cols
|
265
258
|
|
266
|
-
|
267
|
-
project=_PROJECT,
|
268
|
-
subproject=_SUBPROJECT,
|
269
|
-
custom_tags=dict([("autogen", True)]),
|
270
|
-
)
|
271
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVR":
|
259
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVR":
|
272
260
|
"""Fit the SVM model according to the given training data
|
273
261
|
For more details on this function, see [sklearn.svm.SVR.fit]
|
274
262
|
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR.fit)
|
@@ -295,12 +283,14 @@ class SVR(BaseTransformer):
|
|
295
283
|
|
296
284
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
285
|
|
298
|
-
|
286
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
299
287
|
if SNOWML_SPROC_ENV in os.environ:
|
300
288
|
statement_params = telemetry.get_function_usage_statement_params(
|
301
289
|
project=_PROJECT,
|
302
290
|
subproject=_SUBPROJECT,
|
303
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
291
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
292
|
+
inspect.currentframe(), SVR.__class__.__name__
|
293
|
+
),
|
304
294
|
api_calls=[Session.call],
|
305
295
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
306
296
|
)
|
@@ -321,27 +311,24 @@ class SVR(BaseTransformer):
|
|
321
311
|
)
|
322
312
|
self._sklearn_object = model_trainer.train()
|
323
313
|
self._is_fitted = True
|
324
|
-
self.
|
314
|
+
self._generate_model_signatures(dataset)
|
325
315
|
return self
|
326
316
|
|
327
317
|
def _batch_inference_validate_snowpark(
|
328
318
|
self,
|
329
319
|
dataset: DataFrame,
|
330
320
|
inference_method: str,
|
331
|
-
) ->
|
332
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
333
|
-
return the available package that exists in the snowflake anaconda channel
|
321
|
+
) -> None:
|
322
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
334
323
|
|
335
324
|
Args:
|
336
325
|
dataset: snowpark dataframe
|
337
326
|
inference_method: the inference method such as predict, score...
|
338
|
-
|
327
|
+
|
339
328
|
Raises:
|
340
329
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
341
330
|
SnowflakeMLException: If the session is None, raise error
|
342
331
|
|
343
|
-
Returns:
|
344
|
-
A list of available package that exists in the snowflake anaconda channel
|
345
332
|
"""
|
346
333
|
if not self._is_fitted:
|
347
334
|
raise exceptions.SnowflakeMLException(
|
@@ -359,9 +346,7 @@ class SVR(BaseTransformer):
|
|
359
346
|
"Session must not specified for snowpark dataset."
|
360
347
|
),
|
361
348
|
)
|
362
|
-
|
363
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
364
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
349
|
+
|
365
350
|
|
366
351
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
367
352
|
@telemetry.send_api_usage_telemetry(
|
@@ -397,7 +382,9 @@ class SVR(BaseTransformer):
|
|
397
382
|
# when it is classifier, infer the datatype from label columns
|
398
383
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
399
384
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
400
|
-
label_cols_signatures = [
|
385
|
+
label_cols_signatures = [
|
386
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
387
|
+
]
|
401
388
|
if len(label_cols_signatures) == 0:
|
402
389
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
403
390
|
raise exceptions.SnowflakeMLException(
|
@@ -405,25 +392,23 @@ class SVR(BaseTransformer):
|
|
405
392
|
original_exception=ValueError(error_str),
|
406
393
|
)
|
407
394
|
|
408
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
409
|
-
label_cols_signatures[0].as_snowpark_type()
|
410
|
-
)
|
395
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
411
396
|
|
412
|
-
self.
|
413
|
-
|
397
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
398
|
+
self._deps = self._get_dependencies()
|
399
|
+
assert isinstance(
|
400
|
+
dataset._session, Session
|
401
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
414
402
|
|
415
403
|
transform_kwargs = dict(
|
416
|
-
session
|
417
|
-
dependencies
|
418
|
-
drop_input_cols
|
419
|
-
expected_output_cols_type
|
404
|
+
session=dataset._session,
|
405
|
+
dependencies=self._deps,
|
406
|
+
drop_input_cols=self._drop_input_cols,
|
407
|
+
expected_output_cols_type=expected_type_inferred,
|
420
408
|
)
|
421
409
|
|
422
410
|
elif isinstance(dataset, pd.DataFrame):
|
423
|
-
transform_kwargs = dict(
|
424
|
-
snowpark_input_cols = self._snowpark_cols,
|
425
|
-
drop_input_cols = self._drop_input_cols
|
426
|
-
)
|
411
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
427
412
|
|
428
413
|
transform_handlers = ModelTransformerBuilder.build(
|
429
414
|
dataset=dataset,
|
@@ -463,7 +448,7 @@ class SVR(BaseTransformer):
|
|
463
448
|
Transformed dataset.
|
464
449
|
"""
|
465
450
|
super()._check_dataset_type(dataset)
|
466
|
-
inference_method="transform"
|
451
|
+
inference_method = "transform"
|
467
452
|
|
468
453
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
469
454
|
# are specific to the type of dataset used.
|
@@ -493,24 +478,19 @@ class SVR(BaseTransformer):
|
|
493
478
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
494
479
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
495
480
|
|
496
|
-
self.
|
497
|
-
|
498
|
-
inference_method=inference_method,
|
499
|
-
)
|
481
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
482
|
+
self._deps = self._get_dependencies()
|
500
483
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
501
484
|
|
502
485
|
transform_kwargs = dict(
|
503
|
-
session
|
504
|
-
dependencies
|
505
|
-
drop_input_cols
|
506
|
-
expected_output_cols_type
|
486
|
+
session=dataset._session,
|
487
|
+
dependencies=self._deps,
|
488
|
+
drop_input_cols=self._drop_input_cols,
|
489
|
+
expected_output_cols_type=expected_dtype,
|
507
490
|
)
|
508
491
|
|
509
492
|
elif isinstance(dataset, pd.DataFrame):
|
510
|
-
transform_kwargs = dict(
|
511
|
-
snowpark_input_cols = self._snowpark_cols,
|
512
|
-
drop_input_cols = self._drop_input_cols
|
513
|
-
)
|
493
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
514
494
|
|
515
495
|
transform_handlers = ModelTransformerBuilder.build(
|
516
496
|
dataset=dataset,
|
@@ -529,7 +509,11 @@ class SVR(BaseTransformer):
|
|
529
509
|
return output_df
|
530
510
|
|
531
511
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
532
|
-
def fit_predict(
|
512
|
+
def fit_predict(
|
513
|
+
self,
|
514
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
515
|
+
output_cols_prefix: str = "fit_predict_",
|
516
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
533
517
|
""" Method not supported for this class.
|
534
518
|
|
535
519
|
|
@@ -554,22 +538,104 @@ class SVR(BaseTransformer):
|
|
554
538
|
)
|
555
539
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
556
540
|
drop_input_cols=self._drop_input_cols,
|
557
|
-
expected_output_cols_list=
|
541
|
+
expected_output_cols_list=(
|
542
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
543
|
+
),
|
558
544
|
)
|
559
545
|
self._sklearn_object = fitted_estimator
|
560
546
|
self._is_fitted = True
|
561
547
|
return output_result
|
562
548
|
|
549
|
+
|
550
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
551
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
552
|
+
""" Method not supported for this class.
|
553
|
+
|
563
554
|
|
564
|
-
|
565
|
-
|
566
|
-
|
555
|
+
Raises:
|
556
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
557
|
+
|
558
|
+
Args:
|
559
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
560
|
+
Snowpark or Pandas DataFrame.
|
561
|
+
output_cols_prefix: Prefix for the response columns
|
567
562
|
Returns:
|
568
563
|
Transformed dataset.
|
569
564
|
"""
|
570
|
-
self.
|
571
|
-
|
572
|
-
|
565
|
+
self._infer_input_output_cols(dataset)
|
566
|
+
super()._check_dataset_type(dataset)
|
567
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
568
|
+
estimator=self._sklearn_object,
|
569
|
+
dataset=dataset,
|
570
|
+
input_cols=self.input_cols,
|
571
|
+
label_cols=self.label_cols,
|
572
|
+
sample_weight_col=self.sample_weight_col,
|
573
|
+
autogenerated=self._autogenerated,
|
574
|
+
subproject=_SUBPROJECT,
|
575
|
+
)
|
576
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
577
|
+
drop_input_cols=self._drop_input_cols,
|
578
|
+
expected_output_cols_list=self.output_cols,
|
579
|
+
)
|
580
|
+
self._sklearn_object = fitted_estimator
|
581
|
+
self._is_fitted = True
|
582
|
+
return output_result
|
583
|
+
|
584
|
+
|
585
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
586
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
587
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
588
|
+
"""
|
589
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
590
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
591
|
+
if output_cols:
|
592
|
+
output_cols = [
|
593
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
594
|
+
for c in output_cols
|
595
|
+
]
|
596
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
597
|
+
output_cols = [output_cols_prefix]
|
598
|
+
elif self._sklearn_object is not None:
|
599
|
+
classes = self._sklearn_object.classes_
|
600
|
+
if isinstance(classes, numpy.ndarray):
|
601
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
602
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
603
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
604
|
+
output_cols = []
|
605
|
+
for i, cl in enumerate(classes):
|
606
|
+
# For binary classification, there is only one output column for each class
|
607
|
+
# ndarray as the two classes are complementary.
|
608
|
+
if len(cl) == 2:
|
609
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
610
|
+
else:
|
611
|
+
output_cols.extend([
|
612
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
613
|
+
])
|
614
|
+
else:
|
615
|
+
output_cols = []
|
616
|
+
|
617
|
+
# Make sure column names are valid snowflake identifiers.
|
618
|
+
assert output_cols is not None # Make MyPy happy
|
619
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
620
|
+
|
621
|
+
return rv
|
622
|
+
|
623
|
+
def _align_expected_output_names(
|
624
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
625
|
+
) -> List[str]:
|
626
|
+
# in case the inferred output column names dimension is different
|
627
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
628
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
629
|
+
output_df_columns = list(output_df_pd.columns)
|
630
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
631
|
+
if self.sample_weight_col:
|
632
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
633
|
+
# if the dimension of inferred output column names is correct; use it
|
634
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
635
|
+
return expected_output_cols_list
|
636
|
+
# otherwise, use the sklearn estimator's output
|
637
|
+
else:
|
638
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
573
639
|
|
574
640
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
575
641
|
@telemetry.send_api_usage_telemetry(
|
@@ -601,24 +667,26 @@ class SVR(BaseTransformer):
|
|
601
667
|
# are specific to the type of dataset used.
|
602
668
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
603
669
|
|
670
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
671
|
+
|
604
672
|
if isinstance(dataset, DataFrame):
|
605
|
-
self.
|
606
|
-
|
607
|
-
|
608
|
-
|
609
|
-
|
673
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
674
|
+
self._deps = self._get_dependencies()
|
675
|
+
assert isinstance(
|
676
|
+
dataset._session, Session
|
677
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
610
678
|
transform_kwargs = dict(
|
611
679
|
session=dataset._session,
|
612
680
|
dependencies=self._deps,
|
613
|
-
drop_input_cols
|
681
|
+
drop_input_cols=self._drop_input_cols,
|
614
682
|
expected_output_cols_type="float",
|
615
683
|
)
|
684
|
+
expected_output_cols = self._align_expected_output_names(
|
685
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
686
|
+
)
|
616
687
|
|
617
688
|
elif isinstance(dataset, pd.DataFrame):
|
618
|
-
transform_kwargs = dict(
|
619
|
-
snowpark_input_cols = self._snowpark_cols,
|
620
|
-
drop_input_cols = self._drop_input_cols
|
621
|
-
)
|
689
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
622
690
|
|
623
691
|
transform_handlers = ModelTransformerBuilder.build(
|
624
692
|
dataset=dataset,
|
@@ -630,7 +698,7 @@ class SVR(BaseTransformer):
|
|
630
698
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
631
699
|
inference_method=inference_method,
|
632
700
|
input_cols=self.input_cols,
|
633
|
-
expected_output_cols=
|
701
|
+
expected_output_cols=expected_output_cols,
|
634
702
|
**transform_kwargs
|
635
703
|
)
|
636
704
|
return output_df
|
@@ -660,29 +728,30 @@ class SVR(BaseTransformer):
|
|
660
728
|
Output dataset with log probability of the sample for each class in the model.
|
661
729
|
"""
|
662
730
|
super()._check_dataset_type(dataset)
|
663
|
-
inference_method="predict_log_proba"
|
731
|
+
inference_method = "predict_log_proba"
|
732
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
664
733
|
|
665
734
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
666
735
|
# are specific to the type of dataset used.
|
667
736
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
668
737
|
|
669
738
|
if isinstance(dataset, DataFrame):
|
670
|
-
self.
|
671
|
-
|
672
|
-
|
673
|
-
|
674
|
-
|
739
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
740
|
+
self._deps = self._get_dependencies()
|
741
|
+
assert isinstance(
|
742
|
+
dataset._session, Session
|
743
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
675
744
|
transform_kwargs = dict(
|
676
745
|
session=dataset._session,
|
677
746
|
dependencies=self._deps,
|
678
|
-
drop_input_cols
|
747
|
+
drop_input_cols=self._drop_input_cols,
|
679
748
|
expected_output_cols_type="float",
|
680
749
|
)
|
750
|
+
expected_output_cols = self._align_expected_output_names(
|
751
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
752
|
+
)
|
681
753
|
elif isinstance(dataset, pd.DataFrame):
|
682
|
-
transform_kwargs = dict(
|
683
|
-
snowpark_input_cols = self._snowpark_cols,
|
684
|
-
drop_input_cols = self._drop_input_cols
|
685
|
-
)
|
754
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
686
755
|
|
687
756
|
transform_handlers = ModelTransformerBuilder.build(
|
688
757
|
dataset=dataset,
|
@@ -695,7 +764,7 @@ class SVR(BaseTransformer):
|
|
695
764
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
696
765
|
inference_method=inference_method,
|
697
766
|
input_cols=self.input_cols,
|
698
|
-
expected_output_cols=
|
767
|
+
expected_output_cols=expected_output_cols,
|
699
768
|
**transform_kwargs
|
700
769
|
)
|
701
770
|
return output_df
|
@@ -721,30 +790,32 @@ class SVR(BaseTransformer):
|
|
721
790
|
Output dataset with results of the decision function for the samples in input dataset.
|
722
791
|
"""
|
723
792
|
super()._check_dataset_type(dataset)
|
724
|
-
inference_method="decision_function"
|
793
|
+
inference_method = "decision_function"
|
725
794
|
|
726
795
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
727
796
|
# are specific to the type of dataset used.
|
728
797
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
729
798
|
|
799
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
800
|
+
|
730
801
|
if isinstance(dataset, DataFrame):
|
731
|
-
self.
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
802
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
803
|
+
self._deps = self._get_dependencies()
|
804
|
+
assert isinstance(
|
805
|
+
dataset._session, Session
|
806
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
736
807
|
transform_kwargs = dict(
|
737
808
|
session=dataset._session,
|
738
809
|
dependencies=self._deps,
|
739
|
-
drop_input_cols
|
810
|
+
drop_input_cols=self._drop_input_cols,
|
740
811
|
expected_output_cols_type="float",
|
741
812
|
)
|
813
|
+
expected_output_cols = self._align_expected_output_names(
|
814
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
815
|
+
)
|
742
816
|
|
743
817
|
elif isinstance(dataset, pd.DataFrame):
|
744
|
-
transform_kwargs = dict(
|
745
|
-
snowpark_input_cols = self._snowpark_cols,
|
746
|
-
drop_input_cols = self._drop_input_cols
|
747
|
-
)
|
818
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
748
819
|
|
749
820
|
transform_handlers = ModelTransformerBuilder.build(
|
750
821
|
dataset=dataset,
|
@@ -757,7 +828,7 @@ class SVR(BaseTransformer):
|
|
757
828
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
758
829
|
inference_method=inference_method,
|
759
830
|
input_cols=self.input_cols,
|
760
|
-
expected_output_cols=
|
831
|
+
expected_output_cols=expected_output_cols,
|
761
832
|
**transform_kwargs
|
762
833
|
)
|
763
834
|
return output_df
|
@@ -786,17 +857,17 @@ class SVR(BaseTransformer):
|
|
786
857
|
Output dataset with probability of the sample for each class in the model.
|
787
858
|
"""
|
788
859
|
super()._check_dataset_type(dataset)
|
789
|
-
inference_method="score_samples"
|
860
|
+
inference_method = "score_samples"
|
790
861
|
|
791
862
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
792
863
|
# are specific to the type of dataset used.
|
793
864
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
794
865
|
|
866
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
867
|
+
|
795
868
|
if isinstance(dataset, DataFrame):
|
796
|
-
self.
|
797
|
-
|
798
|
-
inference_method=inference_method,
|
799
|
-
)
|
869
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
870
|
+
self._deps = self._get_dependencies()
|
800
871
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
801
872
|
transform_kwargs = dict(
|
802
873
|
session=dataset._session,
|
@@ -804,6 +875,9 @@ class SVR(BaseTransformer):
|
|
804
875
|
drop_input_cols = self._drop_input_cols,
|
805
876
|
expected_output_cols_type="float",
|
806
877
|
)
|
878
|
+
expected_output_cols = self._align_expected_output_names(
|
879
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
880
|
+
)
|
807
881
|
|
808
882
|
elif isinstance(dataset, pd.DataFrame):
|
809
883
|
transform_kwargs = dict(
|
@@ -822,7 +896,7 @@ class SVR(BaseTransformer):
|
|
822
896
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
823
897
|
inference_method=inference_method,
|
824
898
|
input_cols=self.input_cols,
|
825
|
-
expected_output_cols=
|
899
|
+
expected_output_cols=expected_output_cols,
|
826
900
|
**transform_kwargs
|
827
901
|
)
|
828
902
|
return output_df
|
@@ -857,17 +931,15 @@ class SVR(BaseTransformer):
|
|
857
931
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
858
932
|
|
859
933
|
if isinstance(dataset, DataFrame):
|
860
|
-
self.
|
861
|
-
|
862
|
-
inference_method="score",
|
863
|
-
)
|
934
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
935
|
+
self._deps = self._get_dependencies()
|
864
936
|
selected_cols = self._get_active_columns()
|
865
937
|
if len(selected_cols) > 0:
|
866
938
|
dataset = dataset.select(selected_cols)
|
867
939
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
868
940
|
transform_kwargs = dict(
|
869
941
|
session=dataset._session,
|
870
|
-
dependencies=
|
942
|
+
dependencies=self._deps,
|
871
943
|
score_sproc_imports=['sklearn'],
|
872
944
|
)
|
873
945
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -932,11 +1004,8 @@ class SVR(BaseTransformer):
|
|
932
1004
|
|
933
1005
|
if isinstance(dataset, DataFrame):
|
934
1006
|
|
935
|
-
self.
|
936
|
-
|
937
|
-
inference_method=inference_method,
|
938
|
-
|
939
|
-
)
|
1007
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1008
|
+
self._deps = self._get_dependencies()
|
940
1009
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
941
1010
|
transform_kwargs = dict(
|
942
1011
|
session = dataset._session,
|
@@ -969,50 +1038,84 @@ class SVR(BaseTransformer):
|
|
969
1038
|
)
|
970
1039
|
return output_df
|
971
1040
|
|
1041
|
+
|
1042
|
+
|
1043
|
+
def to_sklearn(self) -> Any:
|
1044
|
+
"""Get sklearn.svm.SVR object.
|
1045
|
+
"""
|
1046
|
+
if self._sklearn_object is None:
|
1047
|
+
self._sklearn_object = self._create_sklearn_object()
|
1048
|
+
return self._sklearn_object
|
1049
|
+
|
1050
|
+
def to_xgboost(self) -> Any:
|
1051
|
+
raise exceptions.SnowflakeMLException(
|
1052
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1053
|
+
original_exception=AttributeError(
|
1054
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1055
|
+
"to_xgboost()",
|
1056
|
+
"to_sklearn()"
|
1057
|
+
)
|
1058
|
+
),
|
1059
|
+
)
|
1060
|
+
|
1061
|
+
def to_lightgbm(self) -> Any:
|
1062
|
+
raise exceptions.SnowflakeMLException(
|
1063
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1064
|
+
original_exception=AttributeError(
|
1065
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1066
|
+
"to_lightgbm()",
|
1067
|
+
"to_sklearn()"
|
1068
|
+
)
|
1069
|
+
),
|
1070
|
+
)
|
1071
|
+
|
1072
|
+
def _get_dependencies(self) -> List[str]:
|
1073
|
+
return self._deps
|
1074
|
+
|
972
1075
|
|
973
|
-
def
|
1076
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
974
1077
|
self._model_signature_dict = dict()
|
975
1078
|
|
976
1079
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
977
1080
|
|
978
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1081
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
979
1082
|
outputs: List[BaseFeatureSpec] = []
|
980
1083
|
if hasattr(self, "predict"):
|
981
1084
|
# keep mypy happy
|
982
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1085
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
983
1086
|
# For classifier, the type of predict is the same as the type of label
|
984
|
-
if self._sklearn_object._estimator_type ==
|
985
|
-
|
1087
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1088
|
+
# label columns is the desired type for output
|
986
1089
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
987
1090
|
# rename the output columns
|
988
1091
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
989
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
990
|
-
|
991
|
-
|
1092
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1093
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1094
|
+
)
|
992
1095
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
993
1096
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
994
|
-
# Clusterer returns int64 cluster labels.
|
1097
|
+
# Clusterer returns int64 cluster labels.
|
995
1098
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
996
1099
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
997
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
998
|
-
|
999
|
-
|
1000
|
-
|
1100
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1101
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1102
|
+
)
|
1103
|
+
|
1001
1104
|
# For regressor, the type of predict is float64
|
1002
|
-
elif self._sklearn_object._estimator_type ==
|
1105
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1003
1106
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1004
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1005
|
-
|
1006
|
-
|
1007
|
-
|
1107
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1108
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1109
|
+
)
|
1110
|
+
|
1008
1111
|
for prob_func in PROB_FUNCTIONS:
|
1009
1112
|
if hasattr(self, prob_func):
|
1010
1113
|
output_cols_prefix: str = f"{prob_func}_"
|
1011
1114
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1012
1115
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1013
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1014
|
-
|
1015
|
-
|
1116
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1117
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1118
|
+
)
|
1016
1119
|
|
1017
1120
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1018
1121
|
items = list(self._model_signature_dict.items())
|
@@ -1025,10 +1128,10 @@ class SVR(BaseTransformer):
|
|
1025
1128
|
"""Returns model signature of current class.
|
1026
1129
|
|
1027
1130
|
Raises:
|
1028
|
-
|
1131
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1029
1132
|
|
1030
1133
|
Returns:
|
1031
|
-
Dict
|
1134
|
+
Dict with each method and its input output signature
|
1032
1135
|
"""
|
1033
1136
|
if self._model_signature_dict is None:
|
1034
1137
|
raise exceptions.SnowflakeMLException(
|
@@ -1036,35 +1139,3 @@ class SVR(BaseTransformer):
|
|
1036
1139
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1037
1140
|
)
|
1038
1141
|
return self._model_signature_dict
|
1039
|
-
|
1040
|
-
def to_sklearn(self) -> Any:
|
1041
|
-
"""Get sklearn.svm.SVR object.
|
1042
|
-
"""
|
1043
|
-
if self._sklearn_object is None:
|
1044
|
-
self._sklearn_object = self._create_sklearn_object()
|
1045
|
-
return self._sklearn_object
|
1046
|
-
|
1047
|
-
def to_xgboost(self) -> Any:
|
1048
|
-
raise exceptions.SnowflakeMLException(
|
1049
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1050
|
-
original_exception=AttributeError(
|
1051
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1052
|
-
"to_xgboost()",
|
1053
|
-
"to_sklearn()"
|
1054
|
-
)
|
1055
|
-
),
|
1056
|
-
)
|
1057
|
-
|
1058
|
-
def to_lightgbm(self) -> Any:
|
1059
|
-
raise exceptions.SnowflakeMLException(
|
1060
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1061
|
-
original_exception=AttributeError(
|
1062
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1063
|
-
"to_lightgbm()",
|
1064
|
-
"to_sklearn()"
|
1065
|
-
)
|
1066
|
-
),
|
1067
|
-
)
|
1068
|
-
|
1069
|
-
def _get_dependencies(self) -> List[str]:
|
1070
|
-
return self._deps
|