snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.",
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SVR(BaseTransformer):
71
64
  r"""Epsilon-Support Vector Regression
72
65
  For more details on this class, see [sklearn.svm.SVR]
@@ -263,12 +256,7 @@ class SVR(BaseTransformer):
263
256
  )
264
257
  return selected_cols
265
258
 
266
- @telemetry.send_api_usage_telemetry(
267
- project=_PROJECT,
268
- subproject=_SUBPROJECT,
269
- custom_tags=dict([("autogen", True)]),
270
- )
271
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVR":
259
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVR":
272
260
  """Fit the SVM model according to the given training data
273
261
  For more details on this function, see [sklearn.svm.SVR.fit]
274
262
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR.fit)
@@ -295,12 +283,14 @@ class SVR(BaseTransformer):
295
283
 
296
284
  self._snowpark_cols = dataset.select(self.input_cols).columns
297
285
 
298
- # If we are already in a stored procedure, no need to kick off another one.
286
+ # If we are already in a stored procedure, no need to kick off another one.
299
287
  if SNOWML_SPROC_ENV in os.environ:
300
288
  statement_params = telemetry.get_function_usage_statement_params(
301
289
  project=_PROJECT,
302
290
  subproject=_SUBPROJECT,
303
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVR.__class__.__name__),
291
+ function_name=telemetry.get_statement_params_full_func_name(
292
+ inspect.currentframe(), SVR.__class__.__name__
293
+ ),
304
294
  api_calls=[Session.call],
305
295
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
306
296
  )
@@ -321,27 +311,24 @@ class SVR(BaseTransformer):
321
311
  )
322
312
  self._sklearn_object = model_trainer.train()
323
313
  self._is_fitted = True
324
- self._get_model_signatures(dataset)
314
+ self._generate_model_signatures(dataset)
325
315
  return self
326
316
 
327
317
  def _batch_inference_validate_snowpark(
328
318
  self,
329
319
  dataset: DataFrame,
330
320
  inference_method: str,
331
- ) -> List[str]:
332
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
333
- return the available package that exists in the snowflake anaconda channel
321
+ ) -> None:
322
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
334
323
 
335
324
  Args:
336
325
  dataset: snowpark dataframe
337
326
  inference_method: the inference method such as predict, score...
338
-
327
+
339
328
  Raises:
340
329
  SnowflakeMLException: If the estimator is not fitted, raise error
341
330
  SnowflakeMLException: If the session is None, raise error
342
331
 
343
- Returns:
344
- A list of available package that exists in the snowflake anaconda channel
345
332
  """
346
333
  if not self._is_fitted:
347
334
  raise exceptions.SnowflakeMLException(
@@ -359,9 +346,7 @@ class SVR(BaseTransformer):
359
346
  "Session must not specified for snowpark dataset."
360
347
  ),
361
348
  )
362
- # Validate that key package version in user workspace are supported in snowflake conda channel
363
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
364
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
349
+
365
350
 
366
351
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
367
352
  @telemetry.send_api_usage_telemetry(
@@ -397,7 +382,9 @@ class SVR(BaseTransformer):
397
382
  # when it is classifier, infer the datatype from label columns
398
383
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
399
384
  # Batch inference takes a single expected output column type. Use the first columns type for now.
400
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
385
+ label_cols_signatures = [
386
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
387
+ ]
401
388
  if len(label_cols_signatures) == 0:
402
389
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
403
390
  raise exceptions.SnowflakeMLException(
@@ -405,25 +392,23 @@ class SVR(BaseTransformer):
405
392
  original_exception=ValueError(error_str),
406
393
  )
407
394
 
408
- expected_type_inferred = convert_sp_to_sf_type(
409
- label_cols_signatures[0].as_snowpark_type()
410
- )
395
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
411
396
 
412
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
413
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
397
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
398
+ self._deps = self._get_dependencies()
399
+ assert isinstance(
400
+ dataset._session, Session
401
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
414
402
 
415
403
  transform_kwargs = dict(
416
- session = dataset._session,
417
- dependencies = self._deps,
418
- drop_input_cols = self._drop_input_cols,
419
- expected_output_cols_type = expected_type_inferred,
404
+ session=dataset._session,
405
+ dependencies=self._deps,
406
+ drop_input_cols=self._drop_input_cols,
407
+ expected_output_cols_type=expected_type_inferred,
420
408
  )
421
409
 
422
410
  elif isinstance(dataset, pd.DataFrame):
423
- transform_kwargs = dict(
424
- snowpark_input_cols = self._snowpark_cols,
425
- drop_input_cols = self._drop_input_cols
426
- )
411
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
427
412
 
428
413
  transform_handlers = ModelTransformerBuilder.build(
429
414
  dataset=dataset,
@@ -463,7 +448,7 @@ class SVR(BaseTransformer):
463
448
  Transformed dataset.
464
449
  """
465
450
  super()._check_dataset_type(dataset)
466
- inference_method="transform"
451
+ inference_method = "transform"
467
452
 
468
453
  # This dictionary contains optional kwargs for batch inference. These kwargs
469
454
  # are specific to the type of dataset used.
@@ -493,24 +478,19 @@ class SVR(BaseTransformer):
493
478
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
494
479
  expected_dtype = convert_sp_to_sf_type(output_types[0])
495
480
 
496
- self._deps = self._batch_inference_validate_snowpark(
497
- dataset=dataset,
498
- inference_method=inference_method,
499
- )
481
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
482
+ self._deps = self._get_dependencies()
500
483
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
501
484
 
502
485
  transform_kwargs = dict(
503
- session = dataset._session,
504
- dependencies = self._deps,
505
- drop_input_cols = self._drop_input_cols,
506
- expected_output_cols_type = expected_dtype,
486
+ session=dataset._session,
487
+ dependencies=self._deps,
488
+ drop_input_cols=self._drop_input_cols,
489
+ expected_output_cols_type=expected_dtype,
507
490
  )
508
491
 
509
492
  elif isinstance(dataset, pd.DataFrame):
510
- transform_kwargs = dict(
511
- snowpark_input_cols = self._snowpark_cols,
512
- drop_input_cols = self._drop_input_cols
513
- )
493
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
514
494
 
515
495
  transform_handlers = ModelTransformerBuilder.build(
516
496
  dataset=dataset,
@@ -529,7 +509,11 @@ class SVR(BaseTransformer):
529
509
  return output_df
530
510
 
531
511
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
532
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
512
+ def fit_predict(
513
+ self,
514
+ dataset: Union[DataFrame, pd.DataFrame],
515
+ output_cols_prefix: str = "fit_predict_",
516
+ ) -> Union[DataFrame, pd.DataFrame]:
533
517
  """ Method not supported for this class.
534
518
 
535
519
 
@@ -554,22 +538,104 @@ class SVR(BaseTransformer):
554
538
  )
555
539
  output_result, fitted_estimator = model_trainer.train_fit_predict(
556
540
  drop_input_cols=self._drop_input_cols,
557
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
541
+ expected_output_cols_list=(
542
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
543
+ ),
558
544
  )
559
545
  self._sklearn_object = fitted_estimator
560
546
  self._is_fitted = True
561
547
  return output_result
562
548
 
549
+
550
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
551
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
552
+ """ Method not supported for this class.
553
+
563
554
 
564
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
565
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
566
- """
555
+ Raises:
556
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
557
+
558
+ Args:
559
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
560
+ Snowpark or Pandas DataFrame.
561
+ output_cols_prefix: Prefix for the response columns
567
562
  Returns:
568
563
  Transformed dataset.
569
564
  """
570
- self.fit(dataset)
571
- assert self._sklearn_object is not None
572
- return self._sklearn_object.embedding_
565
+ self._infer_input_output_cols(dataset)
566
+ super()._check_dataset_type(dataset)
567
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
568
+ estimator=self._sklearn_object,
569
+ dataset=dataset,
570
+ input_cols=self.input_cols,
571
+ label_cols=self.label_cols,
572
+ sample_weight_col=self.sample_weight_col,
573
+ autogenerated=self._autogenerated,
574
+ subproject=_SUBPROJECT,
575
+ )
576
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
577
+ drop_input_cols=self._drop_input_cols,
578
+ expected_output_cols_list=self.output_cols,
579
+ )
580
+ self._sklearn_object = fitted_estimator
581
+ self._is_fitted = True
582
+ return output_result
583
+
584
+
585
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
586
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
587
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
588
+ """
589
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
590
+ # The following condition is introduced for kneighbors methods, and not used in other methods
591
+ if output_cols:
592
+ output_cols = [
593
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
594
+ for c in output_cols
595
+ ]
596
+ elif getattr(self._sklearn_object, "classes_", None) is None:
597
+ output_cols = [output_cols_prefix]
598
+ elif self._sklearn_object is not None:
599
+ classes = self._sklearn_object.classes_
600
+ if isinstance(classes, numpy.ndarray):
601
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
602
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
603
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
604
+ output_cols = []
605
+ for i, cl in enumerate(classes):
606
+ # For binary classification, there is only one output column for each class
607
+ # ndarray as the two classes are complementary.
608
+ if len(cl) == 2:
609
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
610
+ else:
611
+ output_cols.extend([
612
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
613
+ ])
614
+ else:
615
+ output_cols = []
616
+
617
+ # Make sure column names are valid snowflake identifiers.
618
+ assert output_cols is not None # Make MyPy happy
619
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
620
+
621
+ return rv
622
+
623
+ def _align_expected_output_names(
624
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
625
+ ) -> List[str]:
626
+ # in case the inferred output column names dimension is different
627
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
628
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
629
+ output_df_columns = list(output_df_pd.columns)
630
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
631
+ if self.sample_weight_col:
632
+ output_df_columns_set -= set(self.sample_weight_col)
633
+ # if the dimension of inferred output column names is correct; use it
634
+ if len(expected_output_cols_list) == len(output_df_columns_set):
635
+ return expected_output_cols_list
636
+ # otherwise, use the sklearn estimator's output
637
+ else:
638
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
573
639
 
574
640
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
575
641
  @telemetry.send_api_usage_telemetry(
@@ -601,24 +667,26 @@ class SVR(BaseTransformer):
601
667
  # are specific to the type of dataset used.
602
668
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
603
669
 
670
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
671
+
604
672
  if isinstance(dataset, DataFrame):
605
- self._deps = self._batch_inference_validate_snowpark(
606
- dataset=dataset,
607
- inference_method=inference_method,
608
- )
609
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
673
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
674
+ self._deps = self._get_dependencies()
675
+ assert isinstance(
676
+ dataset._session, Session
677
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
610
678
  transform_kwargs = dict(
611
679
  session=dataset._session,
612
680
  dependencies=self._deps,
613
- drop_input_cols = self._drop_input_cols,
681
+ drop_input_cols=self._drop_input_cols,
614
682
  expected_output_cols_type="float",
615
683
  )
684
+ expected_output_cols = self._align_expected_output_names(
685
+ inference_method, dataset, expected_output_cols, output_cols_prefix
686
+ )
616
687
 
617
688
  elif isinstance(dataset, pd.DataFrame):
618
- transform_kwargs = dict(
619
- snowpark_input_cols = self._snowpark_cols,
620
- drop_input_cols = self._drop_input_cols
621
- )
689
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
622
690
 
623
691
  transform_handlers = ModelTransformerBuilder.build(
624
692
  dataset=dataset,
@@ -630,7 +698,7 @@ class SVR(BaseTransformer):
630
698
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
631
699
  inference_method=inference_method,
632
700
  input_cols=self.input_cols,
633
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
701
+ expected_output_cols=expected_output_cols,
634
702
  **transform_kwargs
635
703
  )
636
704
  return output_df
@@ -660,29 +728,30 @@ class SVR(BaseTransformer):
660
728
  Output dataset with log probability of the sample for each class in the model.
661
729
  """
662
730
  super()._check_dataset_type(dataset)
663
- inference_method="predict_log_proba"
731
+ inference_method = "predict_log_proba"
732
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
664
733
 
665
734
  # This dictionary contains optional kwargs for batch inference. These kwargs
666
735
  # are specific to the type of dataset used.
667
736
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
668
737
 
669
738
  if isinstance(dataset, DataFrame):
670
- self._deps = self._batch_inference_validate_snowpark(
671
- dataset=dataset,
672
- inference_method=inference_method,
673
- )
674
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
739
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
740
+ self._deps = self._get_dependencies()
741
+ assert isinstance(
742
+ dataset._session, Session
743
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
675
744
  transform_kwargs = dict(
676
745
  session=dataset._session,
677
746
  dependencies=self._deps,
678
- drop_input_cols = self._drop_input_cols,
747
+ drop_input_cols=self._drop_input_cols,
679
748
  expected_output_cols_type="float",
680
749
  )
750
+ expected_output_cols = self._align_expected_output_names(
751
+ inference_method, dataset, expected_output_cols, output_cols_prefix
752
+ )
681
753
  elif isinstance(dataset, pd.DataFrame):
682
- transform_kwargs = dict(
683
- snowpark_input_cols = self._snowpark_cols,
684
- drop_input_cols = self._drop_input_cols
685
- )
754
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
686
755
 
687
756
  transform_handlers = ModelTransformerBuilder.build(
688
757
  dataset=dataset,
@@ -695,7 +764,7 @@ class SVR(BaseTransformer):
695
764
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
696
765
  inference_method=inference_method,
697
766
  input_cols=self.input_cols,
698
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
767
+ expected_output_cols=expected_output_cols,
699
768
  **transform_kwargs
700
769
  )
701
770
  return output_df
@@ -721,30 +790,32 @@ class SVR(BaseTransformer):
721
790
  Output dataset with results of the decision function for the samples in input dataset.
722
791
  """
723
792
  super()._check_dataset_type(dataset)
724
- inference_method="decision_function"
793
+ inference_method = "decision_function"
725
794
 
726
795
  # This dictionary contains optional kwargs for batch inference. These kwargs
727
796
  # are specific to the type of dataset used.
728
797
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
729
798
 
799
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
800
+
730
801
  if isinstance(dataset, DataFrame):
731
- self._deps = self._batch_inference_validate_snowpark(
732
- dataset=dataset,
733
- inference_method=inference_method,
734
- )
735
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
802
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
803
+ self._deps = self._get_dependencies()
804
+ assert isinstance(
805
+ dataset._session, Session
806
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
736
807
  transform_kwargs = dict(
737
808
  session=dataset._session,
738
809
  dependencies=self._deps,
739
- drop_input_cols = self._drop_input_cols,
810
+ drop_input_cols=self._drop_input_cols,
740
811
  expected_output_cols_type="float",
741
812
  )
813
+ expected_output_cols = self._align_expected_output_names(
814
+ inference_method, dataset, expected_output_cols, output_cols_prefix
815
+ )
742
816
 
743
817
  elif isinstance(dataset, pd.DataFrame):
744
- transform_kwargs = dict(
745
- snowpark_input_cols = self._snowpark_cols,
746
- drop_input_cols = self._drop_input_cols
747
- )
818
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
748
819
 
749
820
  transform_handlers = ModelTransformerBuilder.build(
750
821
  dataset=dataset,
@@ -757,7 +828,7 @@ class SVR(BaseTransformer):
757
828
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
758
829
  inference_method=inference_method,
759
830
  input_cols=self.input_cols,
760
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
831
+ expected_output_cols=expected_output_cols,
761
832
  **transform_kwargs
762
833
  )
763
834
  return output_df
@@ -786,17 +857,17 @@ class SVR(BaseTransformer):
786
857
  Output dataset with probability of the sample for each class in the model.
787
858
  """
788
859
  super()._check_dataset_type(dataset)
789
- inference_method="score_samples"
860
+ inference_method = "score_samples"
790
861
 
791
862
  # This dictionary contains optional kwargs for batch inference. These kwargs
792
863
  # are specific to the type of dataset used.
793
864
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
794
865
 
866
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
867
+
795
868
  if isinstance(dataset, DataFrame):
796
- self._deps = self._batch_inference_validate_snowpark(
797
- dataset=dataset,
798
- inference_method=inference_method,
799
- )
869
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
870
+ self._deps = self._get_dependencies()
800
871
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
801
872
  transform_kwargs = dict(
802
873
  session=dataset._session,
@@ -804,6 +875,9 @@ class SVR(BaseTransformer):
804
875
  drop_input_cols = self._drop_input_cols,
805
876
  expected_output_cols_type="float",
806
877
  )
878
+ expected_output_cols = self._align_expected_output_names(
879
+ inference_method, dataset, expected_output_cols, output_cols_prefix
880
+ )
807
881
 
808
882
  elif isinstance(dataset, pd.DataFrame):
809
883
  transform_kwargs = dict(
@@ -822,7 +896,7 @@ class SVR(BaseTransformer):
822
896
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
823
897
  inference_method=inference_method,
824
898
  input_cols=self.input_cols,
825
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
899
+ expected_output_cols=expected_output_cols,
826
900
  **transform_kwargs
827
901
  )
828
902
  return output_df
@@ -857,17 +931,15 @@ class SVR(BaseTransformer):
857
931
  transform_kwargs: ScoreKwargsTypedDict = dict()
858
932
 
859
933
  if isinstance(dataset, DataFrame):
860
- self._deps = self._batch_inference_validate_snowpark(
861
- dataset=dataset,
862
- inference_method="score",
863
- )
934
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
935
+ self._deps = self._get_dependencies()
864
936
  selected_cols = self._get_active_columns()
865
937
  if len(selected_cols) > 0:
866
938
  dataset = dataset.select(selected_cols)
867
939
  assert isinstance(dataset._session, Session) # keep mypy happy
868
940
  transform_kwargs = dict(
869
941
  session=dataset._session,
870
- dependencies=["snowflake-snowpark-python"] + self._deps,
942
+ dependencies=self._deps,
871
943
  score_sproc_imports=['sklearn'],
872
944
  )
873
945
  elif isinstance(dataset, pd.DataFrame):
@@ -932,11 +1004,8 @@ class SVR(BaseTransformer):
932
1004
 
933
1005
  if isinstance(dataset, DataFrame):
934
1006
 
935
- self._deps = self._batch_inference_validate_snowpark(
936
- dataset=dataset,
937
- inference_method=inference_method,
938
-
939
- )
1007
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1008
+ self._deps = self._get_dependencies()
940
1009
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
941
1010
  transform_kwargs = dict(
942
1011
  session = dataset._session,
@@ -969,50 +1038,84 @@ class SVR(BaseTransformer):
969
1038
  )
970
1039
  return output_df
971
1040
 
1041
+
1042
+
1043
+ def to_sklearn(self) -> Any:
1044
+ """Get sklearn.svm.SVR object.
1045
+ """
1046
+ if self._sklearn_object is None:
1047
+ self._sklearn_object = self._create_sklearn_object()
1048
+ return self._sklearn_object
1049
+
1050
+ def to_xgboost(self) -> Any:
1051
+ raise exceptions.SnowflakeMLException(
1052
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1053
+ original_exception=AttributeError(
1054
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1055
+ "to_xgboost()",
1056
+ "to_sklearn()"
1057
+ )
1058
+ ),
1059
+ )
1060
+
1061
+ def to_lightgbm(self) -> Any:
1062
+ raise exceptions.SnowflakeMLException(
1063
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1064
+ original_exception=AttributeError(
1065
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1066
+ "to_lightgbm()",
1067
+ "to_sklearn()"
1068
+ )
1069
+ ),
1070
+ )
1071
+
1072
+ def _get_dependencies(self) -> List[str]:
1073
+ return self._deps
1074
+
972
1075
 
973
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1076
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
974
1077
  self._model_signature_dict = dict()
975
1078
 
976
1079
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
977
1080
 
978
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1081
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
979
1082
  outputs: List[BaseFeatureSpec] = []
980
1083
  if hasattr(self, "predict"):
981
1084
  # keep mypy happy
982
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1085
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
983
1086
  # For classifier, the type of predict is the same as the type of label
984
- if self._sklearn_object._estimator_type == 'classifier':
985
- # label columns is the desired type for output
1087
+ if self._sklearn_object._estimator_type == "classifier":
1088
+ # label columns is the desired type for output
986
1089
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
987
1090
  # rename the output columns
988
1091
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
989
- self._model_signature_dict["predict"] = ModelSignature(inputs,
990
- ([] if self._drop_input_cols else inputs)
991
- + outputs)
1092
+ self._model_signature_dict["predict"] = ModelSignature(
1093
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1094
+ )
992
1095
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
993
1096
  # For outlier models, returns -1 for outliers and 1 for inliers.
994
- # Clusterer returns int64 cluster labels.
1097
+ # Clusterer returns int64 cluster labels.
995
1098
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
996
1099
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
997
- self._model_signature_dict["predict"] = ModelSignature(inputs,
998
- ([] if self._drop_input_cols else inputs)
999
- + outputs)
1000
-
1100
+ self._model_signature_dict["predict"] = ModelSignature(
1101
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1102
+ )
1103
+
1001
1104
  # For regressor, the type of predict is float64
1002
- elif self._sklearn_object._estimator_type == 'regressor':
1105
+ elif self._sklearn_object._estimator_type == "regressor":
1003
1106
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1004
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1005
- ([] if self._drop_input_cols else inputs)
1006
- + outputs)
1007
-
1107
+ self._model_signature_dict["predict"] = ModelSignature(
1108
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1109
+ )
1110
+
1008
1111
  for prob_func in PROB_FUNCTIONS:
1009
1112
  if hasattr(self, prob_func):
1010
1113
  output_cols_prefix: str = f"{prob_func}_"
1011
1114
  output_column_names = self._get_output_column_names(output_cols_prefix)
1012
1115
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1013
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1014
- ([] if self._drop_input_cols else inputs)
1015
- + outputs)
1116
+ self._model_signature_dict[prob_func] = ModelSignature(
1117
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1118
+ )
1016
1119
 
1017
1120
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1018
1121
  items = list(self._model_signature_dict.items())
@@ -1025,10 +1128,10 @@ class SVR(BaseTransformer):
1025
1128
  """Returns model signature of current class.
1026
1129
 
1027
1130
  Raises:
1028
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1131
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1029
1132
 
1030
1133
  Returns:
1031
- Dict[str, ModelSignature]: each method and its input output signature
1134
+ Dict with each method and its input output signature
1032
1135
  """
1033
1136
  if self._model_signature_dict is None:
1034
1137
  raise exceptions.SnowflakeMLException(
@@ -1036,35 +1139,3 @@ class SVR(BaseTransformer):
1036
1139
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1037
1140
  )
1038
1141
  return self._model_signature_dict
1039
-
1040
- def to_sklearn(self) -> Any:
1041
- """Get sklearn.svm.SVR object.
1042
- """
1043
- if self._sklearn_object is None:
1044
- self._sklearn_object = self._create_sklearn_object()
1045
- return self._sklearn_object
1046
-
1047
- def to_xgboost(self) -> Any:
1048
- raise exceptions.SnowflakeMLException(
1049
- error_code=error_codes.METHOD_NOT_ALLOWED,
1050
- original_exception=AttributeError(
1051
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1052
- "to_xgboost()",
1053
- "to_sklearn()"
1054
- )
1055
- ),
1056
- )
1057
-
1058
- def to_lightgbm(self) -> Any:
1059
- raise exceptions.SnowflakeMLException(
1060
- error_code=error_codes.METHOD_NOT_ALLOWED,
1061
- original_exception=AttributeError(
1062
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1063
- "to_lightgbm()",
1064
- "to_sklearn()"
1065
- )
1066
- ),
1067
- )
1068
-
1069
- def _get_dependencies(self) -> List[str]:
1070
- return self._deps