snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LedoitWolf(BaseTransformer):
71
64
  r"""LedoitWolf Estimator
72
65
  For more details on this class, see [sklearn.covariance.LedoitWolf]
@@ -209,12 +202,7 @@ class LedoitWolf(BaseTransformer):
209
202
  )
210
203
  return selected_cols
211
204
 
212
- @telemetry.send_api_usage_telemetry(
213
- project=_PROJECT,
214
- subproject=_SUBPROJECT,
215
- custom_tags=dict([("autogen", True)]),
216
- )
217
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LedoitWolf":
205
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LedoitWolf":
218
206
  """Fit the Ledoit-Wolf shrunk covariance model to X
219
207
  For more details on this function, see [sklearn.covariance.LedoitWolf.fit]
220
208
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.LedoitWolf.html#sklearn.covariance.LedoitWolf.fit)
@@ -241,12 +229,14 @@ class LedoitWolf(BaseTransformer):
241
229
 
242
230
  self._snowpark_cols = dataset.select(self.input_cols).columns
243
231
 
244
- # If we are already in a stored procedure, no need to kick off another one.
232
+ # If we are already in a stored procedure, no need to kick off another one.
245
233
  if SNOWML_SPROC_ENV in os.environ:
246
234
  statement_params = telemetry.get_function_usage_statement_params(
247
235
  project=_PROJECT,
248
236
  subproject=_SUBPROJECT,
249
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LedoitWolf.__class__.__name__),
237
+ function_name=telemetry.get_statement_params_full_func_name(
238
+ inspect.currentframe(), LedoitWolf.__class__.__name__
239
+ ),
250
240
  api_calls=[Session.call],
251
241
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
252
242
  )
@@ -267,27 +257,24 @@ class LedoitWolf(BaseTransformer):
267
257
  )
268
258
  self._sklearn_object = model_trainer.train()
269
259
  self._is_fitted = True
270
- self._get_model_signatures(dataset)
260
+ self._generate_model_signatures(dataset)
271
261
  return self
272
262
 
273
263
  def _batch_inference_validate_snowpark(
274
264
  self,
275
265
  dataset: DataFrame,
276
266
  inference_method: str,
277
- ) -> List[str]:
278
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
279
- return the available package that exists in the snowflake anaconda channel
267
+ ) -> None:
268
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
280
269
 
281
270
  Args:
282
271
  dataset: snowpark dataframe
283
272
  inference_method: the inference method such as predict, score...
284
-
273
+
285
274
  Raises:
286
275
  SnowflakeMLException: If the estimator is not fitted, raise error
287
276
  SnowflakeMLException: If the session is None, raise error
288
277
 
289
- Returns:
290
- A list of available package that exists in the snowflake anaconda channel
291
278
  """
292
279
  if not self._is_fitted:
293
280
  raise exceptions.SnowflakeMLException(
@@ -305,9 +292,7 @@ class LedoitWolf(BaseTransformer):
305
292
  "Session must not specified for snowpark dataset."
306
293
  ),
307
294
  )
308
- # Validate that key package version in user workspace are supported in snowflake conda channel
309
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
310
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
295
+
311
296
 
312
297
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
313
298
  @telemetry.send_api_usage_telemetry(
@@ -341,7 +326,9 @@ class LedoitWolf(BaseTransformer):
341
326
  # when it is classifier, infer the datatype from label columns
342
327
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
343
328
  # Batch inference takes a single expected output column type. Use the first columns type for now.
344
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
329
+ label_cols_signatures = [
330
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
331
+ ]
345
332
  if len(label_cols_signatures) == 0:
346
333
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
347
334
  raise exceptions.SnowflakeMLException(
@@ -349,25 +336,23 @@ class LedoitWolf(BaseTransformer):
349
336
  original_exception=ValueError(error_str),
350
337
  )
351
338
 
352
- expected_type_inferred = convert_sp_to_sf_type(
353
- label_cols_signatures[0].as_snowpark_type()
354
- )
339
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
355
340
 
356
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
357
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
341
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
342
+ self._deps = self._get_dependencies()
343
+ assert isinstance(
344
+ dataset._session, Session
345
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
358
346
 
359
347
  transform_kwargs = dict(
360
- session = dataset._session,
361
- dependencies = self._deps,
362
- drop_input_cols = self._drop_input_cols,
363
- expected_output_cols_type = expected_type_inferred,
348
+ session=dataset._session,
349
+ dependencies=self._deps,
350
+ drop_input_cols=self._drop_input_cols,
351
+ expected_output_cols_type=expected_type_inferred,
364
352
  )
365
353
 
366
354
  elif isinstance(dataset, pd.DataFrame):
367
- transform_kwargs = dict(
368
- snowpark_input_cols = self._snowpark_cols,
369
- drop_input_cols = self._drop_input_cols
370
- )
355
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
371
356
 
372
357
  transform_handlers = ModelTransformerBuilder.build(
373
358
  dataset=dataset,
@@ -407,7 +392,7 @@ class LedoitWolf(BaseTransformer):
407
392
  Transformed dataset.
408
393
  """
409
394
  super()._check_dataset_type(dataset)
410
- inference_method="transform"
395
+ inference_method = "transform"
411
396
 
412
397
  # This dictionary contains optional kwargs for batch inference. These kwargs
413
398
  # are specific to the type of dataset used.
@@ -437,24 +422,19 @@ class LedoitWolf(BaseTransformer):
437
422
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
438
423
  expected_dtype = convert_sp_to_sf_type(output_types[0])
439
424
 
440
- self._deps = self._batch_inference_validate_snowpark(
441
- dataset=dataset,
442
- inference_method=inference_method,
443
- )
425
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
426
+ self._deps = self._get_dependencies()
444
427
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
445
428
 
446
429
  transform_kwargs = dict(
447
- session = dataset._session,
448
- dependencies = self._deps,
449
- drop_input_cols = self._drop_input_cols,
450
- expected_output_cols_type = expected_dtype,
430
+ session=dataset._session,
431
+ dependencies=self._deps,
432
+ drop_input_cols=self._drop_input_cols,
433
+ expected_output_cols_type=expected_dtype,
451
434
  )
452
435
 
453
436
  elif isinstance(dataset, pd.DataFrame):
454
- transform_kwargs = dict(
455
- snowpark_input_cols = self._snowpark_cols,
456
- drop_input_cols = self._drop_input_cols
457
- )
437
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
458
438
 
459
439
  transform_handlers = ModelTransformerBuilder.build(
460
440
  dataset=dataset,
@@ -473,7 +453,11 @@ class LedoitWolf(BaseTransformer):
473
453
  return output_df
474
454
 
475
455
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
476
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
456
+ def fit_predict(
457
+ self,
458
+ dataset: Union[DataFrame, pd.DataFrame],
459
+ output_cols_prefix: str = "fit_predict_",
460
+ ) -> Union[DataFrame, pd.DataFrame]:
477
461
  """ Method not supported for this class.
478
462
 
479
463
 
@@ -498,22 +482,104 @@ class LedoitWolf(BaseTransformer):
498
482
  )
499
483
  output_result, fitted_estimator = model_trainer.train_fit_predict(
500
484
  drop_input_cols=self._drop_input_cols,
501
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
485
+ expected_output_cols_list=(
486
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
487
+ ),
502
488
  )
503
489
  self._sklearn_object = fitted_estimator
504
490
  self._is_fitted = True
505
491
  return output_result
506
492
 
493
+
494
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
495
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
496
+ """ Method not supported for this class.
497
+
507
498
 
508
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
509
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
510
- """
499
+ Raises:
500
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
501
+
502
+ Args:
503
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
504
+ Snowpark or Pandas DataFrame.
505
+ output_cols_prefix: Prefix for the response columns
511
506
  Returns:
512
507
  Transformed dataset.
513
508
  """
514
- self.fit(dataset)
515
- assert self._sklearn_object is not None
516
- return self._sklearn_object.embedding_
509
+ self._infer_input_output_cols(dataset)
510
+ super()._check_dataset_type(dataset)
511
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
512
+ estimator=self._sklearn_object,
513
+ dataset=dataset,
514
+ input_cols=self.input_cols,
515
+ label_cols=self.label_cols,
516
+ sample_weight_col=self.sample_weight_col,
517
+ autogenerated=self._autogenerated,
518
+ subproject=_SUBPROJECT,
519
+ )
520
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
521
+ drop_input_cols=self._drop_input_cols,
522
+ expected_output_cols_list=self.output_cols,
523
+ )
524
+ self._sklearn_object = fitted_estimator
525
+ self._is_fitted = True
526
+ return output_result
527
+
528
+
529
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
530
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
531
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
532
+ """
533
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
534
+ # The following condition is introduced for kneighbors methods, and not used in other methods
535
+ if output_cols:
536
+ output_cols = [
537
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
538
+ for c in output_cols
539
+ ]
540
+ elif getattr(self._sklearn_object, "classes_", None) is None:
541
+ output_cols = [output_cols_prefix]
542
+ elif self._sklearn_object is not None:
543
+ classes = self._sklearn_object.classes_
544
+ if isinstance(classes, numpy.ndarray):
545
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
546
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
547
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
548
+ output_cols = []
549
+ for i, cl in enumerate(classes):
550
+ # For binary classification, there is only one output column for each class
551
+ # ndarray as the two classes are complementary.
552
+ if len(cl) == 2:
553
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
554
+ else:
555
+ output_cols.extend([
556
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
557
+ ])
558
+ else:
559
+ output_cols = []
560
+
561
+ # Make sure column names are valid snowflake identifiers.
562
+ assert output_cols is not None # Make MyPy happy
563
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
564
+
565
+ return rv
566
+
567
+ def _align_expected_output_names(
568
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
569
+ ) -> List[str]:
570
+ # in case the inferred output column names dimension is different
571
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
572
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
573
+ output_df_columns = list(output_df_pd.columns)
574
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
575
+ if self.sample_weight_col:
576
+ output_df_columns_set -= set(self.sample_weight_col)
577
+ # if the dimension of inferred output column names is correct; use it
578
+ if len(expected_output_cols_list) == len(output_df_columns_set):
579
+ return expected_output_cols_list
580
+ # otherwise, use the sklearn estimator's output
581
+ else:
582
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
517
583
 
518
584
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
519
585
  @telemetry.send_api_usage_telemetry(
@@ -545,24 +611,26 @@ class LedoitWolf(BaseTransformer):
545
611
  # are specific to the type of dataset used.
546
612
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
547
613
 
614
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
615
+
548
616
  if isinstance(dataset, DataFrame):
549
- self._deps = self._batch_inference_validate_snowpark(
550
- dataset=dataset,
551
- inference_method=inference_method,
552
- )
553
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
617
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
618
+ self._deps = self._get_dependencies()
619
+ assert isinstance(
620
+ dataset._session, Session
621
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
554
622
  transform_kwargs = dict(
555
623
  session=dataset._session,
556
624
  dependencies=self._deps,
557
- drop_input_cols = self._drop_input_cols,
625
+ drop_input_cols=self._drop_input_cols,
558
626
  expected_output_cols_type="float",
559
627
  )
628
+ expected_output_cols = self._align_expected_output_names(
629
+ inference_method, dataset, expected_output_cols, output_cols_prefix
630
+ )
560
631
 
561
632
  elif isinstance(dataset, pd.DataFrame):
562
- transform_kwargs = dict(
563
- snowpark_input_cols = self._snowpark_cols,
564
- drop_input_cols = self._drop_input_cols
565
- )
633
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
566
634
 
567
635
  transform_handlers = ModelTransformerBuilder.build(
568
636
  dataset=dataset,
@@ -574,7 +642,7 @@ class LedoitWolf(BaseTransformer):
574
642
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
575
643
  inference_method=inference_method,
576
644
  input_cols=self.input_cols,
577
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
645
+ expected_output_cols=expected_output_cols,
578
646
  **transform_kwargs
579
647
  )
580
648
  return output_df
@@ -604,29 +672,30 @@ class LedoitWolf(BaseTransformer):
604
672
  Output dataset with log probability of the sample for each class in the model.
605
673
  """
606
674
  super()._check_dataset_type(dataset)
607
- inference_method="predict_log_proba"
675
+ inference_method = "predict_log_proba"
676
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
608
677
 
609
678
  # This dictionary contains optional kwargs for batch inference. These kwargs
610
679
  # are specific to the type of dataset used.
611
680
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
612
681
 
613
682
  if isinstance(dataset, DataFrame):
614
- self._deps = self._batch_inference_validate_snowpark(
615
- dataset=dataset,
616
- inference_method=inference_method,
617
- )
618
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
683
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
684
+ self._deps = self._get_dependencies()
685
+ assert isinstance(
686
+ dataset._session, Session
687
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
619
688
  transform_kwargs = dict(
620
689
  session=dataset._session,
621
690
  dependencies=self._deps,
622
- drop_input_cols = self._drop_input_cols,
691
+ drop_input_cols=self._drop_input_cols,
623
692
  expected_output_cols_type="float",
624
693
  )
694
+ expected_output_cols = self._align_expected_output_names(
695
+ inference_method, dataset, expected_output_cols, output_cols_prefix
696
+ )
625
697
  elif isinstance(dataset, pd.DataFrame):
626
- transform_kwargs = dict(
627
- snowpark_input_cols = self._snowpark_cols,
628
- drop_input_cols = self._drop_input_cols
629
- )
698
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
630
699
 
631
700
  transform_handlers = ModelTransformerBuilder.build(
632
701
  dataset=dataset,
@@ -639,7 +708,7 @@ class LedoitWolf(BaseTransformer):
639
708
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
640
709
  inference_method=inference_method,
641
710
  input_cols=self.input_cols,
642
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
711
+ expected_output_cols=expected_output_cols,
643
712
  **transform_kwargs
644
713
  )
645
714
  return output_df
@@ -665,30 +734,32 @@ class LedoitWolf(BaseTransformer):
665
734
  Output dataset with results of the decision function for the samples in input dataset.
666
735
  """
667
736
  super()._check_dataset_type(dataset)
668
- inference_method="decision_function"
737
+ inference_method = "decision_function"
669
738
 
670
739
  # This dictionary contains optional kwargs for batch inference. These kwargs
671
740
  # are specific to the type of dataset used.
672
741
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
673
742
 
743
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
744
+
674
745
  if isinstance(dataset, DataFrame):
675
- self._deps = self._batch_inference_validate_snowpark(
676
- dataset=dataset,
677
- inference_method=inference_method,
678
- )
679
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
746
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
747
+ self._deps = self._get_dependencies()
748
+ assert isinstance(
749
+ dataset._session, Session
750
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
680
751
  transform_kwargs = dict(
681
752
  session=dataset._session,
682
753
  dependencies=self._deps,
683
- drop_input_cols = self._drop_input_cols,
754
+ drop_input_cols=self._drop_input_cols,
684
755
  expected_output_cols_type="float",
685
756
  )
757
+ expected_output_cols = self._align_expected_output_names(
758
+ inference_method, dataset, expected_output_cols, output_cols_prefix
759
+ )
686
760
 
687
761
  elif isinstance(dataset, pd.DataFrame):
688
- transform_kwargs = dict(
689
- snowpark_input_cols = self._snowpark_cols,
690
- drop_input_cols = self._drop_input_cols
691
- )
762
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
692
763
 
693
764
  transform_handlers = ModelTransformerBuilder.build(
694
765
  dataset=dataset,
@@ -701,7 +772,7 @@ class LedoitWolf(BaseTransformer):
701
772
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
702
773
  inference_method=inference_method,
703
774
  input_cols=self.input_cols,
704
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
775
+ expected_output_cols=expected_output_cols,
705
776
  **transform_kwargs
706
777
  )
707
778
  return output_df
@@ -730,17 +801,17 @@ class LedoitWolf(BaseTransformer):
730
801
  Output dataset with probability of the sample for each class in the model.
731
802
  """
732
803
  super()._check_dataset_type(dataset)
733
- inference_method="score_samples"
804
+ inference_method = "score_samples"
734
805
 
735
806
  # This dictionary contains optional kwargs for batch inference. These kwargs
736
807
  # are specific to the type of dataset used.
737
808
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
738
809
 
810
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
811
+
739
812
  if isinstance(dataset, DataFrame):
740
- self._deps = self._batch_inference_validate_snowpark(
741
- dataset=dataset,
742
- inference_method=inference_method,
743
- )
813
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
814
+ self._deps = self._get_dependencies()
744
815
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
745
816
  transform_kwargs = dict(
746
817
  session=dataset._session,
@@ -748,6 +819,9 @@ class LedoitWolf(BaseTransformer):
748
819
  drop_input_cols = self._drop_input_cols,
749
820
  expected_output_cols_type="float",
750
821
  )
822
+ expected_output_cols = self._align_expected_output_names(
823
+ inference_method, dataset, expected_output_cols, output_cols_prefix
824
+ )
751
825
 
752
826
  elif isinstance(dataset, pd.DataFrame):
753
827
  transform_kwargs = dict(
@@ -766,7 +840,7 @@ class LedoitWolf(BaseTransformer):
766
840
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
767
841
  inference_method=inference_method,
768
842
  input_cols=self.input_cols,
769
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
843
+ expected_output_cols=expected_output_cols,
770
844
  **transform_kwargs
771
845
  )
772
846
  return output_df
@@ -801,17 +875,15 @@ class LedoitWolf(BaseTransformer):
801
875
  transform_kwargs: ScoreKwargsTypedDict = dict()
802
876
 
803
877
  if isinstance(dataset, DataFrame):
804
- self._deps = self._batch_inference_validate_snowpark(
805
- dataset=dataset,
806
- inference_method="score",
807
- )
878
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
879
+ self._deps = self._get_dependencies()
808
880
  selected_cols = self._get_active_columns()
809
881
  if len(selected_cols) > 0:
810
882
  dataset = dataset.select(selected_cols)
811
883
  assert isinstance(dataset._session, Session) # keep mypy happy
812
884
  transform_kwargs = dict(
813
885
  session=dataset._session,
814
- dependencies=["snowflake-snowpark-python"] + self._deps,
886
+ dependencies=self._deps,
815
887
  score_sproc_imports=['sklearn'],
816
888
  )
817
889
  elif isinstance(dataset, pd.DataFrame):
@@ -876,11 +948,8 @@ class LedoitWolf(BaseTransformer):
876
948
 
877
949
  if isinstance(dataset, DataFrame):
878
950
 
879
- self._deps = self._batch_inference_validate_snowpark(
880
- dataset=dataset,
881
- inference_method=inference_method,
882
-
883
- )
951
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
952
+ self._deps = self._get_dependencies()
884
953
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
885
954
  transform_kwargs = dict(
886
955
  session = dataset._session,
@@ -913,50 +982,84 @@ class LedoitWolf(BaseTransformer):
913
982
  )
914
983
  return output_df
915
984
 
985
+
986
+
987
+ def to_sklearn(self) -> Any:
988
+ """Get sklearn.covariance.LedoitWolf object.
989
+ """
990
+ if self._sklearn_object is None:
991
+ self._sklearn_object = self._create_sklearn_object()
992
+ return self._sklearn_object
993
+
994
+ def to_xgboost(self) -> Any:
995
+ raise exceptions.SnowflakeMLException(
996
+ error_code=error_codes.METHOD_NOT_ALLOWED,
997
+ original_exception=AttributeError(
998
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
999
+ "to_xgboost()",
1000
+ "to_sklearn()"
1001
+ )
1002
+ ),
1003
+ )
1004
+
1005
+ def to_lightgbm(self) -> Any:
1006
+ raise exceptions.SnowflakeMLException(
1007
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1008
+ original_exception=AttributeError(
1009
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1010
+ "to_lightgbm()",
1011
+ "to_sklearn()"
1012
+ )
1013
+ ),
1014
+ )
1015
+
1016
+ def _get_dependencies(self) -> List[str]:
1017
+ return self._deps
1018
+
916
1019
 
917
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1020
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
918
1021
  self._model_signature_dict = dict()
919
1022
 
920
1023
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
921
1024
 
922
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1025
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
923
1026
  outputs: List[BaseFeatureSpec] = []
924
1027
  if hasattr(self, "predict"):
925
1028
  # keep mypy happy
926
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1029
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
927
1030
  # For classifier, the type of predict is the same as the type of label
928
- if self._sklearn_object._estimator_type == 'classifier':
929
- # label columns is the desired type for output
1031
+ if self._sklearn_object._estimator_type == "classifier":
1032
+ # label columns is the desired type for output
930
1033
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
931
1034
  # rename the output columns
932
1035
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
933
- self._model_signature_dict["predict"] = ModelSignature(inputs,
934
- ([] if self._drop_input_cols else inputs)
935
- + outputs)
1036
+ self._model_signature_dict["predict"] = ModelSignature(
1037
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1038
+ )
936
1039
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
937
1040
  # For outlier models, returns -1 for outliers and 1 for inliers.
938
- # Clusterer returns int64 cluster labels.
1041
+ # Clusterer returns int64 cluster labels.
939
1042
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
940
1043
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
941
- self._model_signature_dict["predict"] = ModelSignature(inputs,
942
- ([] if self._drop_input_cols else inputs)
943
- + outputs)
944
-
1044
+ self._model_signature_dict["predict"] = ModelSignature(
1045
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1046
+ )
1047
+
945
1048
  # For regressor, the type of predict is float64
946
- elif self._sklearn_object._estimator_type == 'regressor':
1049
+ elif self._sklearn_object._estimator_type == "regressor":
947
1050
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
948
- self._model_signature_dict["predict"] = ModelSignature(inputs,
949
- ([] if self._drop_input_cols else inputs)
950
- + outputs)
951
-
1051
+ self._model_signature_dict["predict"] = ModelSignature(
1052
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1053
+ )
1054
+
952
1055
  for prob_func in PROB_FUNCTIONS:
953
1056
  if hasattr(self, prob_func):
954
1057
  output_cols_prefix: str = f"{prob_func}_"
955
1058
  output_column_names = self._get_output_column_names(output_cols_prefix)
956
1059
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
957
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
958
- ([] if self._drop_input_cols else inputs)
959
- + outputs)
1060
+ self._model_signature_dict[prob_func] = ModelSignature(
1061
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1062
+ )
960
1063
 
961
1064
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
962
1065
  items = list(self._model_signature_dict.items())
@@ -969,10 +1072,10 @@ class LedoitWolf(BaseTransformer):
969
1072
  """Returns model signature of current class.
970
1073
 
971
1074
  Raises:
972
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1075
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
973
1076
 
974
1077
  Returns:
975
- Dict[str, ModelSignature]: each method and its input output signature
1078
+ Dict with each method and its input output signature
976
1079
  """
977
1080
  if self._model_signature_dict is None:
978
1081
  raise exceptions.SnowflakeMLException(
@@ -980,35 +1083,3 @@ class LedoitWolf(BaseTransformer):
980
1083
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
981
1084
  )
982
1085
  return self._model_signature_dict
983
-
984
- def to_sklearn(self) -> Any:
985
- """Get sklearn.covariance.LedoitWolf object.
986
- """
987
- if self._sklearn_object is None:
988
- self._sklearn_object = self._create_sklearn_object()
989
- return self._sklearn_object
990
-
991
- def to_xgboost(self) -> Any:
992
- raise exceptions.SnowflakeMLException(
993
- error_code=error_codes.METHOD_NOT_ALLOWED,
994
- original_exception=AttributeError(
995
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
996
- "to_xgboost()",
997
- "to_sklearn()"
998
- )
999
- ),
1000
- )
1001
-
1002
- def to_lightgbm(self) -> Any:
1003
- raise exceptions.SnowflakeMLException(
1004
- error_code=error_codes.METHOD_NOT_ALLOWED,
1005
- original_exception=AttributeError(
1006
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1007
- "to_lightgbm()",
1008
- "to_sklearn()"
1009
- )
1010
- ),
1011
- )
1012
-
1013
- def _get_dependencies(self) -> List[str]:
1014
- return self._deps