snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.",
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LinearSVR(BaseTransformer):
71
64
  r"""Linear Support Vector Regression
72
65
  For more details on this class, see [sklearn.svm.LinearSVR]
@@ -265,12 +258,7 @@ class LinearSVR(BaseTransformer):
265
258
  )
266
259
  return selected_cols
267
260
 
268
- @telemetry.send_api_usage_telemetry(
269
- project=_PROJECT,
270
- subproject=_SUBPROJECT,
271
- custom_tags=dict([("autogen", True)]),
272
- )
273
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearSVR":
261
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearSVR":
274
262
  """Fit the model according to the given training data
275
263
  For more details on this function, see [sklearn.svm.LinearSVR.fit]
276
264
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html#sklearn.svm.LinearSVR.fit)
@@ -297,12 +285,14 @@ class LinearSVR(BaseTransformer):
297
285
 
298
286
  self._snowpark_cols = dataset.select(self.input_cols).columns
299
287
 
300
- # If we are already in a stored procedure, no need to kick off another one.
288
+ # If we are already in a stored procedure, no need to kick off another one.
301
289
  if SNOWML_SPROC_ENV in os.environ:
302
290
  statement_params = telemetry.get_function_usage_statement_params(
303
291
  project=_PROJECT,
304
292
  subproject=_SUBPROJECT,
305
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearSVR.__class__.__name__),
293
+ function_name=telemetry.get_statement_params_full_func_name(
294
+ inspect.currentframe(), LinearSVR.__class__.__name__
295
+ ),
306
296
  api_calls=[Session.call],
307
297
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
308
298
  )
@@ -323,27 +313,24 @@ class LinearSVR(BaseTransformer):
323
313
  )
324
314
  self._sklearn_object = model_trainer.train()
325
315
  self._is_fitted = True
326
- self._get_model_signatures(dataset)
316
+ self._generate_model_signatures(dataset)
327
317
  return self
328
318
 
329
319
  def _batch_inference_validate_snowpark(
330
320
  self,
331
321
  dataset: DataFrame,
332
322
  inference_method: str,
333
- ) -> List[str]:
334
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
335
- return the available package that exists in the snowflake anaconda channel
323
+ ) -> None:
324
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
336
325
 
337
326
  Args:
338
327
  dataset: snowpark dataframe
339
328
  inference_method: the inference method such as predict, score...
340
-
329
+
341
330
  Raises:
342
331
  SnowflakeMLException: If the estimator is not fitted, raise error
343
332
  SnowflakeMLException: If the session is None, raise error
344
333
 
345
- Returns:
346
- A list of available package that exists in the snowflake anaconda channel
347
334
  """
348
335
  if not self._is_fitted:
349
336
  raise exceptions.SnowflakeMLException(
@@ -361,9 +348,7 @@ class LinearSVR(BaseTransformer):
361
348
  "Session must not specified for snowpark dataset."
362
349
  ),
363
350
  )
364
- # Validate that key package version in user workspace are supported in snowflake conda channel
365
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
366
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
351
+
367
352
 
368
353
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
369
354
  @telemetry.send_api_usage_telemetry(
@@ -399,7 +384,9 @@ class LinearSVR(BaseTransformer):
399
384
  # when it is classifier, infer the datatype from label columns
400
385
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
401
386
  # Batch inference takes a single expected output column type. Use the first columns type for now.
402
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
387
+ label_cols_signatures = [
388
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
389
+ ]
403
390
  if len(label_cols_signatures) == 0:
404
391
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
405
392
  raise exceptions.SnowflakeMLException(
@@ -407,25 +394,23 @@ class LinearSVR(BaseTransformer):
407
394
  original_exception=ValueError(error_str),
408
395
  )
409
396
 
410
- expected_type_inferred = convert_sp_to_sf_type(
411
- label_cols_signatures[0].as_snowpark_type()
412
- )
397
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
413
398
 
414
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
415
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
399
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
400
+ self._deps = self._get_dependencies()
401
+ assert isinstance(
402
+ dataset._session, Session
403
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
416
404
 
417
405
  transform_kwargs = dict(
418
- session = dataset._session,
419
- dependencies = self._deps,
420
- drop_input_cols = self._drop_input_cols,
421
- expected_output_cols_type = expected_type_inferred,
406
+ session=dataset._session,
407
+ dependencies=self._deps,
408
+ drop_input_cols=self._drop_input_cols,
409
+ expected_output_cols_type=expected_type_inferred,
422
410
  )
423
411
 
424
412
  elif isinstance(dataset, pd.DataFrame):
425
- transform_kwargs = dict(
426
- snowpark_input_cols = self._snowpark_cols,
427
- drop_input_cols = self._drop_input_cols
428
- )
413
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
429
414
 
430
415
  transform_handlers = ModelTransformerBuilder.build(
431
416
  dataset=dataset,
@@ -465,7 +450,7 @@ class LinearSVR(BaseTransformer):
465
450
  Transformed dataset.
466
451
  """
467
452
  super()._check_dataset_type(dataset)
468
- inference_method="transform"
453
+ inference_method = "transform"
469
454
 
470
455
  # This dictionary contains optional kwargs for batch inference. These kwargs
471
456
  # are specific to the type of dataset used.
@@ -495,24 +480,19 @@ class LinearSVR(BaseTransformer):
495
480
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
496
481
  expected_dtype = convert_sp_to_sf_type(output_types[0])
497
482
 
498
- self._deps = self._batch_inference_validate_snowpark(
499
- dataset=dataset,
500
- inference_method=inference_method,
501
- )
483
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
484
+ self._deps = self._get_dependencies()
502
485
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
503
486
 
504
487
  transform_kwargs = dict(
505
- session = dataset._session,
506
- dependencies = self._deps,
507
- drop_input_cols = self._drop_input_cols,
508
- expected_output_cols_type = expected_dtype,
488
+ session=dataset._session,
489
+ dependencies=self._deps,
490
+ drop_input_cols=self._drop_input_cols,
491
+ expected_output_cols_type=expected_dtype,
509
492
  )
510
493
 
511
494
  elif isinstance(dataset, pd.DataFrame):
512
- transform_kwargs = dict(
513
- snowpark_input_cols = self._snowpark_cols,
514
- drop_input_cols = self._drop_input_cols
515
- )
495
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
516
496
 
517
497
  transform_handlers = ModelTransformerBuilder.build(
518
498
  dataset=dataset,
@@ -531,7 +511,11 @@ class LinearSVR(BaseTransformer):
531
511
  return output_df
532
512
 
533
513
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
534
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
514
+ def fit_predict(
515
+ self,
516
+ dataset: Union[DataFrame, pd.DataFrame],
517
+ output_cols_prefix: str = "fit_predict_",
518
+ ) -> Union[DataFrame, pd.DataFrame]:
535
519
  """ Method not supported for this class.
536
520
 
537
521
 
@@ -556,22 +540,104 @@ class LinearSVR(BaseTransformer):
556
540
  )
557
541
  output_result, fitted_estimator = model_trainer.train_fit_predict(
558
542
  drop_input_cols=self._drop_input_cols,
559
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
543
+ expected_output_cols_list=(
544
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
545
+ ),
560
546
  )
561
547
  self._sklearn_object = fitted_estimator
562
548
  self._is_fitted = True
563
549
  return output_result
564
550
 
551
+
552
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
553
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
554
+ """ Method not supported for this class.
555
+
565
556
 
566
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
567
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
568
- """
557
+ Raises:
558
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
559
+
560
+ Args:
561
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
562
+ Snowpark or Pandas DataFrame.
563
+ output_cols_prefix: Prefix for the response columns
569
564
  Returns:
570
565
  Transformed dataset.
571
566
  """
572
- self.fit(dataset)
573
- assert self._sklearn_object is not None
574
- return self._sklearn_object.embedding_
567
+ self._infer_input_output_cols(dataset)
568
+ super()._check_dataset_type(dataset)
569
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
570
+ estimator=self._sklearn_object,
571
+ dataset=dataset,
572
+ input_cols=self.input_cols,
573
+ label_cols=self.label_cols,
574
+ sample_weight_col=self.sample_weight_col,
575
+ autogenerated=self._autogenerated,
576
+ subproject=_SUBPROJECT,
577
+ )
578
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
579
+ drop_input_cols=self._drop_input_cols,
580
+ expected_output_cols_list=self.output_cols,
581
+ )
582
+ self._sklearn_object = fitted_estimator
583
+ self._is_fitted = True
584
+ return output_result
585
+
586
+
587
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
588
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
589
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
590
+ """
591
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
592
+ # The following condition is introduced for kneighbors methods, and not used in other methods
593
+ if output_cols:
594
+ output_cols = [
595
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
596
+ for c in output_cols
597
+ ]
598
+ elif getattr(self._sklearn_object, "classes_", None) is None:
599
+ output_cols = [output_cols_prefix]
600
+ elif self._sklearn_object is not None:
601
+ classes = self._sklearn_object.classes_
602
+ if isinstance(classes, numpy.ndarray):
603
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
604
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
605
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
606
+ output_cols = []
607
+ for i, cl in enumerate(classes):
608
+ # For binary classification, there is only one output column for each class
609
+ # ndarray as the two classes are complementary.
610
+ if len(cl) == 2:
611
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
612
+ else:
613
+ output_cols.extend([
614
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
615
+ ])
616
+ else:
617
+ output_cols = []
618
+
619
+ # Make sure column names are valid snowflake identifiers.
620
+ assert output_cols is not None # Make MyPy happy
621
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
622
+
623
+ return rv
624
+
625
+ def _align_expected_output_names(
626
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
627
+ ) -> List[str]:
628
+ # in case the inferred output column names dimension is different
629
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
630
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
631
+ output_df_columns = list(output_df_pd.columns)
632
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
633
+ if self.sample_weight_col:
634
+ output_df_columns_set -= set(self.sample_weight_col)
635
+ # if the dimension of inferred output column names is correct; use it
636
+ if len(expected_output_cols_list) == len(output_df_columns_set):
637
+ return expected_output_cols_list
638
+ # otherwise, use the sklearn estimator's output
639
+ else:
640
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
575
641
 
576
642
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
577
643
  @telemetry.send_api_usage_telemetry(
@@ -603,24 +669,26 @@ class LinearSVR(BaseTransformer):
603
669
  # are specific to the type of dataset used.
604
670
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
605
671
 
672
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
673
+
606
674
  if isinstance(dataset, DataFrame):
607
- self._deps = self._batch_inference_validate_snowpark(
608
- dataset=dataset,
609
- inference_method=inference_method,
610
- )
611
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
675
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
676
+ self._deps = self._get_dependencies()
677
+ assert isinstance(
678
+ dataset._session, Session
679
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
612
680
  transform_kwargs = dict(
613
681
  session=dataset._session,
614
682
  dependencies=self._deps,
615
- drop_input_cols = self._drop_input_cols,
683
+ drop_input_cols=self._drop_input_cols,
616
684
  expected_output_cols_type="float",
617
685
  )
686
+ expected_output_cols = self._align_expected_output_names(
687
+ inference_method, dataset, expected_output_cols, output_cols_prefix
688
+ )
618
689
 
619
690
  elif isinstance(dataset, pd.DataFrame):
620
- transform_kwargs = dict(
621
- snowpark_input_cols = self._snowpark_cols,
622
- drop_input_cols = self._drop_input_cols
623
- )
691
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
624
692
 
625
693
  transform_handlers = ModelTransformerBuilder.build(
626
694
  dataset=dataset,
@@ -632,7 +700,7 @@ class LinearSVR(BaseTransformer):
632
700
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
633
701
  inference_method=inference_method,
634
702
  input_cols=self.input_cols,
635
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
703
+ expected_output_cols=expected_output_cols,
636
704
  **transform_kwargs
637
705
  )
638
706
  return output_df
@@ -662,29 +730,30 @@ class LinearSVR(BaseTransformer):
662
730
  Output dataset with log probability of the sample for each class in the model.
663
731
  """
664
732
  super()._check_dataset_type(dataset)
665
- inference_method="predict_log_proba"
733
+ inference_method = "predict_log_proba"
734
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
666
735
 
667
736
  # This dictionary contains optional kwargs for batch inference. These kwargs
668
737
  # are specific to the type of dataset used.
669
738
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
670
739
 
671
740
  if isinstance(dataset, DataFrame):
672
- self._deps = self._batch_inference_validate_snowpark(
673
- dataset=dataset,
674
- inference_method=inference_method,
675
- )
676
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
741
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
742
+ self._deps = self._get_dependencies()
743
+ assert isinstance(
744
+ dataset._session, Session
745
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
677
746
  transform_kwargs = dict(
678
747
  session=dataset._session,
679
748
  dependencies=self._deps,
680
- drop_input_cols = self._drop_input_cols,
749
+ drop_input_cols=self._drop_input_cols,
681
750
  expected_output_cols_type="float",
682
751
  )
752
+ expected_output_cols = self._align_expected_output_names(
753
+ inference_method, dataset, expected_output_cols, output_cols_prefix
754
+ )
683
755
  elif isinstance(dataset, pd.DataFrame):
684
- transform_kwargs = dict(
685
- snowpark_input_cols = self._snowpark_cols,
686
- drop_input_cols = self._drop_input_cols
687
- )
756
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
688
757
 
689
758
  transform_handlers = ModelTransformerBuilder.build(
690
759
  dataset=dataset,
@@ -697,7 +766,7 @@ class LinearSVR(BaseTransformer):
697
766
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
698
767
  inference_method=inference_method,
699
768
  input_cols=self.input_cols,
700
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
769
+ expected_output_cols=expected_output_cols,
701
770
  **transform_kwargs
702
771
  )
703
772
  return output_df
@@ -723,30 +792,32 @@ class LinearSVR(BaseTransformer):
723
792
  Output dataset with results of the decision function for the samples in input dataset.
724
793
  """
725
794
  super()._check_dataset_type(dataset)
726
- inference_method="decision_function"
795
+ inference_method = "decision_function"
727
796
 
728
797
  # This dictionary contains optional kwargs for batch inference. These kwargs
729
798
  # are specific to the type of dataset used.
730
799
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
731
800
 
801
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
802
+
732
803
  if isinstance(dataset, DataFrame):
733
- self._deps = self._batch_inference_validate_snowpark(
734
- dataset=dataset,
735
- inference_method=inference_method,
736
- )
737
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
804
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
805
+ self._deps = self._get_dependencies()
806
+ assert isinstance(
807
+ dataset._session, Session
808
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
738
809
  transform_kwargs = dict(
739
810
  session=dataset._session,
740
811
  dependencies=self._deps,
741
- drop_input_cols = self._drop_input_cols,
812
+ drop_input_cols=self._drop_input_cols,
742
813
  expected_output_cols_type="float",
743
814
  )
815
+ expected_output_cols = self._align_expected_output_names(
816
+ inference_method, dataset, expected_output_cols, output_cols_prefix
817
+ )
744
818
 
745
819
  elif isinstance(dataset, pd.DataFrame):
746
- transform_kwargs = dict(
747
- snowpark_input_cols = self._snowpark_cols,
748
- drop_input_cols = self._drop_input_cols
749
- )
820
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
750
821
 
751
822
  transform_handlers = ModelTransformerBuilder.build(
752
823
  dataset=dataset,
@@ -759,7 +830,7 @@ class LinearSVR(BaseTransformer):
759
830
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
760
831
  inference_method=inference_method,
761
832
  input_cols=self.input_cols,
762
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
833
+ expected_output_cols=expected_output_cols,
763
834
  **transform_kwargs
764
835
  )
765
836
  return output_df
@@ -788,17 +859,17 @@ class LinearSVR(BaseTransformer):
788
859
  Output dataset with probability of the sample for each class in the model.
789
860
  """
790
861
  super()._check_dataset_type(dataset)
791
- inference_method="score_samples"
862
+ inference_method = "score_samples"
792
863
 
793
864
  # This dictionary contains optional kwargs for batch inference. These kwargs
794
865
  # are specific to the type of dataset used.
795
866
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
796
867
 
868
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
869
+
797
870
  if isinstance(dataset, DataFrame):
798
- self._deps = self._batch_inference_validate_snowpark(
799
- dataset=dataset,
800
- inference_method=inference_method,
801
- )
871
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
872
+ self._deps = self._get_dependencies()
802
873
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
803
874
  transform_kwargs = dict(
804
875
  session=dataset._session,
@@ -806,6 +877,9 @@ class LinearSVR(BaseTransformer):
806
877
  drop_input_cols = self._drop_input_cols,
807
878
  expected_output_cols_type="float",
808
879
  )
880
+ expected_output_cols = self._align_expected_output_names(
881
+ inference_method, dataset, expected_output_cols, output_cols_prefix
882
+ )
809
883
 
810
884
  elif isinstance(dataset, pd.DataFrame):
811
885
  transform_kwargs = dict(
@@ -824,7 +898,7 @@ class LinearSVR(BaseTransformer):
824
898
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
825
899
  inference_method=inference_method,
826
900
  input_cols=self.input_cols,
827
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
901
+ expected_output_cols=expected_output_cols,
828
902
  **transform_kwargs
829
903
  )
830
904
  return output_df
@@ -859,17 +933,15 @@ class LinearSVR(BaseTransformer):
859
933
  transform_kwargs: ScoreKwargsTypedDict = dict()
860
934
 
861
935
  if isinstance(dataset, DataFrame):
862
- self._deps = self._batch_inference_validate_snowpark(
863
- dataset=dataset,
864
- inference_method="score",
865
- )
936
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
937
+ self._deps = self._get_dependencies()
866
938
  selected_cols = self._get_active_columns()
867
939
  if len(selected_cols) > 0:
868
940
  dataset = dataset.select(selected_cols)
869
941
  assert isinstance(dataset._session, Session) # keep mypy happy
870
942
  transform_kwargs = dict(
871
943
  session=dataset._session,
872
- dependencies=["snowflake-snowpark-python"] + self._deps,
944
+ dependencies=self._deps,
873
945
  score_sproc_imports=['sklearn'],
874
946
  )
875
947
  elif isinstance(dataset, pd.DataFrame):
@@ -934,11 +1006,8 @@ class LinearSVR(BaseTransformer):
934
1006
 
935
1007
  if isinstance(dataset, DataFrame):
936
1008
 
937
- self._deps = self._batch_inference_validate_snowpark(
938
- dataset=dataset,
939
- inference_method=inference_method,
940
-
941
- )
1009
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1010
+ self._deps = self._get_dependencies()
942
1011
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
943
1012
  transform_kwargs = dict(
944
1013
  session = dataset._session,
@@ -971,50 +1040,84 @@ class LinearSVR(BaseTransformer):
971
1040
  )
972
1041
  return output_df
973
1042
 
1043
+
1044
+
1045
+ def to_sklearn(self) -> Any:
1046
+ """Get sklearn.svm.LinearSVR object.
1047
+ """
1048
+ if self._sklearn_object is None:
1049
+ self._sklearn_object = self._create_sklearn_object()
1050
+ return self._sklearn_object
1051
+
1052
+ def to_xgboost(self) -> Any:
1053
+ raise exceptions.SnowflakeMLException(
1054
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1055
+ original_exception=AttributeError(
1056
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
+ "to_xgboost()",
1058
+ "to_sklearn()"
1059
+ )
1060
+ ),
1061
+ )
1062
+
1063
+ def to_lightgbm(self) -> Any:
1064
+ raise exceptions.SnowflakeMLException(
1065
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1066
+ original_exception=AttributeError(
1067
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1068
+ "to_lightgbm()",
1069
+ "to_sklearn()"
1070
+ )
1071
+ ),
1072
+ )
1073
+
1074
+ def _get_dependencies(self) -> List[str]:
1075
+ return self._deps
1076
+
974
1077
 
975
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1078
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
976
1079
  self._model_signature_dict = dict()
977
1080
 
978
1081
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
979
1082
 
980
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1083
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
981
1084
  outputs: List[BaseFeatureSpec] = []
982
1085
  if hasattr(self, "predict"):
983
1086
  # keep mypy happy
984
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1087
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
985
1088
  # For classifier, the type of predict is the same as the type of label
986
- if self._sklearn_object._estimator_type == 'classifier':
987
- # label columns is the desired type for output
1089
+ if self._sklearn_object._estimator_type == "classifier":
1090
+ # label columns is the desired type for output
988
1091
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
989
1092
  # rename the output columns
990
1093
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
1094
+ self._model_signature_dict["predict"] = ModelSignature(
1095
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1096
+ )
994
1097
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
995
1098
  # For outlier models, returns -1 for outliers and 1 for inliers.
996
- # Clusterer returns int64 cluster labels.
1099
+ # Clusterer returns int64 cluster labels.
997
1100
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
998
1101
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
999
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1000
- ([] if self._drop_input_cols else inputs)
1001
- + outputs)
1002
-
1102
+ self._model_signature_dict["predict"] = ModelSignature(
1103
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1104
+ )
1105
+
1003
1106
  # For regressor, the type of predict is float64
1004
- elif self._sklearn_object._estimator_type == 'regressor':
1107
+ elif self._sklearn_object._estimator_type == "regressor":
1005
1108
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1006
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1007
- ([] if self._drop_input_cols else inputs)
1008
- + outputs)
1009
-
1109
+ self._model_signature_dict["predict"] = ModelSignature(
1110
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1111
+ )
1112
+
1010
1113
  for prob_func in PROB_FUNCTIONS:
1011
1114
  if hasattr(self, prob_func):
1012
1115
  output_cols_prefix: str = f"{prob_func}_"
1013
1116
  output_column_names = self._get_output_column_names(output_cols_prefix)
1014
1117
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1015
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1016
- ([] if self._drop_input_cols else inputs)
1017
- + outputs)
1118
+ self._model_signature_dict[prob_func] = ModelSignature(
1119
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1120
+ )
1018
1121
 
1019
1122
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1020
1123
  items = list(self._model_signature_dict.items())
@@ -1027,10 +1130,10 @@ class LinearSVR(BaseTransformer):
1027
1130
  """Returns model signature of current class.
1028
1131
 
1029
1132
  Raises:
1030
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1133
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1031
1134
 
1032
1135
  Returns:
1033
- Dict[str, ModelSignature]: each method and its input output signature
1136
+ Dict with each method and its input output signature
1034
1137
  """
1035
1138
  if self._model_signature_dict is None:
1036
1139
  raise exceptions.SnowflakeMLException(
@@ -1038,35 +1141,3 @@ class LinearSVR(BaseTransformer):
1038
1141
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1039
1142
  )
1040
1143
  return self._model_signature_dict
1041
-
1042
- def to_sklearn(self) -> Any:
1043
- """Get sklearn.svm.LinearSVR object.
1044
- """
1045
- if self._sklearn_object is None:
1046
- self._sklearn_object = self._create_sklearn_object()
1047
- return self._sklearn_object
1048
-
1049
- def to_xgboost(self) -> Any:
1050
- raise exceptions.SnowflakeMLException(
1051
- error_code=error_codes.METHOD_NOT_ALLOWED,
1052
- original_exception=AttributeError(
1053
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1054
- "to_xgboost()",
1055
- "to_sklearn()"
1056
- )
1057
- ),
1058
- )
1059
-
1060
- def to_lightgbm(self) -> Any:
1061
- raise exceptions.SnowflakeMLException(
1062
- error_code=error_codes.METHOD_NOT_ALLOWED,
1063
- original_exception=AttributeError(
1064
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
- "to_lightgbm()",
1066
- "to_sklearn()"
1067
- )
1068
- ),
1069
- )
1070
-
1071
- def _get_dependencies(self) -> List[str]:
1072
- return self._deps