snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class ColumnTransformer(BaseTransformer):
71
64
  r"""Applies transformers to columns of an array or pandas DataFrame
72
65
  For more details on this class, see [sklearn.compose.ColumnTransformer]
@@ -270,12 +263,7 @@ class ColumnTransformer(BaseTransformer):
270
263
  )
271
264
  return selected_cols
272
265
 
273
- @telemetry.send_api_usage_telemetry(
274
- project=_PROJECT,
275
- subproject=_SUBPROJECT,
276
- custom_tags=dict([("autogen", True)]),
277
- )
278
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ColumnTransformer":
266
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ColumnTransformer":
279
267
  """Fit all transformers using X
280
268
  For more details on this function, see [sklearn.compose.ColumnTransformer.fit]
281
269
  (https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html#sklearn.compose.ColumnTransformer.fit)
@@ -302,12 +290,14 @@ class ColumnTransformer(BaseTransformer):
302
290
 
303
291
  self._snowpark_cols = dataset.select(self.input_cols).columns
304
292
 
305
- # If we are already in a stored procedure, no need to kick off another one.
293
+ # If we are already in a stored procedure, no need to kick off another one.
306
294
  if SNOWML_SPROC_ENV in os.environ:
307
295
  statement_params = telemetry.get_function_usage_statement_params(
308
296
  project=_PROJECT,
309
297
  subproject=_SUBPROJECT,
310
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ColumnTransformer.__class__.__name__),
298
+ function_name=telemetry.get_statement_params_full_func_name(
299
+ inspect.currentframe(), ColumnTransformer.__class__.__name__
300
+ ),
311
301
  api_calls=[Session.call],
312
302
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
313
303
  )
@@ -328,27 +318,24 @@ class ColumnTransformer(BaseTransformer):
328
318
  )
329
319
  self._sklearn_object = model_trainer.train()
330
320
  self._is_fitted = True
331
- self._get_model_signatures(dataset)
321
+ self._generate_model_signatures(dataset)
332
322
  return self
333
323
 
334
324
  def _batch_inference_validate_snowpark(
335
325
  self,
336
326
  dataset: DataFrame,
337
327
  inference_method: str,
338
- ) -> List[str]:
339
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
340
- return the available package that exists in the snowflake anaconda channel
328
+ ) -> None:
329
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
341
330
 
342
331
  Args:
343
332
  dataset: snowpark dataframe
344
333
  inference_method: the inference method such as predict, score...
345
-
334
+
346
335
  Raises:
347
336
  SnowflakeMLException: If the estimator is not fitted, raise error
348
337
  SnowflakeMLException: If the session is None, raise error
349
338
 
350
- Returns:
351
- A list of available package that exists in the snowflake anaconda channel
352
339
  """
353
340
  if not self._is_fitted:
354
341
  raise exceptions.SnowflakeMLException(
@@ -366,9 +353,7 @@ class ColumnTransformer(BaseTransformer):
366
353
  "Session must not specified for snowpark dataset."
367
354
  ),
368
355
  )
369
- # Validate that key package version in user workspace are supported in snowflake conda channel
370
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
371
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
356
+
372
357
 
373
358
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
374
359
  @telemetry.send_api_usage_telemetry(
@@ -402,7 +387,9 @@ class ColumnTransformer(BaseTransformer):
402
387
  # when it is classifier, infer the datatype from label columns
403
388
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
404
389
  # Batch inference takes a single expected output column type. Use the first columns type for now.
405
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
390
+ label_cols_signatures = [
391
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
392
+ ]
406
393
  if len(label_cols_signatures) == 0:
407
394
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
408
395
  raise exceptions.SnowflakeMLException(
@@ -410,25 +397,23 @@ class ColumnTransformer(BaseTransformer):
410
397
  original_exception=ValueError(error_str),
411
398
  )
412
399
 
413
- expected_type_inferred = convert_sp_to_sf_type(
414
- label_cols_signatures[0].as_snowpark_type()
415
- )
400
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
416
401
 
417
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
418
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
402
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
403
+ self._deps = self._get_dependencies()
404
+ assert isinstance(
405
+ dataset._session, Session
406
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
419
407
 
420
408
  transform_kwargs = dict(
421
- session = dataset._session,
422
- dependencies = self._deps,
423
- drop_input_cols = self._drop_input_cols,
424
- expected_output_cols_type = expected_type_inferred,
409
+ session=dataset._session,
410
+ dependencies=self._deps,
411
+ drop_input_cols=self._drop_input_cols,
412
+ expected_output_cols_type=expected_type_inferred,
425
413
  )
426
414
 
427
415
  elif isinstance(dataset, pd.DataFrame):
428
- transform_kwargs = dict(
429
- snowpark_input_cols = self._snowpark_cols,
430
- drop_input_cols = self._drop_input_cols
431
- )
416
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
432
417
 
433
418
  transform_handlers = ModelTransformerBuilder.build(
434
419
  dataset=dataset,
@@ -470,7 +455,7 @@ class ColumnTransformer(BaseTransformer):
470
455
  Transformed dataset.
471
456
  """
472
457
  super()._check_dataset_type(dataset)
473
- inference_method="transform"
458
+ inference_method = "transform"
474
459
 
475
460
  # This dictionary contains optional kwargs for batch inference. These kwargs
476
461
  # are specific to the type of dataset used.
@@ -500,24 +485,19 @@ class ColumnTransformer(BaseTransformer):
500
485
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
501
486
  expected_dtype = convert_sp_to_sf_type(output_types[0])
502
487
 
503
- self._deps = self._batch_inference_validate_snowpark(
504
- dataset=dataset,
505
- inference_method=inference_method,
506
- )
488
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
489
+ self._deps = self._get_dependencies()
507
490
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
508
491
 
509
492
  transform_kwargs = dict(
510
- session = dataset._session,
511
- dependencies = self._deps,
512
- drop_input_cols = self._drop_input_cols,
513
- expected_output_cols_type = expected_dtype,
493
+ session=dataset._session,
494
+ dependencies=self._deps,
495
+ drop_input_cols=self._drop_input_cols,
496
+ expected_output_cols_type=expected_dtype,
514
497
  )
515
498
 
516
499
  elif isinstance(dataset, pd.DataFrame):
517
- transform_kwargs = dict(
518
- snowpark_input_cols = self._snowpark_cols,
519
- drop_input_cols = self._drop_input_cols
520
- )
500
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
521
501
 
522
502
  transform_handlers = ModelTransformerBuilder.build(
523
503
  dataset=dataset,
@@ -536,7 +516,11 @@ class ColumnTransformer(BaseTransformer):
536
516
  return output_df
537
517
 
538
518
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
539
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
519
+ def fit_predict(
520
+ self,
521
+ dataset: Union[DataFrame, pd.DataFrame],
522
+ output_cols_prefix: str = "fit_predict_",
523
+ ) -> Union[DataFrame, pd.DataFrame]:
540
524
  """ Method not supported for this class.
541
525
 
542
526
 
@@ -561,22 +545,106 @@ class ColumnTransformer(BaseTransformer):
561
545
  )
562
546
  output_result, fitted_estimator = model_trainer.train_fit_predict(
563
547
  drop_input_cols=self._drop_input_cols,
564
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
548
+ expected_output_cols_list=(
549
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
550
+ ),
565
551
  )
566
552
  self._sklearn_object = fitted_estimator
567
553
  self._is_fitted = True
568
554
  return output_result
569
555
 
556
+
557
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
558
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
559
+ """ Fit all transformers, transform the data and concatenate results
560
+ For more details on this function, see [sklearn.compose.ColumnTransformer.fit_transform]
561
+ (https://scikit-learn.org/stable/modules/generated/sklearn.compose.ColumnTransformer.html#sklearn.compose.ColumnTransformer.fit_transform)
562
+
563
+
564
+ Raises:
565
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
570
566
 
571
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
572
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
573
- """
567
+ Args:
568
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
569
+ Snowpark or Pandas DataFrame.
570
+ output_cols_prefix: Prefix for the response columns
574
571
  Returns:
575
572
  Transformed dataset.
576
573
  """
577
- self.fit(dataset)
578
- assert self._sklearn_object is not None
579
- return self._sklearn_object.embedding_
574
+ self._infer_input_output_cols(dataset)
575
+ super()._check_dataset_type(dataset)
576
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
577
+ estimator=self._sklearn_object,
578
+ dataset=dataset,
579
+ input_cols=self.input_cols,
580
+ label_cols=self.label_cols,
581
+ sample_weight_col=self.sample_weight_col,
582
+ autogenerated=self._autogenerated,
583
+ subproject=_SUBPROJECT,
584
+ )
585
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
586
+ drop_input_cols=self._drop_input_cols,
587
+ expected_output_cols_list=self.output_cols,
588
+ )
589
+ self._sklearn_object = fitted_estimator
590
+ self._is_fitted = True
591
+ return output_result
592
+
593
+
594
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
595
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
596
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
597
+ """
598
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
599
+ # The following condition is introduced for kneighbors methods, and not used in other methods
600
+ if output_cols:
601
+ output_cols = [
602
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
603
+ for c in output_cols
604
+ ]
605
+ elif getattr(self._sklearn_object, "classes_", None) is None:
606
+ output_cols = [output_cols_prefix]
607
+ elif self._sklearn_object is not None:
608
+ classes = self._sklearn_object.classes_
609
+ if isinstance(classes, numpy.ndarray):
610
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
611
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
612
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
613
+ output_cols = []
614
+ for i, cl in enumerate(classes):
615
+ # For binary classification, there is only one output column for each class
616
+ # ndarray as the two classes are complementary.
617
+ if len(cl) == 2:
618
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
619
+ else:
620
+ output_cols.extend([
621
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
622
+ ])
623
+ else:
624
+ output_cols = []
625
+
626
+ # Make sure column names are valid snowflake identifiers.
627
+ assert output_cols is not None # Make MyPy happy
628
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
629
+
630
+ return rv
631
+
632
+ def _align_expected_output_names(
633
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
634
+ ) -> List[str]:
635
+ # in case the inferred output column names dimension is different
636
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
637
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
638
+ output_df_columns = list(output_df_pd.columns)
639
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
640
+ if self.sample_weight_col:
641
+ output_df_columns_set -= set(self.sample_weight_col)
642
+ # if the dimension of inferred output column names is correct; use it
643
+ if len(expected_output_cols_list) == len(output_df_columns_set):
644
+ return expected_output_cols_list
645
+ # otherwise, use the sklearn estimator's output
646
+ else:
647
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
580
648
 
581
649
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
582
650
  @telemetry.send_api_usage_telemetry(
@@ -608,24 +676,26 @@ class ColumnTransformer(BaseTransformer):
608
676
  # are specific to the type of dataset used.
609
677
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
610
678
 
679
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
680
+
611
681
  if isinstance(dataset, DataFrame):
612
- self._deps = self._batch_inference_validate_snowpark(
613
- dataset=dataset,
614
- inference_method=inference_method,
615
- )
616
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
682
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
683
+ self._deps = self._get_dependencies()
684
+ assert isinstance(
685
+ dataset._session, Session
686
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
617
687
  transform_kwargs = dict(
618
688
  session=dataset._session,
619
689
  dependencies=self._deps,
620
- drop_input_cols = self._drop_input_cols,
690
+ drop_input_cols=self._drop_input_cols,
621
691
  expected_output_cols_type="float",
622
692
  )
693
+ expected_output_cols = self._align_expected_output_names(
694
+ inference_method, dataset, expected_output_cols, output_cols_prefix
695
+ )
623
696
 
624
697
  elif isinstance(dataset, pd.DataFrame):
625
- transform_kwargs = dict(
626
- snowpark_input_cols = self._snowpark_cols,
627
- drop_input_cols = self._drop_input_cols
628
- )
698
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
629
699
 
630
700
  transform_handlers = ModelTransformerBuilder.build(
631
701
  dataset=dataset,
@@ -637,7 +707,7 @@ class ColumnTransformer(BaseTransformer):
637
707
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
638
708
  inference_method=inference_method,
639
709
  input_cols=self.input_cols,
640
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
710
+ expected_output_cols=expected_output_cols,
641
711
  **transform_kwargs
642
712
  )
643
713
  return output_df
@@ -667,29 +737,30 @@ class ColumnTransformer(BaseTransformer):
667
737
  Output dataset with log probability of the sample for each class in the model.
668
738
  """
669
739
  super()._check_dataset_type(dataset)
670
- inference_method="predict_log_proba"
740
+ inference_method = "predict_log_proba"
741
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
671
742
 
672
743
  # This dictionary contains optional kwargs for batch inference. These kwargs
673
744
  # are specific to the type of dataset used.
674
745
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
675
746
 
676
747
  if isinstance(dataset, DataFrame):
677
- self._deps = self._batch_inference_validate_snowpark(
678
- dataset=dataset,
679
- inference_method=inference_method,
680
- )
681
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
748
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
749
+ self._deps = self._get_dependencies()
750
+ assert isinstance(
751
+ dataset._session, Session
752
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
682
753
  transform_kwargs = dict(
683
754
  session=dataset._session,
684
755
  dependencies=self._deps,
685
- drop_input_cols = self._drop_input_cols,
756
+ drop_input_cols=self._drop_input_cols,
686
757
  expected_output_cols_type="float",
687
758
  )
759
+ expected_output_cols = self._align_expected_output_names(
760
+ inference_method, dataset, expected_output_cols, output_cols_prefix
761
+ )
688
762
  elif isinstance(dataset, pd.DataFrame):
689
- transform_kwargs = dict(
690
- snowpark_input_cols = self._snowpark_cols,
691
- drop_input_cols = self._drop_input_cols
692
- )
763
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
693
764
 
694
765
  transform_handlers = ModelTransformerBuilder.build(
695
766
  dataset=dataset,
@@ -702,7 +773,7 @@ class ColumnTransformer(BaseTransformer):
702
773
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
703
774
  inference_method=inference_method,
704
775
  input_cols=self.input_cols,
705
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
776
+ expected_output_cols=expected_output_cols,
706
777
  **transform_kwargs
707
778
  )
708
779
  return output_df
@@ -728,30 +799,32 @@ class ColumnTransformer(BaseTransformer):
728
799
  Output dataset with results of the decision function for the samples in input dataset.
729
800
  """
730
801
  super()._check_dataset_type(dataset)
731
- inference_method="decision_function"
802
+ inference_method = "decision_function"
732
803
 
733
804
  # This dictionary contains optional kwargs for batch inference. These kwargs
734
805
  # are specific to the type of dataset used.
735
806
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
736
807
 
808
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
809
+
737
810
  if isinstance(dataset, DataFrame):
738
- self._deps = self._batch_inference_validate_snowpark(
739
- dataset=dataset,
740
- inference_method=inference_method,
741
- )
742
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
811
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
812
+ self._deps = self._get_dependencies()
813
+ assert isinstance(
814
+ dataset._session, Session
815
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
743
816
  transform_kwargs = dict(
744
817
  session=dataset._session,
745
818
  dependencies=self._deps,
746
- drop_input_cols = self._drop_input_cols,
819
+ drop_input_cols=self._drop_input_cols,
747
820
  expected_output_cols_type="float",
748
821
  )
822
+ expected_output_cols = self._align_expected_output_names(
823
+ inference_method, dataset, expected_output_cols, output_cols_prefix
824
+ )
749
825
 
750
826
  elif isinstance(dataset, pd.DataFrame):
751
- transform_kwargs = dict(
752
- snowpark_input_cols = self._snowpark_cols,
753
- drop_input_cols = self._drop_input_cols
754
- )
827
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
755
828
 
756
829
  transform_handlers = ModelTransformerBuilder.build(
757
830
  dataset=dataset,
@@ -764,7 +837,7 @@ class ColumnTransformer(BaseTransformer):
764
837
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
765
838
  inference_method=inference_method,
766
839
  input_cols=self.input_cols,
767
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
840
+ expected_output_cols=expected_output_cols,
768
841
  **transform_kwargs
769
842
  )
770
843
  return output_df
@@ -793,17 +866,17 @@ class ColumnTransformer(BaseTransformer):
793
866
  Output dataset with probability of the sample for each class in the model.
794
867
  """
795
868
  super()._check_dataset_type(dataset)
796
- inference_method="score_samples"
869
+ inference_method = "score_samples"
797
870
 
798
871
  # This dictionary contains optional kwargs for batch inference. These kwargs
799
872
  # are specific to the type of dataset used.
800
873
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
801
874
 
875
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
876
+
802
877
  if isinstance(dataset, DataFrame):
803
- self._deps = self._batch_inference_validate_snowpark(
804
- dataset=dataset,
805
- inference_method=inference_method,
806
- )
878
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
879
+ self._deps = self._get_dependencies()
807
880
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
808
881
  transform_kwargs = dict(
809
882
  session=dataset._session,
@@ -811,6 +884,9 @@ class ColumnTransformer(BaseTransformer):
811
884
  drop_input_cols = self._drop_input_cols,
812
885
  expected_output_cols_type="float",
813
886
  )
887
+ expected_output_cols = self._align_expected_output_names(
888
+ inference_method, dataset, expected_output_cols, output_cols_prefix
889
+ )
814
890
 
815
891
  elif isinstance(dataset, pd.DataFrame):
816
892
  transform_kwargs = dict(
@@ -829,7 +905,7 @@ class ColumnTransformer(BaseTransformer):
829
905
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
830
906
  inference_method=inference_method,
831
907
  input_cols=self.input_cols,
832
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
908
+ expected_output_cols=expected_output_cols,
833
909
  **transform_kwargs
834
910
  )
835
911
  return output_df
@@ -862,17 +938,15 @@ class ColumnTransformer(BaseTransformer):
862
938
  transform_kwargs: ScoreKwargsTypedDict = dict()
863
939
 
864
940
  if isinstance(dataset, DataFrame):
865
- self._deps = self._batch_inference_validate_snowpark(
866
- dataset=dataset,
867
- inference_method="score",
868
- )
941
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
942
+ self._deps = self._get_dependencies()
869
943
  selected_cols = self._get_active_columns()
870
944
  if len(selected_cols) > 0:
871
945
  dataset = dataset.select(selected_cols)
872
946
  assert isinstance(dataset._session, Session) # keep mypy happy
873
947
  transform_kwargs = dict(
874
948
  session=dataset._session,
875
- dependencies=["snowflake-snowpark-python"] + self._deps,
949
+ dependencies=self._deps,
876
950
  score_sproc_imports=['sklearn'],
877
951
  )
878
952
  elif isinstance(dataset, pd.DataFrame):
@@ -937,11 +1011,8 @@ class ColumnTransformer(BaseTransformer):
937
1011
 
938
1012
  if isinstance(dataset, DataFrame):
939
1013
 
940
- self._deps = self._batch_inference_validate_snowpark(
941
- dataset=dataset,
942
- inference_method=inference_method,
943
-
944
- )
1014
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1015
+ self._deps = self._get_dependencies()
945
1016
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
946
1017
  transform_kwargs = dict(
947
1018
  session = dataset._session,
@@ -974,50 +1045,84 @@ class ColumnTransformer(BaseTransformer):
974
1045
  )
975
1046
  return output_df
976
1047
 
1048
+
1049
+
1050
+ def to_sklearn(self) -> Any:
1051
+ """Get sklearn.compose.ColumnTransformer object.
1052
+ """
1053
+ if self._sklearn_object is None:
1054
+ self._sklearn_object = self._create_sklearn_object()
1055
+ return self._sklearn_object
1056
+
1057
+ def to_xgboost(self) -> Any:
1058
+ raise exceptions.SnowflakeMLException(
1059
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1060
+ original_exception=AttributeError(
1061
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1062
+ "to_xgboost()",
1063
+ "to_sklearn()"
1064
+ )
1065
+ ),
1066
+ )
977
1067
 
978
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1068
+ def to_lightgbm(self) -> Any:
1069
+ raise exceptions.SnowflakeMLException(
1070
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1071
+ original_exception=AttributeError(
1072
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1073
+ "to_lightgbm()",
1074
+ "to_sklearn()"
1075
+ )
1076
+ ),
1077
+ )
1078
+
1079
+ def _get_dependencies(self) -> List[str]:
1080
+ return self._deps
1081
+
1082
+
1083
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
979
1084
  self._model_signature_dict = dict()
980
1085
 
981
1086
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
982
1087
 
983
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1088
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
984
1089
  outputs: List[BaseFeatureSpec] = []
985
1090
  if hasattr(self, "predict"):
986
1091
  # keep mypy happy
987
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1092
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
988
1093
  # For classifier, the type of predict is the same as the type of label
989
- if self._sklearn_object._estimator_type == 'classifier':
990
- # label columns is the desired type for output
1094
+ if self._sklearn_object._estimator_type == "classifier":
1095
+ # label columns is the desired type for output
991
1096
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
992
1097
  # rename the output columns
993
1098
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
1099
+ self._model_signature_dict["predict"] = ModelSignature(
1100
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1101
+ )
997
1102
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
998
1103
  # For outlier models, returns -1 for outliers and 1 for inliers.
999
- # Clusterer returns int64 cluster labels.
1104
+ # Clusterer returns int64 cluster labels.
1000
1105
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1001
1106
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1005
-
1107
+ self._model_signature_dict["predict"] = ModelSignature(
1108
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1109
+ )
1110
+
1006
1111
  # For regressor, the type of predict is float64
1007
- elif self._sklearn_object._estimator_type == 'regressor':
1112
+ elif self._sklearn_object._estimator_type == "regressor":
1008
1113
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1009
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1010
- ([] if self._drop_input_cols else inputs)
1011
- + outputs)
1012
-
1114
+ self._model_signature_dict["predict"] = ModelSignature(
1115
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1116
+ )
1117
+
1013
1118
  for prob_func in PROB_FUNCTIONS:
1014
1119
  if hasattr(self, prob_func):
1015
1120
  output_cols_prefix: str = f"{prob_func}_"
1016
1121
  output_column_names = self._get_output_column_names(output_cols_prefix)
1017
1122
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1018
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1019
- ([] if self._drop_input_cols else inputs)
1020
- + outputs)
1123
+ self._model_signature_dict[prob_func] = ModelSignature(
1124
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1125
+ )
1021
1126
 
1022
1127
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1023
1128
  items = list(self._model_signature_dict.items())
@@ -1030,10 +1135,10 @@ class ColumnTransformer(BaseTransformer):
1030
1135
  """Returns model signature of current class.
1031
1136
 
1032
1137
  Raises:
1033
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1138
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1034
1139
 
1035
1140
  Returns:
1036
- Dict[str, ModelSignature]: each method and its input output signature
1141
+ Dict with each method and its input output signature
1037
1142
  """
1038
1143
  if self._model_signature_dict is None:
1039
1144
  raise exceptions.SnowflakeMLException(
@@ -1041,35 +1146,3 @@ class ColumnTransformer(BaseTransformer):
1041
1146
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1042
1147
  )
1043
1148
  return self._model_signature_dict
1044
-
1045
- def to_sklearn(self) -> Any:
1046
- """Get sklearn.compose.ColumnTransformer object.
1047
- """
1048
- if self._sklearn_object is None:
1049
- self._sklearn_object = self._create_sklearn_object()
1050
- return self._sklearn_object
1051
-
1052
- def to_xgboost(self) -> Any:
1053
- raise exceptions.SnowflakeMLException(
1054
- error_code=error_codes.METHOD_NOT_ALLOWED,
1055
- original_exception=AttributeError(
1056
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
- "to_xgboost()",
1058
- "to_sklearn()"
1059
- )
1060
- ),
1061
- )
1062
-
1063
- def to_lightgbm(self) -> Any:
1064
- raise exceptions.SnowflakeMLException(
1065
- error_code=error_codes.METHOD_NOT_ALLOWED,
1066
- original_exception=AttributeError(
1067
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1068
- "to_lightgbm()",
1069
- "to_sklearn()"
1070
- )
1071
- ),
1072
- )
1073
-
1074
- def _get_dependencies(self) -> List[str]:
1075
- return self._deps