snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".re
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class PolynomialCountSketch(BaseTransformer):
71
64
  r"""Polynomial kernel approximation via Tensor Sketch
72
65
  For more details on this class, see [sklearn.kernel_approximation.PolynomialCountSketch]
@@ -223,12 +216,7 @@ class PolynomialCountSketch(BaseTransformer):
223
216
  )
224
217
  return selected_cols
225
218
 
226
- @telemetry.send_api_usage_telemetry(
227
- project=_PROJECT,
228
- subproject=_SUBPROJECT,
229
- custom_tags=dict([("autogen", True)]),
230
- )
231
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PolynomialCountSketch":
219
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PolynomialCountSketch":
232
220
  """Fit the model with X
233
221
  For more details on this function, see [sklearn.kernel_approximation.PolynomialCountSketch.fit]
234
222
  (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.PolynomialCountSketch.html#sklearn.kernel_approximation.PolynomialCountSketch.fit)
@@ -255,12 +243,14 @@ class PolynomialCountSketch(BaseTransformer):
255
243
 
256
244
  self._snowpark_cols = dataset.select(self.input_cols).columns
257
245
 
258
- # If we are already in a stored procedure, no need to kick off another one.
246
+ # If we are already in a stored procedure, no need to kick off another one.
259
247
  if SNOWML_SPROC_ENV in os.environ:
260
248
  statement_params = telemetry.get_function_usage_statement_params(
261
249
  project=_PROJECT,
262
250
  subproject=_SUBPROJECT,
263
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PolynomialCountSketch.__class__.__name__),
251
+ function_name=telemetry.get_statement_params_full_func_name(
252
+ inspect.currentframe(), PolynomialCountSketch.__class__.__name__
253
+ ),
264
254
  api_calls=[Session.call],
265
255
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
266
256
  )
@@ -281,27 +271,24 @@ class PolynomialCountSketch(BaseTransformer):
281
271
  )
282
272
  self._sklearn_object = model_trainer.train()
283
273
  self._is_fitted = True
284
- self._get_model_signatures(dataset)
274
+ self._generate_model_signatures(dataset)
285
275
  return self
286
276
 
287
277
  def _batch_inference_validate_snowpark(
288
278
  self,
289
279
  dataset: DataFrame,
290
280
  inference_method: str,
291
- ) -> List[str]:
292
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
293
- return the available package that exists in the snowflake anaconda channel
281
+ ) -> None:
282
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
294
283
 
295
284
  Args:
296
285
  dataset: snowpark dataframe
297
286
  inference_method: the inference method such as predict, score...
298
-
287
+
299
288
  Raises:
300
289
  SnowflakeMLException: If the estimator is not fitted, raise error
301
290
  SnowflakeMLException: If the session is None, raise error
302
291
 
303
- Returns:
304
- A list of available package that exists in the snowflake anaconda channel
305
292
  """
306
293
  if not self._is_fitted:
307
294
  raise exceptions.SnowflakeMLException(
@@ -319,9 +306,7 @@ class PolynomialCountSketch(BaseTransformer):
319
306
  "Session must not specified for snowpark dataset."
320
307
  ),
321
308
  )
322
- # Validate that key package version in user workspace are supported in snowflake conda channel
323
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
324
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
309
+
325
310
 
326
311
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
327
312
  @telemetry.send_api_usage_telemetry(
@@ -355,7 +340,9 @@ class PolynomialCountSketch(BaseTransformer):
355
340
  # when it is classifier, infer the datatype from label columns
356
341
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
357
342
  # Batch inference takes a single expected output column type. Use the first columns type for now.
358
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
343
+ label_cols_signatures = [
344
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
345
+ ]
359
346
  if len(label_cols_signatures) == 0:
360
347
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
361
348
  raise exceptions.SnowflakeMLException(
@@ -363,25 +350,23 @@ class PolynomialCountSketch(BaseTransformer):
363
350
  original_exception=ValueError(error_str),
364
351
  )
365
352
 
366
- expected_type_inferred = convert_sp_to_sf_type(
367
- label_cols_signatures[0].as_snowpark_type()
368
- )
353
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
369
354
 
370
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
371
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
355
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
356
+ self._deps = self._get_dependencies()
357
+ assert isinstance(
358
+ dataset._session, Session
359
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
372
360
 
373
361
  transform_kwargs = dict(
374
- session = dataset._session,
375
- dependencies = self._deps,
376
- drop_input_cols = self._drop_input_cols,
377
- expected_output_cols_type = expected_type_inferred,
362
+ session=dataset._session,
363
+ dependencies=self._deps,
364
+ drop_input_cols=self._drop_input_cols,
365
+ expected_output_cols_type=expected_type_inferred,
378
366
  )
379
367
 
380
368
  elif isinstance(dataset, pd.DataFrame):
381
- transform_kwargs = dict(
382
- snowpark_input_cols = self._snowpark_cols,
383
- drop_input_cols = self._drop_input_cols
384
- )
369
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
385
370
 
386
371
  transform_handlers = ModelTransformerBuilder.build(
387
372
  dataset=dataset,
@@ -423,7 +408,7 @@ class PolynomialCountSketch(BaseTransformer):
423
408
  Transformed dataset.
424
409
  """
425
410
  super()._check_dataset_type(dataset)
426
- inference_method="transform"
411
+ inference_method = "transform"
427
412
 
428
413
  # This dictionary contains optional kwargs for batch inference. These kwargs
429
414
  # are specific to the type of dataset used.
@@ -453,24 +438,19 @@ class PolynomialCountSketch(BaseTransformer):
453
438
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
454
439
  expected_dtype = convert_sp_to_sf_type(output_types[0])
455
440
 
456
- self._deps = self._batch_inference_validate_snowpark(
457
- dataset=dataset,
458
- inference_method=inference_method,
459
- )
441
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
442
+ self._deps = self._get_dependencies()
460
443
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
461
444
 
462
445
  transform_kwargs = dict(
463
- session = dataset._session,
464
- dependencies = self._deps,
465
- drop_input_cols = self._drop_input_cols,
466
- expected_output_cols_type = expected_dtype,
446
+ session=dataset._session,
447
+ dependencies=self._deps,
448
+ drop_input_cols=self._drop_input_cols,
449
+ expected_output_cols_type=expected_dtype,
467
450
  )
468
451
 
469
452
  elif isinstance(dataset, pd.DataFrame):
470
- transform_kwargs = dict(
471
- snowpark_input_cols = self._snowpark_cols,
472
- drop_input_cols = self._drop_input_cols
473
- )
453
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
474
454
 
475
455
  transform_handlers = ModelTransformerBuilder.build(
476
456
  dataset=dataset,
@@ -489,7 +469,11 @@ class PolynomialCountSketch(BaseTransformer):
489
469
  return output_df
490
470
 
491
471
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
492
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
472
+ def fit_predict(
473
+ self,
474
+ dataset: Union[DataFrame, pd.DataFrame],
475
+ output_cols_prefix: str = "fit_predict_",
476
+ ) -> Union[DataFrame, pd.DataFrame]:
493
477
  """ Method not supported for this class.
494
478
 
495
479
 
@@ -514,22 +498,106 @@ class PolynomialCountSketch(BaseTransformer):
514
498
  )
515
499
  output_result, fitted_estimator = model_trainer.train_fit_predict(
516
500
  drop_input_cols=self._drop_input_cols,
517
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
501
+ expected_output_cols_list=(
502
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
503
+ ),
518
504
  )
519
505
  self._sklearn_object = fitted_estimator
520
506
  self._is_fitted = True
521
507
  return output_result
522
508
 
509
+
510
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
511
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
512
+ """ Fit to data, then transform it
513
+ For more details on this function, see [sklearn.kernel_approximation.PolynomialCountSketch.fit_transform]
514
+ (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.PolynomialCountSketch.html#sklearn.kernel_approximation.PolynomialCountSketch.fit_transform)
515
+
516
+
517
+ Raises:
518
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
523
519
 
524
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
525
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
526
- """
520
+ Args:
521
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
522
+ Snowpark or Pandas DataFrame.
523
+ output_cols_prefix: Prefix for the response columns
527
524
  Returns:
528
525
  Transformed dataset.
529
526
  """
530
- self.fit(dataset)
531
- assert self._sklearn_object is not None
532
- return self._sklearn_object.embedding_
527
+ self._infer_input_output_cols(dataset)
528
+ super()._check_dataset_type(dataset)
529
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
530
+ estimator=self._sklearn_object,
531
+ dataset=dataset,
532
+ input_cols=self.input_cols,
533
+ label_cols=self.label_cols,
534
+ sample_weight_col=self.sample_weight_col,
535
+ autogenerated=self._autogenerated,
536
+ subproject=_SUBPROJECT,
537
+ )
538
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
539
+ drop_input_cols=self._drop_input_cols,
540
+ expected_output_cols_list=self.output_cols,
541
+ )
542
+ self._sklearn_object = fitted_estimator
543
+ self._is_fitted = True
544
+ return output_result
545
+
546
+
547
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
548
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
549
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
550
+ """
551
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
552
+ # The following condition is introduced for kneighbors methods, and not used in other methods
553
+ if output_cols:
554
+ output_cols = [
555
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
556
+ for c in output_cols
557
+ ]
558
+ elif getattr(self._sklearn_object, "classes_", None) is None:
559
+ output_cols = [output_cols_prefix]
560
+ elif self._sklearn_object is not None:
561
+ classes = self._sklearn_object.classes_
562
+ if isinstance(classes, numpy.ndarray):
563
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
564
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
565
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
566
+ output_cols = []
567
+ for i, cl in enumerate(classes):
568
+ # For binary classification, there is only one output column for each class
569
+ # ndarray as the two classes are complementary.
570
+ if len(cl) == 2:
571
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
572
+ else:
573
+ output_cols.extend([
574
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
575
+ ])
576
+ else:
577
+ output_cols = []
578
+
579
+ # Make sure column names are valid snowflake identifiers.
580
+ assert output_cols is not None # Make MyPy happy
581
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
582
+
583
+ return rv
584
+
585
+ def _align_expected_output_names(
586
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
587
+ ) -> List[str]:
588
+ # in case the inferred output column names dimension is different
589
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
590
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
591
+ output_df_columns = list(output_df_pd.columns)
592
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
593
+ if self.sample_weight_col:
594
+ output_df_columns_set -= set(self.sample_weight_col)
595
+ # if the dimension of inferred output column names is correct; use it
596
+ if len(expected_output_cols_list) == len(output_df_columns_set):
597
+ return expected_output_cols_list
598
+ # otherwise, use the sklearn estimator's output
599
+ else:
600
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
533
601
 
534
602
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
535
603
  @telemetry.send_api_usage_telemetry(
@@ -561,24 +629,26 @@ class PolynomialCountSketch(BaseTransformer):
561
629
  # are specific to the type of dataset used.
562
630
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
563
631
 
632
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
633
+
564
634
  if isinstance(dataset, DataFrame):
565
- self._deps = self._batch_inference_validate_snowpark(
566
- dataset=dataset,
567
- inference_method=inference_method,
568
- )
569
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
635
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
636
+ self._deps = self._get_dependencies()
637
+ assert isinstance(
638
+ dataset._session, Session
639
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
570
640
  transform_kwargs = dict(
571
641
  session=dataset._session,
572
642
  dependencies=self._deps,
573
- drop_input_cols = self._drop_input_cols,
643
+ drop_input_cols=self._drop_input_cols,
574
644
  expected_output_cols_type="float",
575
645
  )
646
+ expected_output_cols = self._align_expected_output_names(
647
+ inference_method, dataset, expected_output_cols, output_cols_prefix
648
+ )
576
649
 
577
650
  elif isinstance(dataset, pd.DataFrame):
578
- transform_kwargs = dict(
579
- snowpark_input_cols = self._snowpark_cols,
580
- drop_input_cols = self._drop_input_cols
581
- )
651
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
582
652
 
583
653
  transform_handlers = ModelTransformerBuilder.build(
584
654
  dataset=dataset,
@@ -590,7 +660,7 @@ class PolynomialCountSketch(BaseTransformer):
590
660
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
591
661
  inference_method=inference_method,
592
662
  input_cols=self.input_cols,
593
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
663
+ expected_output_cols=expected_output_cols,
594
664
  **transform_kwargs
595
665
  )
596
666
  return output_df
@@ -620,29 +690,30 @@ class PolynomialCountSketch(BaseTransformer):
620
690
  Output dataset with log probability of the sample for each class in the model.
621
691
  """
622
692
  super()._check_dataset_type(dataset)
623
- inference_method="predict_log_proba"
693
+ inference_method = "predict_log_proba"
694
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
624
695
 
625
696
  # This dictionary contains optional kwargs for batch inference. These kwargs
626
697
  # are specific to the type of dataset used.
627
698
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
628
699
 
629
700
  if isinstance(dataset, DataFrame):
630
- self._deps = self._batch_inference_validate_snowpark(
631
- dataset=dataset,
632
- inference_method=inference_method,
633
- )
634
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
701
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
702
+ self._deps = self._get_dependencies()
703
+ assert isinstance(
704
+ dataset._session, Session
705
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
635
706
  transform_kwargs = dict(
636
707
  session=dataset._session,
637
708
  dependencies=self._deps,
638
- drop_input_cols = self._drop_input_cols,
709
+ drop_input_cols=self._drop_input_cols,
639
710
  expected_output_cols_type="float",
640
711
  )
712
+ expected_output_cols = self._align_expected_output_names(
713
+ inference_method, dataset, expected_output_cols, output_cols_prefix
714
+ )
641
715
  elif isinstance(dataset, pd.DataFrame):
642
- transform_kwargs = dict(
643
- snowpark_input_cols = self._snowpark_cols,
644
- drop_input_cols = self._drop_input_cols
645
- )
716
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
646
717
 
647
718
  transform_handlers = ModelTransformerBuilder.build(
648
719
  dataset=dataset,
@@ -655,7 +726,7 @@ class PolynomialCountSketch(BaseTransformer):
655
726
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
656
727
  inference_method=inference_method,
657
728
  input_cols=self.input_cols,
658
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
729
+ expected_output_cols=expected_output_cols,
659
730
  **transform_kwargs
660
731
  )
661
732
  return output_df
@@ -681,30 +752,32 @@ class PolynomialCountSketch(BaseTransformer):
681
752
  Output dataset with results of the decision function for the samples in input dataset.
682
753
  """
683
754
  super()._check_dataset_type(dataset)
684
- inference_method="decision_function"
755
+ inference_method = "decision_function"
685
756
 
686
757
  # This dictionary contains optional kwargs for batch inference. These kwargs
687
758
  # are specific to the type of dataset used.
688
759
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
689
760
 
761
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
762
+
690
763
  if isinstance(dataset, DataFrame):
691
- self._deps = self._batch_inference_validate_snowpark(
692
- dataset=dataset,
693
- inference_method=inference_method,
694
- )
695
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
764
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
765
+ self._deps = self._get_dependencies()
766
+ assert isinstance(
767
+ dataset._session, Session
768
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
696
769
  transform_kwargs = dict(
697
770
  session=dataset._session,
698
771
  dependencies=self._deps,
699
- drop_input_cols = self._drop_input_cols,
772
+ drop_input_cols=self._drop_input_cols,
700
773
  expected_output_cols_type="float",
701
774
  )
775
+ expected_output_cols = self._align_expected_output_names(
776
+ inference_method, dataset, expected_output_cols, output_cols_prefix
777
+ )
702
778
 
703
779
  elif isinstance(dataset, pd.DataFrame):
704
- transform_kwargs = dict(
705
- snowpark_input_cols = self._snowpark_cols,
706
- drop_input_cols = self._drop_input_cols
707
- )
780
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
708
781
 
709
782
  transform_handlers = ModelTransformerBuilder.build(
710
783
  dataset=dataset,
@@ -717,7 +790,7 @@ class PolynomialCountSketch(BaseTransformer):
717
790
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
718
791
  inference_method=inference_method,
719
792
  input_cols=self.input_cols,
720
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
793
+ expected_output_cols=expected_output_cols,
721
794
  **transform_kwargs
722
795
  )
723
796
  return output_df
@@ -746,17 +819,17 @@ class PolynomialCountSketch(BaseTransformer):
746
819
  Output dataset with probability of the sample for each class in the model.
747
820
  """
748
821
  super()._check_dataset_type(dataset)
749
- inference_method="score_samples"
822
+ inference_method = "score_samples"
750
823
 
751
824
  # This dictionary contains optional kwargs for batch inference. These kwargs
752
825
  # are specific to the type of dataset used.
753
826
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
754
827
 
828
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
829
+
755
830
  if isinstance(dataset, DataFrame):
756
- self._deps = self._batch_inference_validate_snowpark(
757
- dataset=dataset,
758
- inference_method=inference_method,
759
- )
831
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
832
+ self._deps = self._get_dependencies()
760
833
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
761
834
  transform_kwargs = dict(
762
835
  session=dataset._session,
@@ -764,6 +837,9 @@ class PolynomialCountSketch(BaseTransformer):
764
837
  drop_input_cols = self._drop_input_cols,
765
838
  expected_output_cols_type="float",
766
839
  )
840
+ expected_output_cols = self._align_expected_output_names(
841
+ inference_method, dataset, expected_output_cols, output_cols_prefix
842
+ )
767
843
 
768
844
  elif isinstance(dataset, pd.DataFrame):
769
845
  transform_kwargs = dict(
@@ -782,7 +858,7 @@ class PolynomialCountSketch(BaseTransformer):
782
858
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
783
859
  inference_method=inference_method,
784
860
  input_cols=self.input_cols,
785
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
861
+ expected_output_cols=expected_output_cols,
786
862
  **transform_kwargs
787
863
  )
788
864
  return output_df
@@ -815,17 +891,15 @@ class PolynomialCountSketch(BaseTransformer):
815
891
  transform_kwargs: ScoreKwargsTypedDict = dict()
816
892
 
817
893
  if isinstance(dataset, DataFrame):
818
- self._deps = self._batch_inference_validate_snowpark(
819
- dataset=dataset,
820
- inference_method="score",
821
- )
894
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
895
+ self._deps = self._get_dependencies()
822
896
  selected_cols = self._get_active_columns()
823
897
  if len(selected_cols) > 0:
824
898
  dataset = dataset.select(selected_cols)
825
899
  assert isinstance(dataset._session, Session) # keep mypy happy
826
900
  transform_kwargs = dict(
827
901
  session=dataset._session,
828
- dependencies=["snowflake-snowpark-python"] + self._deps,
902
+ dependencies=self._deps,
829
903
  score_sproc_imports=['sklearn'],
830
904
  )
831
905
  elif isinstance(dataset, pd.DataFrame):
@@ -890,11 +964,8 @@ class PolynomialCountSketch(BaseTransformer):
890
964
 
891
965
  if isinstance(dataset, DataFrame):
892
966
 
893
- self._deps = self._batch_inference_validate_snowpark(
894
- dataset=dataset,
895
- inference_method=inference_method,
896
-
897
- )
967
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
968
+ self._deps = self._get_dependencies()
898
969
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
899
970
  transform_kwargs = dict(
900
971
  session = dataset._session,
@@ -927,50 +998,84 @@ class PolynomialCountSketch(BaseTransformer):
927
998
  )
928
999
  return output_df
929
1000
 
1001
+
1002
+
1003
+ def to_sklearn(self) -> Any:
1004
+ """Get sklearn.kernel_approximation.PolynomialCountSketch object.
1005
+ """
1006
+ if self._sklearn_object is None:
1007
+ self._sklearn_object = self._create_sklearn_object()
1008
+ return self._sklearn_object
1009
+
1010
+ def to_xgboost(self) -> Any:
1011
+ raise exceptions.SnowflakeMLException(
1012
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1013
+ original_exception=AttributeError(
1014
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1015
+ "to_xgboost()",
1016
+ "to_sklearn()"
1017
+ )
1018
+ ),
1019
+ )
930
1020
 
931
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1021
+ def to_lightgbm(self) -> Any:
1022
+ raise exceptions.SnowflakeMLException(
1023
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1024
+ original_exception=AttributeError(
1025
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1026
+ "to_lightgbm()",
1027
+ "to_sklearn()"
1028
+ )
1029
+ ),
1030
+ )
1031
+
1032
+ def _get_dependencies(self) -> List[str]:
1033
+ return self._deps
1034
+
1035
+
1036
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
932
1037
  self._model_signature_dict = dict()
933
1038
 
934
1039
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
935
1040
 
936
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1041
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
937
1042
  outputs: List[BaseFeatureSpec] = []
938
1043
  if hasattr(self, "predict"):
939
1044
  # keep mypy happy
940
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1045
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
941
1046
  # For classifier, the type of predict is the same as the type of label
942
- if self._sklearn_object._estimator_type == 'classifier':
943
- # label columns is the desired type for output
1047
+ if self._sklearn_object._estimator_type == "classifier":
1048
+ # label columns is the desired type for output
944
1049
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
945
1050
  # rename the output columns
946
1051
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
947
- self._model_signature_dict["predict"] = ModelSignature(inputs,
948
- ([] if self._drop_input_cols else inputs)
949
- + outputs)
1052
+ self._model_signature_dict["predict"] = ModelSignature(
1053
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1054
+ )
950
1055
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
951
1056
  # For outlier models, returns -1 for outliers and 1 for inliers.
952
- # Clusterer returns int64 cluster labels.
1057
+ # Clusterer returns int64 cluster labels.
953
1058
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
954
1059
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
955
- self._model_signature_dict["predict"] = ModelSignature(inputs,
956
- ([] if self._drop_input_cols else inputs)
957
- + outputs)
958
-
1060
+ self._model_signature_dict["predict"] = ModelSignature(
1061
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1062
+ )
1063
+
959
1064
  # For regressor, the type of predict is float64
960
- elif self._sklearn_object._estimator_type == 'regressor':
1065
+ elif self._sklearn_object._estimator_type == "regressor":
961
1066
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
962
- self._model_signature_dict["predict"] = ModelSignature(inputs,
963
- ([] if self._drop_input_cols else inputs)
964
- + outputs)
965
-
1067
+ self._model_signature_dict["predict"] = ModelSignature(
1068
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1069
+ )
1070
+
966
1071
  for prob_func in PROB_FUNCTIONS:
967
1072
  if hasattr(self, prob_func):
968
1073
  output_cols_prefix: str = f"{prob_func}_"
969
1074
  output_column_names = self._get_output_column_names(output_cols_prefix)
970
1075
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
971
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
972
- ([] if self._drop_input_cols else inputs)
973
- + outputs)
1076
+ self._model_signature_dict[prob_func] = ModelSignature(
1077
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1078
+ )
974
1079
 
975
1080
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
976
1081
  items = list(self._model_signature_dict.items())
@@ -983,10 +1088,10 @@ class PolynomialCountSketch(BaseTransformer):
983
1088
  """Returns model signature of current class.
984
1089
 
985
1090
  Raises:
986
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1091
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
987
1092
 
988
1093
  Returns:
989
- Dict[str, ModelSignature]: each method and its input output signature
1094
+ Dict with each method and its input output signature
990
1095
  """
991
1096
  if self._model_signature_dict is None:
992
1097
  raise exceptions.SnowflakeMLException(
@@ -994,35 +1099,3 @@ class PolynomialCountSketch(BaseTransformer):
994
1099
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
995
1100
  )
996
1101
  return self._model_signature_dict
997
-
998
- def to_sklearn(self) -> Any:
999
- """Get sklearn.kernel_approximation.PolynomialCountSketch object.
1000
- """
1001
- if self._sklearn_object is None:
1002
- self._sklearn_object = self._create_sklearn_object()
1003
- return self._sklearn_object
1004
-
1005
- def to_xgboost(self) -> Any:
1006
- raise exceptions.SnowflakeMLException(
1007
- error_code=error_codes.METHOD_NOT_ALLOWED,
1008
- original_exception=AttributeError(
1009
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1010
- "to_xgboost()",
1011
- "to_sklearn()"
1012
- )
1013
- ),
1014
- )
1015
-
1016
- def to_lightgbm(self) -> Any:
1017
- raise exceptions.SnowflakeMLException(
1018
- error_code=error_codes.METHOD_NOT_ALLOWED,
1019
- original_exception=AttributeError(
1020
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1021
- "to_lightgbm()",
1022
- "to_sklearn()"
1023
- )
1024
- ),
1025
- )
1026
-
1027
- def _get_dependencies(self) -> List[str]:
1028
- return self._deps