snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class StackingRegressor(BaseTransformer):
71
64
  r"""Stack of estimators with a final regressor
72
65
  For more details on this class, see [sklearn.ensemble.StackingRegressor]
@@ -255,12 +248,7 @@ class StackingRegressor(BaseTransformer):
255
248
  )
256
249
  return selected_cols
257
250
 
258
- @telemetry.send_api_usage_telemetry(
259
- project=_PROJECT,
260
- subproject=_SUBPROJECT,
261
- custom_tags=dict([("autogen", True)]),
262
- )
263
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "StackingRegressor":
251
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "StackingRegressor":
264
252
  """Fit the estimators
265
253
  For more details on this function, see [sklearn.ensemble.StackingRegressor.fit]
266
254
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html#sklearn.ensemble.StackingRegressor.fit)
@@ -287,12 +275,14 @@ class StackingRegressor(BaseTransformer):
287
275
 
288
276
  self._snowpark_cols = dataset.select(self.input_cols).columns
289
277
 
290
- # If we are already in a stored procedure, no need to kick off another one.
278
+ # If we are already in a stored procedure, no need to kick off another one.
291
279
  if SNOWML_SPROC_ENV in os.environ:
292
280
  statement_params = telemetry.get_function_usage_statement_params(
293
281
  project=_PROJECT,
294
282
  subproject=_SUBPROJECT,
295
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), StackingRegressor.__class__.__name__),
283
+ function_name=telemetry.get_statement_params_full_func_name(
284
+ inspect.currentframe(), StackingRegressor.__class__.__name__
285
+ ),
296
286
  api_calls=[Session.call],
297
287
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
298
288
  )
@@ -313,27 +303,24 @@ class StackingRegressor(BaseTransformer):
313
303
  )
314
304
  self._sklearn_object = model_trainer.train()
315
305
  self._is_fitted = True
316
- self._get_model_signatures(dataset)
306
+ self._generate_model_signatures(dataset)
317
307
  return self
318
308
 
319
309
  def _batch_inference_validate_snowpark(
320
310
  self,
321
311
  dataset: DataFrame,
322
312
  inference_method: str,
323
- ) -> List[str]:
324
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
325
- return the available package that exists in the snowflake anaconda channel
313
+ ) -> None:
314
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
326
315
 
327
316
  Args:
328
317
  dataset: snowpark dataframe
329
318
  inference_method: the inference method such as predict, score...
330
-
319
+
331
320
  Raises:
332
321
  SnowflakeMLException: If the estimator is not fitted, raise error
333
322
  SnowflakeMLException: If the session is None, raise error
334
323
 
335
- Returns:
336
- A list of available package that exists in the snowflake anaconda channel
337
324
  """
338
325
  if not self._is_fitted:
339
326
  raise exceptions.SnowflakeMLException(
@@ -351,9 +338,7 @@ class StackingRegressor(BaseTransformer):
351
338
  "Session must not specified for snowpark dataset."
352
339
  ),
353
340
  )
354
- # Validate that key package version in user workspace are supported in snowflake conda channel
355
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
356
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
341
+
357
342
 
358
343
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
359
344
  @telemetry.send_api_usage_telemetry(
@@ -389,7 +374,9 @@ class StackingRegressor(BaseTransformer):
389
374
  # when it is classifier, infer the datatype from label columns
390
375
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
391
376
  # Batch inference takes a single expected output column type. Use the first columns type for now.
392
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
377
+ label_cols_signatures = [
378
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
379
+ ]
393
380
  if len(label_cols_signatures) == 0:
394
381
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
395
382
  raise exceptions.SnowflakeMLException(
@@ -397,25 +384,23 @@ class StackingRegressor(BaseTransformer):
397
384
  original_exception=ValueError(error_str),
398
385
  )
399
386
 
400
- expected_type_inferred = convert_sp_to_sf_type(
401
- label_cols_signatures[0].as_snowpark_type()
402
- )
387
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
403
388
 
404
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
405
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
389
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
390
+ self._deps = self._get_dependencies()
391
+ assert isinstance(
392
+ dataset._session, Session
393
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
406
394
 
407
395
  transform_kwargs = dict(
408
- session = dataset._session,
409
- dependencies = self._deps,
410
- drop_input_cols = self._drop_input_cols,
411
- expected_output_cols_type = expected_type_inferred,
396
+ session=dataset._session,
397
+ dependencies=self._deps,
398
+ drop_input_cols=self._drop_input_cols,
399
+ expected_output_cols_type=expected_type_inferred,
412
400
  )
413
401
 
414
402
  elif isinstance(dataset, pd.DataFrame):
415
- transform_kwargs = dict(
416
- snowpark_input_cols = self._snowpark_cols,
417
- drop_input_cols = self._drop_input_cols
418
- )
403
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
419
404
 
420
405
  transform_handlers = ModelTransformerBuilder.build(
421
406
  dataset=dataset,
@@ -457,7 +442,7 @@ class StackingRegressor(BaseTransformer):
457
442
  Transformed dataset.
458
443
  """
459
444
  super()._check_dataset_type(dataset)
460
- inference_method="transform"
445
+ inference_method = "transform"
461
446
 
462
447
  # This dictionary contains optional kwargs for batch inference. These kwargs
463
448
  # are specific to the type of dataset used.
@@ -487,24 +472,19 @@ class StackingRegressor(BaseTransformer):
487
472
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
488
473
  expected_dtype = convert_sp_to_sf_type(output_types[0])
489
474
 
490
- self._deps = self._batch_inference_validate_snowpark(
491
- dataset=dataset,
492
- inference_method=inference_method,
493
- )
475
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
476
+ self._deps = self._get_dependencies()
494
477
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
495
478
 
496
479
  transform_kwargs = dict(
497
- session = dataset._session,
498
- dependencies = self._deps,
499
- drop_input_cols = self._drop_input_cols,
500
- expected_output_cols_type = expected_dtype,
480
+ session=dataset._session,
481
+ dependencies=self._deps,
482
+ drop_input_cols=self._drop_input_cols,
483
+ expected_output_cols_type=expected_dtype,
501
484
  )
502
485
 
503
486
  elif isinstance(dataset, pd.DataFrame):
504
- transform_kwargs = dict(
505
- snowpark_input_cols = self._snowpark_cols,
506
- drop_input_cols = self._drop_input_cols
507
- )
487
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
508
488
 
509
489
  transform_handlers = ModelTransformerBuilder.build(
510
490
  dataset=dataset,
@@ -523,7 +503,11 @@ class StackingRegressor(BaseTransformer):
523
503
  return output_df
524
504
 
525
505
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
526
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
506
+ def fit_predict(
507
+ self,
508
+ dataset: Union[DataFrame, pd.DataFrame],
509
+ output_cols_prefix: str = "fit_predict_",
510
+ ) -> Union[DataFrame, pd.DataFrame]:
527
511
  """ Method not supported for this class.
528
512
 
529
513
 
@@ -548,22 +532,106 @@ class StackingRegressor(BaseTransformer):
548
532
  )
549
533
  output_result, fitted_estimator = model_trainer.train_fit_predict(
550
534
  drop_input_cols=self._drop_input_cols,
551
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
535
+ expected_output_cols_list=(
536
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
537
+ ),
552
538
  )
553
539
  self._sklearn_object = fitted_estimator
554
540
  self._is_fitted = True
555
541
  return output_result
556
542
 
543
+
544
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
545
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
546
+ """ Fit the estimators and return the predictions for X for each estimator
547
+ For more details on this function, see [sklearn.ensemble.StackingRegressor.fit_transform]
548
+ (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingRegressor.html#sklearn.ensemble.StackingRegressor.fit_transform)
549
+
550
+
551
+ Raises:
552
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
557
553
 
558
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
559
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
560
- """
554
+ Args:
555
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
556
+ Snowpark or Pandas DataFrame.
557
+ output_cols_prefix: Prefix for the response columns
561
558
  Returns:
562
559
  Transformed dataset.
563
560
  """
564
- self.fit(dataset)
565
- assert self._sklearn_object is not None
566
- return self._sklearn_object.embedding_
561
+ self._infer_input_output_cols(dataset)
562
+ super()._check_dataset_type(dataset)
563
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
564
+ estimator=self._sklearn_object,
565
+ dataset=dataset,
566
+ input_cols=self.input_cols,
567
+ label_cols=self.label_cols,
568
+ sample_weight_col=self.sample_weight_col,
569
+ autogenerated=self._autogenerated,
570
+ subproject=_SUBPROJECT,
571
+ )
572
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
573
+ drop_input_cols=self._drop_input_cols,
574
+ expected_output_cols_list=self.output_cols,
575
+ )
576
+ self._sklearn_object = fitted_estimator
577
+ self._is_fitted = True
578
+ return output_result
579
+
580
+
581
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
582
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
583
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
584
+ """
585
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
586
+ # The following condition is introduced for kneighbors methods, and not used in other methods
587
+ if output_cols:
588
+ output_cols = [
589
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
590
+ for c in output_cols
591
+ ]
592
+ elif getattr(self._sklearn_object, "classes_", None) is None:
593
+ output_cols = [output_cols_prefix]
594
+ elif self._sklearn_object is not None:
595
+ classes = self._sklearn_object.classes_
596
+ if isinstance(classes, numpy.ndarray):
597
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
598
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
599
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
600
+ output_cols = []
601
+ for i, cl in enumerate(classes):
602
+ # For binary classification, there is only one output column for each class
603
+ # ndarray as the two classes are complementary.
604
+ if len(cl) == 2:
605
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
606
+ else:
607
+ output_cols.extend([
608
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
609
+ ])
610
+ else:
611
+ output_cols = []
612
+
613
+ # Make sure column names are valid snowflake identifiers.
614
+ assert output_cols is not None # Make MyPy happy
615
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
616
+
617
+ return rv
618
+
619
+ def _align_expected_output_names(
620
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
621
+ ) -> List[str]:
622
+ # in case the inferred output column names dimension is different
623
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
624
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
625
+ output_df_columns = list(output_df_pd.columns)
626
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
627
+ if self.sample_weight_col:
628
+ output_df_columns_set -= set(self.sample_weight_col)
629
+ # if the dimension of inferred output column names is correct; use it
630
+ if len(expected_output_cols_list) == len(output_df_columns_set):
631
+ return expected_output_cols_list
632
+ # otherwise, use the sklearn estimator's output
633
+ else:
634
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
567
635
 
568
636
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
569
637
  @telemetry.send_api_usage_telemetry(
@@ -595,24 +663,26 @@ class StackingRegressor(BaseTransformer):
595
663
  # are specific to the type of dataset used.
596
664
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
597
665
 
666
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
667
+
598
668
  if isinstance(dataset, DataFrame):
599
- self._deps = self._batch_inference_validate_snowpark(
600
- dataset=dataset,
601
- inference_method=inference_method,
602
- )
603
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
669
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
670
+ self._deps = self._get_dependencies()
671
+ assert isinstance(
672
+ dataset._session, Session
673
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
604
674
  transform_kwargs = dict(
605
675
  session=dataset._session,
606
676
  dependencies=self._deps,
607
- drop_input_cols = self._drop_input_cols,
677
+ drop_input_cols=self._drop_input_cols,
608
678
  expected_output_cols_type="float",
609
679
  )
680
+ expected_output_cols = self._align_expected_output_names(
681
+ inference_method, dataset, expected_output_cols, output_cols_prefix
682
+ )
610
683
 
611
684
  elif isinstance(dataset, pd.DataFrame):
612
- transform_kwargs = dict(
613
- snowpark_input_cols = self._snowpark_cols,
614
- drop_input_cols = self._drop_input_cols
615
- )
685
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
616
686
 
617
687
  transform_handlers = ModelTransformerBuilder.build(
618
688
  dataset=dataset,
@@ -624,7 +694,7 @@ class StackingRegressor(BaseTransformer):
624
694
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
625
695
  inference_method=inference_method,
626
696
  input_cols=self.input_cols,
627
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
697
+ expected_output_cols=expected_output_cols,
628
698
  **transform_kwargs
629
699
  )
630
700
  return output_df
@@ -654,29 +724,30 @@ class StackingRegressor(BaseTransformer):
654
724
  Output dataset with log probability of the sample for each class in the model.
655
725
  """
656
726
  super()._check_dataset_type(dataset)
657
- inference_method="predict_log_proba"
727
+ inference_method = "predict_log_proba"
728
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
658
729
 
659
730
  # This dictionary contains optional kwargs for batch inference. These kwargs
660
731
  # are specific to the type of dataset used.
661
732
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
662
733
 
663
734
  if isinstance(dataset, DataFrame):
664
- self._deps = self._batch_inference_validate_snowpark(
665
- dataset=dataset,
666
- inference_method=inference_method,
667
- )
668
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
735
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
736
+ self._deps = self._get_dependencies()
737
+ assert isinstance(
738
+ dataset._session, Session
739
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
669
740
  transform_kwargs = dict(
670
741
  session=dataset._session,
671
742
  dependencies=self._deps,
672
- drop_input_cols = self._drop_input_cols,
743
+ drop_input_cols=self._drop_input_cols,
673
744
  expected_output_cols_type="float",
674
745
  )
746
+ expected_output_cols = self._align_expected_output_names(
747
+ inference_method, dataset, expected_output_cols, output_cols_prefix
748
+ )
675
749
  elif isinstance(dataset, pd.DataFrame):
676
- transform_kwargs = dict(
677
- snowpark_input_cols = self._snowpark_cols,
678
- drop_input_cols = self._drop_input_cols
679
- )
750
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
680
751
 
681
752
  transform_handlers = ModelTransformerBuilder.build(
682
753
  dataset=dataset,
@@ -689,7 +760,7 @@ class StackingRegressor(BaseTransformer):
689
760
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
690
761
  inference_method=inference_method,
691
762
  input_cols=self.input_cols,
692
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
763
+ expected_output_cols=expected_output_cols,
693
764
  **transform_kwargs
694
765
  )
695
766
  return output_df
@@ -715,30 +786,32 @@ class StackingRegressor(BaseTransformer):
715
786
  Output dataset with results of the decision function for the samples in input dataset.
716
787
  """
717
788
  super()._check_dataset_type(dataset)
718
- inference_method="decision_function"
789
+ inference_method = "decision_function"
719
790
 
720
791
  # This dictionary contains optional kwargs for batch inference. These kwargs
721
792
  # are specific to the type of dataset used.
722
793
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
723
794
 
795
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
796
+
724
797
  if isinstance(dataset, DataFrame):
725
- self._deps = self._batch_inference_validate_snowpark(
726
- dataset=dataset,
727
- inference_method=inference_method,
728
- )
729
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
798
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
799
+ self._deps = self._get_dependencies()
800
+ assert isinstance(
801
+ dataset._session, Session
802
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
730
803
  transform_kwargs = dict(
731
804
  session=dataset._session,
732
805
  dependencies=self._deps,
733
- drop_input_cols = self._drop_input_cols,
806
+ drop_input_cols=self._drop_input_cols,
734
807
  expected_output_cols_type="float",
735
808
  )
809
+ expected_output_cols = self._align_expected_output_names(
810
+ inference_method, dataset, expected_output_cols, output_cols_prefix
811
+ )
736
812
 
737
813
  elif isinstance(dataset, pd.DataFrame):
738
- transform_kwargs = dict(
739
- snowpark_input_cols = self._snowpark_cols,
740
- drop_input_cols = self._drop_input_cols
741
- )
814
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
742
815
 
743
816
  transform_handlers = ModelTransformerBuilder.build(
744
817
  dataset=dataset,
@@ -751,7 +824,7 @@ class StackingRegressor(BaseTransformer):
751
824
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
752
825
  inference_method=inference_method,
753
826
  input_cols=self.input_cols,
754
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
827
+ expected_output_cols=expected_output_cols,
755
828
  **transform_kwargs
756
829
  )
757
830
  return output_df
@@ -780,17 +853,17 @@ class StackingRegressor(BaseTransformer):
780
853
  Output dataset with probability of the sample for each class in the model.
781
854
  """
782
855
  super()._check_dataset_type(dataset)
783
- inference_method="score_samples"
856
+ inference_method = "score_samples"
784
857
 
785
858
  # This dictionary contains optional kwargs for batch inference. These kwargs
786
859
  # are specific to the type of dataset used.
787
860
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
788
861
 
862
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
863
+
789
864
  if isinstance(dataset, DataFrame):
790
- self._deps = self._batch_inference_validate_snowpark(
791
- dataset=dataset,
792
- inference_method=inference_method,
793
- )
865
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
866
+ self._deps = self._get_dependencies()
794
867
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
795
868
  transform_kwargs = dict(
796
869
  session=dataset._session,
@@ -798,6 +871,9 @@ class StackingRegressor(BaseTransformer):
798
871
  drop_input_cols = self._drop_input_cols,
799
872
  expected_output_cols_type="float",
800
873
  )
874
+ expected_output_cols = self._align_expected_output_names(
875
+ inference_method, dataset, expected_output_cols, output_cols_prefix
876
+ )
801
877
 
802
878
  elif isinstance(dataset, pd.DataFrame):
803
879
  transform_kwargs = dict(
@@ -816,7 +892,7 @@ class StackingRegressor(BaseTransformer):
816
892
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
817
893
  inference_method=inference_method,
818
894
  input_cols=self.input_cols,
819
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
895
+ expected_output_cols=expected_output_cols,
820
896
  **transform_kwargs
821
897
  )
822
898
  return output_df
@@ -851,17 +927,15 @@ class StackingRegressor(BaseTransformer):
851
927
  transform_kwargs: ScoreKwargsTypedDict = dict()
852
928
 
853
929
  if isinstance(dataset, DataFrame):
854
- self._deps = self._batch_inference_validate_snowpark(
855
- dataset=dataset,
856
- inference_method="score",
857
- )
930
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
931
+ self._deps = self._get_dependencies()
858
932
  selected_cols = self._get_active_columns()
859
933
  if len(selected_cols) > 0:
860
934
  dataset = dataset.select(selected_cols)
861
935
  assert isinstance(dataset._session, Session) # keep mypy happy
862
936
  transform_kwargs = dict(
863
937
  session=dataset._session,
864
- dependencies=["snowflake-snowpark-python"] + self._deps,
938
+ dependencies=self._deps,
865
939
  score_sproc_imports=['sklearn'],
866
940
  )
867
941
  elif isinstance(dataset, pd.DataFrame):
@@ -926,11 +1000,8 @@ class StackingRegressor(BaseTransformer):
926
1000
 
927
1001
  if isinstance(dataset, DataFrame):
928
1002
 
929
- self._deps = self._batch_inference_validate_snowpark(
930
- dataset=dataset,
931
- inference_method=inference_method,
932
-
933
- )
1003
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1004
+ self._deps = self._get_dependencies()
934
1005
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
935
1006
  transform_kwargs = dict(
936
1007
  session = dataset._session,
@@ -963,50 +1034,84 @@ class StackingRegressor(BaseTransformer):
963
1034
  )
964
1035
  return output_df
965
1036
 
1037
+
1038
+
1039
+ def to_sklearn(self) -> Any:
1040
+ """Get sklearn.ensemble.StackingRegressor object.
1041
+ """
1042
+ if self._sklearn_object is None:
1043
+ self._sklearn_object = self._create_sklearn_object()
1044
+ return self._sklearn_object
1045
+
1046
+ def to_xgboost(self) -> Any:
1047
+ raise exceptions.SnowflakeMLException(
1048
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1049
+ original_exception=AttributeError(
1050
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1051
+ "to_xgboost()",
1052
+ "to_sklearn()"
1053
+ )
1054
+ ),
1055
+ )
966
1056
 
967
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1057
+ def to_lightgbm(self) -> Any:
1058
+ raise exceptions.SnowflakeMLException(
1059
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1060
+ original_exception=AttributeError(
1061
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1062
+ "to_lightgbm()",
1063
+ "to_sklearn()"
1064
+ )
1065
+ ),
1066
+ )
1067
+
1068
+ def _get_dependencies(self) -> List[str]:
1069
+ return self._deps
1070
+
1071
+
1072
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
968
1073
  self._model_signature_dict = dict()
969
1074
 
970
1075
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
971
1076
 
972
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1077
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
973
1078
  outputs: List[BaseFeatureSpec] = []
974
1079
  if hasattr(self, "predict"):
975
1080
  # keep mypy happy
976
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1081
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
977
1082
  # For classifier, the type of predict is the same as the type of label
978
- if self._sklearn_object._estimator_type == 'classifier':
979
- # label columns is the desired type for output
1083
+ if self._sklearn_object._estimator_type == "classifier":
1084
+ # label columns is the desired type for output
980
1085
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
981
1086
  # rename the output columns
982
1087
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
983
- self._model_signature_dict["predict"] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
1088
+ self._model_signature_dict["predict"] = ModelSignature(
1089
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1090
+ )
986
1091
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
987
1092
  # For outlier models, returns -1 for outliers and 1 for inliers.
988
- # Clusterer returns int64 cluster labels.
1093
+ # Clusterer returns int64 cluster labels.
989
1094
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
990
1095
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
994
-
1096
+ self._model_signature_dict["predict"] = ModelSignature(
1097
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1098
+ )
1099
+
995
1100
  # For regressor, the type of predict is float64
996
- elif self._sklearn_object._estimator_type == 'regressor':
1101
+ elif self._sklearn_object._estimator_type == "regressor":
997
1102
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
998
- self._model_signature_dict["predict"] = ModelSignature(inputs,
999
- ([] if self._drop_input_cols else inputs)
1000
- + outputs)
1001
-
1103
+ self._model_signature_dict["predict"] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1106
+
1002
1107
  for prob_func in PROB_FUNCTIONS:
1003
1108
  if hasattr(self, prob_func):
1004
1109
  output_cols_prefix: str = f"{prob_func}_"
1005
1110
  output_column_names = self._get_output_column_names(output_cols_prefix)
1006
1111
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1007
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1008
- ([] if self._drop_input_cols else inputs)
1009
- + outputs)
1112
+ self._model_signature_dict[prob_func] = ModelSignature(
1113
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1114
+ )
1010
1115
 
1011
1116
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1012
1117
  items = list(self._model_signature_dict.items())
@@ -1019,10 +1124,10 @@ class StackingRegressor(BaseTransformer):
1019
1124
  """Returns model signature of current class.
1020
1125
 
1021
1126
  Raises:
1022
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1127
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1023
1128
 
1024
1129
  Returns:
1025
- Dict[str, ModelSignature]: each method and its input output signature
1130
+ Dict with each method and its input output signature
1026
1131
  """
1027
1132
  if self._model_signature_dict is None:
1028
1133
  raise exceptions.SnowflakeMLException(
@@ -1030,35 +1135,3 @@ class StackingRegressor(BaseTransformer):
1030
1135
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1031
1136
  )
1032
1137
  return self._model_signature_dict
1033
-
1034
- def to_sklearn(self) -> Any:
1035
- """Get sklearn.ensemble.StackingRegressor object.
1036
- """
1037
- if self._sklearn_object is None:
1038
- self._sklearn_object = self._create_sklearn_object()
1039
- return self._sklearn_object
1040
-
1041
- def to_xgboost(self) -> Any:
1042
- raise exceptions.SnowflakeMLException(
1043
- error_code=error_codes.METHOD_NOT_ALLOWED,
1044
- original_exception=AttributeError(
1045
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1046
- "to_xgboost()",
1047
- "to_sklearn()"
1048
- )
1049
- ),
1050
- )
1051
-
1052
- def to_lightgbm(self) -> Any:
1053
- raise exceptions.SnowflakeMLException(
1054
- error_code=error_codes.METHOD_NOT_ALLOWED,
1055
- original_exception=AttributeError(
1056
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
- "to_lightgbm()",
1058
- "to_sklearn()"
1059
- )
1060
- ),
1061
- )
1062
-
1063
- def _get_dependencies(self) -> List[str]:
1064
- return self._deps