snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class Lars(BaseTransformer):
|
71
64
|
r"""Least Angle Regression model a
|
72
65
|
For more details on this class, see [sklearn.linear_model.Lars]
|
@@ -261,12 +254,7 @@ class Lars(BaseTransformer):
|
|
261
254
|
)
|
262
255
|
return selected_cols
|
263
256
|
|
264
|
-
|
265
|
-
project=_PROJECT,
|
266
|
-
subproject=_SUBPROJECT,
|
267
|
-
custom_tags=dict([("autogen", True)]),
|
268
|
-
)
|
269
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Lars":
|
257
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Lars":
|
270
258
|
"""Fit the model using X, y as training data
|
271
259
|
For more details on this function, see [sklearn.linear_model.Lars.fit]
|
272
260
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html#sklearn.linear_model.Lars.fit)
|
@@ -293,12 +281,14 @@ class Lars(BaseTransformer):
|
|
293
281
|
|
294
282
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
295
283
|
|
296
|
-
|
284
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
297
285
|
if SNOWML_SPROC_ENV in os.environ:
|
298
286
|
statement_params = telemetry.get_function_usage_statement_params(
|
299
287
|
project=_PROJECT,
|
300
288
|
subproject=_SUBPROJECT,
|
301
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
289
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
290
|
+
inspect.currentframe(), Lars.__class__.__name__
|
291
|
+
),
|
302
292
|
api_calls=[Session.call],
|
303
293
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
304
294
|
)
|
@@ -319,27 +309,24 @@ class Lars(BaseTransformer):
|
|
319
309
|
)
|
320
310
|
self._sklearn_object = model_trainer.train()
|
321
311
|
self._is_fitted = True
|
322
|
-
self.
|
312
|
+
self._generate_model_signatures(dataset)
|
323
313
|
return self
|
324
314
|
|
325
315
|
def _batch_inference_validate_snowpark(
|
326
316
|
self,
|
327
317
|
dataset: DataFrame,
|
328
318
|
inference_method: str,
|
329
|
-
) ->
|
330
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
331
|
-
return the available package that exists in the snowflake anaconda channel
|
319
|
+
) -> None:
|
320
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
332
321
|
|
333
322
|
Args:
|
334
323
|
dataset: snowpark dataframe
|
335
324
|
inference_method: the inference method such as predict, score...
|
336
|
-
|
325
|
+
|
337
326
|
Raises:
|
338
327
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
339
328
|
SnowflakeMLException: If the session is None, raise error
|
340
329
|
|
341
|
-
Returns:
|
342
|
-
A list of available package that exists in the snowflake anaconda channel
|
343
330
|
"""
|
344
331
|
if not self._is_fitted:
|
345
332
|
raise exceptions.SnowflakeMLException(
|
@@ -357,9 +344,7 @@ class Lars(BaseTransformer):
|
|
357
344
|
"Session must not specified for snowpark dataset."
|
358
345
|
),
|
359
346
|
)
|
360
|
-
|
361
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
362
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
347
|
+
|
363
348
|
|
364
349
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
365
350
|
@telemetry.send_api_usage_telemetry(
|
@@ -395,7 +380,9 @@ class Lars(BaseTransformer):
|
|
395
380
|
# when it is classifier, infer the datatype from label columns
|
396
381
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
397
382
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
398
|
-
label_cols_signatures = [
|
383
|
+
label_cols_signatures = [
|
384
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
385
|
+
]
|
399
386
|
if len(label_cols_signatures) == 0:
|
400
387
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
401
388
|
raise exceptions.SnowflakeMLException(
|
@@ -403,25 +390,23 @@ class Lars(BaseTransformer):
|
|
403
390
|
original_exception=ValueError(error_str),
|
404
391
|
)
|
405
392
|
|
406
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
407
|
-
label_cols_signatures[0].as_snowpark_type()
|
408
|
-
)
|
393
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
409
394
|
|
410
|
-
self.
|
411
|
-
|
395
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
396
|
+
self._deps = self._get_dependencies()
|
397
|
+
assert isinstance(
|
398
|
+
dataset._session, Session
|
399
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
412
400
|
|
413
401
|
transform_kwargs = dict(
|
414
|
-
session
|
415
|
-
dependencies
|
416
|
-
drop_input_cols
|
417
|
-
expected_output_cols_type
|
402
|
+
session=dataset._session,
|
403
|
+
dependencies=self._deps,
|
404
|
+
drop_input_cols=self._drop_input_cols,
|
405
|
+
expected_output_cols_type=expected_type_inferred,
|
418
406
|
)
|
419
407
|
|
420
408
|
elif isinstance(dataset, pd.DataFrame):
|
421
|
-
transform_kwargs = dict(
|
422
|
-
snowpark_input_cols = self._snowpark_cols,
|
423
|
-
drop_input_cols = self._drop_input_cols
|
424
|
-
)
|
409
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
425
410
|
|
426
411
|
transform_handlers = ModelTransformerBuilder.build(
|
427
412
|
dataset=dataset,
|
@@ -461,7 +446,7 @@ class Lars(BaseTransformer):
|
|
461
446
|
Transformed dataset.
|
462
447
|
"""
|
463
448
|
super()._check_dataset_type(dataset)
|
464
|
-
inference_method="transform"
|
449
|
+
inference_method = "transform"
|
465
450
|
|
466
451
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
467
452
|
# are specific to the type of dataset used.
|
@@ -491,24 +476,19 @@ class Lars(BaseTransformer):
|
|
491
476
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
492
477
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
493
478
|
|
494
|
-
self.
|
495
|
-
|
496
|
-
inference_method=inference_method,
|
497
|
-
)
|
479
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
480
|
+
self._deps = self._get_dependencies()
|
498
481
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
499
482
|
|
500
483
|
transform_kwargs = dict(
|
501
|
-
session
|
502
|
-
dependencies
|
503
|
-
drop_input_cols
|
504
|
-
expected_output_cols_type
|
484
|
+
session=dataset._session,
|
485
|
+
dependencies=self._deps,
|
486
|
+
drop_input_cols=self._drop_input_cols,
|
487
|
+
expected_output_cols_type=expected_dtype,
|
505
488
|
)
|
506
489
|
|
507
490
|
elif isinstance(dataset, pd.DataFrame):
|
508
|
-
transform_kwargs = dict(
|
509
|
-
snowpark_input_cols = self._snowpark_cols,
|
510
|
-
drop_input_cols = self._drop_input_cols
|
511
|
-
)
|
491
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
512
492
|
|
513
493
|
transform_handlers = ModelTransformerBuilder.build(
|
514
494
|
dataset=dataset,
|
@@ -527,7 +507,11 @@ class Lars(BaseTransformer):
|
|
527
507
|
return output_df
|
528
508
|
|
529
509
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
530
|
-
def fit_predict(
|
510
|
+
def fit_predict(
|
511
|
+
self,
|
512
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
513
|
+
output_cols_prefix: str = "fit_predict_",
|
514
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
531
515
|
""" Method not supported for this class.
|
532
516
|
|
533
517
|
|
@@ -552,22 +536,104 @@ class Lars(BaseTransformer):
|
|
552
536
|
)
|
553
537
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
554
538
|
drop_input_cols=self._drop_input_cols,
|
555
|
-
expected_output_cols_list=
|
539
|
+
expected_output_cols_list=(
|
540
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
541
|
+
),
|
556
542
|
)
|
557
543
|
self._sklearn_object = fitted_estimator
|
558
544
|
self._is_fitted = True
|
559
545
|
return output_result
|
560
546
|
|
547
|
+
|
548
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
549
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
550
|
+
""" Method not supported for this class.
|
551
|
+
|
561
552
|
|
562
|
-
|
563
|
-
|
564
|
-
|
553
|
+
Raises:
|
554
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
555
|
+
|
556
|
+
Args:
|
557
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
558
|
+
Snowpark or Pandas DataFrame.
|
559
|
+
output_cols_prefix: Prefix for the response columns
|
565
560
|
Returns:
|
566
561
|
Transformed dataset.
|
567
562
|
"""
|
568
|
-
self.
|
569
|
-
|
570
|
-
|
563
|
+
self._infer_input_output_cols(dataset)
|
564
|
+
super()._check_dataset_type(dataset)
|
565
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
566
|
+
estimator=self._sklearn_object,
|
567
|
+
dataset=dataset,
|
568
|
+
input_cols=self.input_cols,
|
569
|
+
label_cols=self.label_cols,
|
570
|
+
sample_weight_col=self.sample_weight_col,
|
571
|
+
autogenerated=self._autogenerated,
|
572
|
+
subproject=_SUBPROJECT,
|
573
|
+
)
|
574
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
575
|
+
drop_input_cols=self._drop_input_cols,
|
576
|
+
expected_output_cols_list=self.output_cols,
|
577
|
+
)
|
578
|
+
self._sklearn_object = fitted_estimator
|
579
|
+
self._is_fitted = True
|
580
|
+
return output_result
|
581
|
+
|
582
|
+
|
583
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
584
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
585
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
586
|
+
"""
|
587
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
588
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
589
|
+
if output_cols:
|
590
|
+
output_cols = [
|
591
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
592
|
+
for c in output_cols
|
593
|
+
]
|
594
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
595
|
+
output_cols = [output_cols_prefix]
|
596
|
+
elif self._sklearn_object is not None:
|
597
|
+
classes = self._sklearn_object.classes_
|
598
|
+
if isinstance(classes, numpy.ndarray):
|
599
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
600
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
601
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
602
|
+
output_cols = []
|
603
|
+
for i, cl in enumerate(classes):
|
604
|
+
# For binary classification, there is only one output column for each class
|
605
|
+
# ndarray as the two classes are complementary.
|
606
|
+
if len(cl) == 2:
|
607
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
608
|
+
else:
|
609
|
+
output_cols.extend([
|
610
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
611
|
+
])
|
612
|
+
else:
|
613
|
+
output_cols = []
|
614
|
+
|
615
|
+
# Make sure column names are valid snowflake identifiers.
|
616
|
+
assert output_cols is not None # Make MyPy happy
|
617
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
618
|
+
|
619
|
+
return rv
|
620
|
+
|
621
|
+
def _align_expected_output_names(
|
622
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
623
|
+
) -> List[str]:
|
624
|
+
# in case the inferred output column names dimension is different
|
625
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
626
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
627
|
+
output_df_columns = list(output_df_pd.columns)
|
628
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
629
|
+
if self.sample_weight_col:
|
630
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
631
|
+
# if the dimension of inferred output column names is correct; use it
|
632
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
633
|
+
return expected_output_cols_list
|
634
|
+
# otherwise, use the sklearn estimator's output
|
635
|
+
else:
|
636
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
571
637
|
|
572
638
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
573
639
|
@telemetry.send_api_usage_telemetry(
|
@@ -599,24 +665,26 @@ class Lars(BaseTransformer):
|
|
599
665
|
# are specific to the type of dataset used.
|
600
666
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
601
667
|
|
668
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
669
|
+
|
602
670
|
if isinstance(dataset, DataFrame):
|
603
|
-
self.
|
604
|
-
|
605
|
-
|
606
|
-
|
607
|
-
|
671
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
672
|
+
self._deps = self._get_dependencies()
|
673
|
+
assert isinstance(
|
674
|
+
dataset._session, Session
|
675
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
608
676
|
transform_kwargs = dict(
|
609
677
|
session=dataset._session,
|
610
678
|
dependencies=self._deps,
|
611
|
-
drop_input_cols
|
679
|
+
drop_input_cols=self._drop_input_cols,
|
612
680
|
expected_output_cols_type="float",
|
613
681
|
)
|
682
|
+
expected_output_cols = self._align_expected_output_names(
|
683
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
684
|
+
)
|
614
685
|
|
615
686
|
elif isinstance(dataset, pd.DataFrame):
|
616
|
-
transform_kwargs = dict(
|
617
|
-
snowpark_input_cols = self._snowpark_cols,
|
618
|
-
drop_input_cols = self._drop_input_cols
|
619
|
-
)
|
687
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
620
688
|
|
621
689
|
transform_handlers = ModelTransformerBuilder.build(
|
622
690
|
dataset=dataset,
|
@@ -628,7 +696,7 @@ class Lars(BaseTransformer):
|
|
628
696
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
629
697
|
inference_method=inference_method,
|
630
698
|
input_cols=self.input_cols,
|
631
|
-
expected_output_cols=
|
699
|
+
expected_output_cols=expected_output_cols,
|
632
700
|
**transform_kwargs
|
633
701
|
)
|
634
702
|
return output_df
|
@@ -658,29 +726,30 @@ class Lars(BaseTransformer):
|
|
658
726
|
Output dataset with log probability of the sample for each class in the model.
|
659
727
|
"""
|
660
728
|
super()._check_dataset_type(dataset)
|
661
|
-
inference_method="predict_log_proba"
|
729
|
+
inference_method = "predict_log_proba"
|
730
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
662
731
|
|
663
732
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
664
733
|
# are specific to the type of dataset used.
|
665
734
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
666
735
|
|
667
736
|
if isinstance(dataset, DataFrame):
|
668
|
-
self.
|
669
|
-
|
670
|
-
|
671
|
-
|
672
|
-
|
737
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
738
|
+
self._deps = self._get_dependencies()
|
739
|
+
assert isinstance(
|
740
|
+
dataset._session, Session
|
741
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
673
742
|
transform_kwargs = dict(
|
674
743
|
session=dataset._session,
|
675
744
|
dependencies=self._deps,
|
676
|
-
drop_input_cols
|
745
|
+
drop_input_cols=self._drop_input_cols,
|
677
746
|
expected_output_cols_type="float",
|
678
747
|
)
|
748
|
+
expected_output_cols = self._align_expected_output_names(
|
749
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
750
|
+
)
|
679
751
|
elif isinstance(dataset, pd.DataFrame):
|
680
|
-
transform_kwargs = dict(
|
681
|
-
snowpark_input_cols = self._snowpark_cols,
|
682
|
-
drop_input_cols = self._drop_input_cols
|
683
|
-
)
|
752
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
684
753
|
|
685
754
|
transform_handlers = ModelTransformerBuilder.build(
|
686
755
|
dataset=dataset,
|
@@ -693,7 +762,7 @@ class Lars(BaseTransformer):
|
|
693
762
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
694
763
|
inference_method=inference_method,
|
695
764
|
input_cols=self.input_cols,
|
696
|
-
expected_output_cols=
|
765
|
+
expected_output_cols=expected_output_cols,
|
697
766
|
**transform_kwargs
|
698
767
|
)
|
699
768
|
return output_df
|
@@ -719,30 +788,32 @@ class Lars(BaseTransformer):
|
|
719
788
|
Output dataset with results of the decision function for the samples in input dataset.
|
720
789
|
"""
|
721
790
|
super()._check_dataset_type(dataset)
|
722
|
-
inference_method="decision_function"
|
791
|
+
inference_method = "decision_function"
|
723
792
|
|
724
793
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
725
794
|
# are specific to the type of dataset used.
|
726
795
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
727
796
|
|
797
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
798
|
+
|
728
799
|
if isinstance(dataset, DataFrame):
|
729
|
-
self.
|
730
|
-
|
731
|
-
|
732
|
-
|
733
|
-
|
800
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
801
|
+
self._deps = self._get_dependencies()
|
802
|
+
assert isinstance(
|
803
|
+
dataset._session, Session
|
804
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
734
805
|
transform_kwargs = dict(
|
735
806
|
session=dataset._session,
|
736
807
|
dependencies=self._deps,
|
737
|
-
drop_input_cols
|
808
|
+
drop_input_cols=self._drop_input_cols,
|
738
809
|
expected_output_cols_type="float",
|
739
810
|
)
|
811
|
+
expected_output_cols = self._align_expected_output_names(
|
812
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
813
|
+
)
|
740
814
|
|
741
815
|
elif isinstance(dataset, pd.DataFrame):
|
742
|
-
transform_kwargs = dict(
|
743
|
-
snowpark_input_cols = self._snowpark_cols,
|
744
|
-
drop_input_cols = self._drop_input_cols
|
745
|
-
)
|
816
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
746
817
|
|
747
818
|
transform_handlers = ModelTransformerBuilder.build(
|
748
819
|
dataset=dataset,
|
@@ -755,7 +826,7 @@ class Lars(BaseTransformer):
|
|
755
826
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
756
827
|
inference_method=inference_method,
|
757
828
|
input_cols=self.input_cols,
|
758
|
-
expected_output_cols=
|
829
|
+
expected_output_cols=expected_output_cols,
|
759
830
|
**transform_kwargs
|
760
831
|
)
|
761
832
|
return output_df
|
@@ -784,17 +855,17 @@ class Lars(BaseTransformer):
|
|
784
855
|
Output dataset with probability of the sample for each class in the model.
|
785
856
|
"""
|
786
857
|
super()._check_dataset_type(dataset)
|
787
|
-
inference_method="score_samples"
|
858
|
+
inference_method = "score_samples"
|
788
859
|
|
789
860
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
790
861
|
# are specific to the type of dataset used.
|
791
862
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
792
863
|
|
864
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
865
|
+
|
793
866
|
if isinstance(dataset, DataFrame):
|
794
|
-
self.
|
795
|
-
|
796
|
-
inference_method=inference_method,
|
797
|
-
)
|
867
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
868
|
+
self._deps = self._get_dependencies()
|
798
869
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
799
870
|
transform_kwargs = dict(
|
800
871
|
session=dataset._session,
|
@@ -802,6 +873,9 @@ class Lars(BaseTransformer):
|
|
802
873
|
drop_input_cols = self._drop_input_cols,
|
803
874
|
expected_output_cols_type="float",
|
804
875
|
)
|
876
|
+
expected_output_cols = self._align_expected_output_names(
|
877
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
878
|
+
)
|
805
879
|
|
806
880
|
elif isinstance(dataset, pd.DataFrame):
|
807
881
|
transform_kwargs = dict(
|
@@ -820,7 +894,7 @@ class Lars(BaseTransformer):
|
|
820
894
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
821
895
|
inference_method=inference_method,
|
822
896
|
input_cols=self.input_cols,
|
823
|
-
expected_output_cols=
|
897
|
+
expected_output_cols=expected_output_cols,
|
824
898
|
**transform_kwargs
|
825
899
|
)
|
826
900
|
return output_df
|
@@ -855,17 +929,15 @@ class Lars(BaseTransformer):
|
|
855
929
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
856
930
|
|
857
931
|
if isinstance(dataset, DataFrame):
|
858
|
-
self.
|
859
|
-
|
860
|
-
inference_method="score",
|
861
|
-
)
|
932
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
933
|
+
self._deps = self._get_dependencies()
|
862
934
|
selected_cols = self._get_active_columns()
|
863
935
|
if len(selected_cols) > 0:
|
864
936
|
dataset = dataset.select(selected_cols)
|
865
937
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
866
938
|
transform_kwargs = dict(
|
867
939
|
session=dataset._session,
|
868
|
-
dependencies=
|
940
|
+
dependencies=self._deps,
|
869
941
|
score_sproc_imports=['sklearn'],
|
870
942
|
)
|
871
943
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -930,11 +1002,8 @@ class Lars(BaseTransformer):
|
|
930
1002
|
|
931
1003
|
if isinstance(dataset, DataFrame):
|
932
1004
|
|
933
|
-
self.
|
934
|
-
|
935
|
-
inference_method=inference_method,
|
936
|
-
|
937
|
-
)
|
1005
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1006
|
+
self._deps = self._get_dependencies()
|
938
1007
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
939
1008
|
transform_kwargs = dict(
|
940
1009
|
session = dataset._session,
|
@@ -967,50 +1036,84 @@ class Lars(BaseTransformer):
|
|
967
1036
|
)
|
968
1037
|
return output_df
|
969
1038
|
|
1039
|
+
|
1040
|
+
|
1041
|
+
def to_sklearn(self) -> Any:
|
1042
|
+
"""Get sklearn.linear_model.Lars object.
|
1043
|
+
"""
|
1044
|
+
if self._sklearn_object is None:
|
1045
|
+
self._sklearn_object = self._create_sklearn_object()
|
1046
|
+
return self._sklearn_object
|
1047
|
+
|
1048
|
+
def to_xgboost(self) -> Any:
|
1049
|
+
raise exceptions.SnowflakeMLException(
|
1050
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1051
|
+
original_exception=AttributeError(
|
1052
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1053
|
+
"to_xgboost()",
|
1054
|
+
"to_sklearn()"
|
1055
|
+
)
|
1056
|
+
),
|
1057
|
+
)
|
1058
|
+
|
1059
|
+
def to_lightgbm(self) -> Any:
|
1060
|
+
raise exceptions.SnowflakeMLException(
|
1061
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1062
|
+
original_exception=AttributeError(
|
1063
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1064
|
+
"to_lightgbm()",
|
1065
|
+
"to_sklearn()"
|
1066
|
+
)
|
1067
|
+
),
|
1068
|
+
)
|
1069
|
+
|
1070
|
+
def _get_dependencies(self) -> List[str]:
|
1071
|
+
return self._deps
|
1072
|
+
|
970
1073
|
|
971
|
-
def
|
1074
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
972
1075
|
self._model_signature_dict = dict()
|
973
1076
|
|
974
1077
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
975
1078
|
|
976
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1079
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
977
1080
|
outputs: List[BaseFeatureSpec] = []
|
978
1081
|
if hasattr(self, "predict"):
|
979
1082
|
# keep mypy happy
|
980
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1083
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
981
1084
|
# For classifier, the type of predict is the same as the type of label
|
982
|
-
if self._sklearn_object._estimator_type ==
|
983
|
-
|
1085
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1086
|
+
# label columns is the desired type for output
|
984
1087
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
985
1088
|
# rename the output columns
|
986
1089
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
987
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
988
|
-
|
989
|
-
|
1090
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1091
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1092
|
+
)
|
990
1093
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
991
1094
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
992
|
-
# Clusterer returns int64 cluster labels.
|
1095
|
+
# Clusterer returns int64 cluster labels.
|
993
1096
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
994
1097
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
995
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
996
|
-
|
997
|
-
|
998
|
-
|
1098
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1099
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1100
|
+
)
|
1101
|
+
|
999
1102
|
# For regressor, the type of predict is float64
|
1000
|
-
elif self._sklearn_object._estimator_type ==
|
1103
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1001
1104
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1002
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1003
|
-
|
1004
|
-
|
1005
|
-
|
1105
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1106
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1107
|
+
)
|
1108
|
+
|
1006
1109
|
for prob_func in PROB_FUNCTIONS:
|
1007
1110
|
if hasattr(self, prob_func):
|
1008
1111
|
output_cols_prefix: str = f"{prob_func}_"
|
1009
1112
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1010
1113
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1011
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1012
|
-
|
1013
|
-
|
1114
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1115
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1116
|
+
)
|
1014
1117
|
|
1015
1118
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1016
1119
|
items = list(self._model_signature_dict.items())
|
@@ -1023,10 +1126,10 @@ class Lars(BaseTransformer):
|
|
1023
1126
|
"""Returns model signature of current class.
|
1024
1127
|
|
1025
1128
|
Raises:
|
1026
|
-
|
1129
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1027
1130
|
|
1028
1131
|
Returns:
|
1029
|
-
Dict
|
1132
|
+
Dict with each method and its input output signature
|
1030
1133
|
"""
|
1031
1134
|
if self._model_signature_dict is None:
|
1032
1135
|
raise exceptions.SnowflakeMLException(
|
@@ -1034,35 +1137,3 @@ class Lars(BaseTransformer):
|
|
1034
1137
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1035
1138
|
)
|
1036
1139
|
return self._model_signature_dict
|
1037
|
-
|
1038
|
-
def to_sklearn(self) -> Any:
|
1039
|
-
"""Get sklearn.linear_model.Lars object.
|
1040
|
-
"""
|
1041
|
-
if self._sklearn_object is None:
|
1042
|
-
self._sklearn_object = self._create_sklearn_object()
|
1043
|
-
return self._sklearn_object
|
1044
|
-
|
1045
|
-
def to_xgboost(self) -> Any:
|
1046
|
-
raise exceptions.SnowflakeMLException(
|
1047
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1048
|
-
original_exception=AttributeError(
|
1049
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1050
|
-
"to_xgboost()",
|
1051
|
-
"to_sklearn()"
|
1052
|
-
)
|
1053
|
-
),
|
1054
|
-
)
|
1055
|
-
|
1056
|
-
def to_lightgbm(self) -> Any:
|
1057
|
-
raise exceptions.SnowflakeMLException(
|
1058
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1059
|
-
original_exception=AttributeError(
|
1060
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1061
|
-
"to_lightgbm()",
|
1062
|
-
"to_sklearn()"
|
1063
|
-
)
|
1064
|
-
),
|
1065
|
-
)
|
1066
|
-
|
1067
|
-
def _get_dependencies(self) -> List[str]:
|
1068
|
-
return self._deps
|