snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class Lars(BaseTransformer):
71
64
  r"""Least Angle Regression model a
72
65
  For more details on this class, see [sklearn.linear_model.Lars]
@@ -261,12 +254,7 @@ class Lars(BaseTransformer):
261
254
  )
262
255
  return selected_cols
263
256
 
264
- @telemetry.send_api_usage_telemetry(
265
- project=_PROJECT,
266
- subproject=_SUBPROJECT,
267
- custom_tags=dict([("autogen", True)]),
268
- )
269
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Lars":
257
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Lars":
270
258
  """Fit the model using X, y as training data
271
259
  For more details on this function, see [sklearn.linear_model.Lars.fit]
272
260
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html#sklearn.linear_model.Lars.fit)
@@ -293,12 +281,14 @@ class Lars(BaseTransformer):
293
281
 
294
282
  self._snowpark_cols = dataset.select(self.input_cols).columns
295
283
 
296
- # If we are already in a stored procedure, no need to kick off another one.
284
+ # If we are already in a stored procedure, no need to kick off another one.
297
285
  if SNOWML_SPROC_ENV in os.environ:
298
286
  statement_params = telemetry.get_function_usage_statement_params(
299
287
  project=_PROJECT,
300
288
  subproject=_SUBPROJECT,
301
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Lars.__class__.__name__),
289
+ function_name=telemetry.get_statement_params_full_func_name(
290
+ inspect.currentframe(), Lars.__class__.__name__
291
+ ),
302
292
  api_calls=[Session.call],
303
293
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
304
294
  )
@@ -319,27 +309,24 @@ class Lars(BaseTransformer):
319
309
  )
320
310
  self._sklearn_object = model_trainer.train()
321
311
  self._is_fitted = True
322
- self._get_model_signatures(dataset)
312
+ self._generate_model_signatures(dataset)
323
313
  return self
324
314
 
325
315
  def _batch_inference_validate_snowpark(
326
316
  self,
327
317
  dataset: DataFrame,
328
318
  inference_method: str,
329
- ) -> List[str]:
330
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
331
- return the available package that exists in the snowflake anaconda channel
319
+ ) -> None:
320
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
332
321
 
333
322
  Args:
334
323
  dataset: snowpark dataframe
335
324
  inference_method: the inference method such as predict, score...
336
-
325
+
337
326
  Raises:
338
327
  SnowflakeMLException: If the estimator is not fitted, raise error
339
328
  SnowflakeMLException: If the session is None, raise error
340
329
 
341
- Returns:
342
- A list of available package that exists in the snowflake anaconda channel
343
330
  """
344
331
  if not self._is_fitted:
345
332
  raise exceptions.SnowflakeMLException(
@@ -357,9 +344,7 @@ class Lars(BaseTransformer):
357
344
  "Session must not specified for snowpark dataset."
358
345
  ),
359
346
  )
360
- # Validate that key package version in user workspace are supported in snowflake conda channel
361
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
362
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
347
+
363
348
 
364
349
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
365
350
  @telemetry.send_api_usage_telemetry(
@@ -395,7 +380,9 @@ class Lars(BaseTransformer):
395
380
  # when it is classifier, infer the datatype from label columns
396
381
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
397
382
  # Batch inference takes a single expected output column type. Use the first columns type for now.
398
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
383
+ label_cols_signatures = [
384
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
385
+ ]
399
386
  if len(label_cols_signatures) == 0:
400
387
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
401
388
  raise exceptions.SnowflakeMLException(
@@ -403,25 +390,23 @@ class Lars(BaseTransformer):
403
390
  original_exception=ValueError(error_str),
404
391
  )
405
392
 
406
- expected_type_inferred = convert_sp_to_sf_type(
407
- label_cols_signatures[0].as_snowpark_type()
408
- )
393
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
409
394
 
410
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
411
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
395
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
396
+ self._deps = self._get_dependencies()
397
+ assert isinstance(
398
+ dataset._session, Session
399
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
412
400
 
413
401
  transform_kwargs = dict(
414
- session = dataset._session,
415
- dependencies = self._deps,
416
- drop_input_cols = self._drop_input_cols,
417
- expected_output_cols_type = expected_type_inferred,
402
+ session=dataset._session,
403
+ dependencies=self._deps,
404
+ drop_input_cols=self._drop_input_cols,
405
+ expected_output_cols_type=expected_type_inferred,
418
406
  )
419
407
 
420
408
  elif isinstance(dataset, pd.DataFrame):
421
- transform_kwargs = dict(
422
- snowpark_input_cols = self._snowpark_cols,
423
- drop_input_cols = self._drop_input_cols
424
- )
409
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
425
410
 
426
411
  transform_handlers = ModelTransformerBuilder.build(
427
412
  dataset=dataset,
@@ -461,7 +446,7 @@ class Lars(BaseTransformer):
461
446
  Transformed dataset.
462
447
  """
463
448
  super()._check_dataset_type(dataset)
464
- inference_method="transform"
449
+ inference_method = "transform"
465
450
 
466
451
  # This dictionary contains optional kwargs for batch inference. These kwargs
467
452
  # are specific to the type of dataset used.
@@ -491,24 +476,19 @@ class Lars(BaseTransformer):
491
476
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
492
477
  expected_dtype = convert_sp_to_sf_type(output_types[0])
493
478
 
494
- self._deps = self._batch_inference_validate_snowpark(
495
- dataset=dataset,
496
- inference_method=inference_method,
497
- )
479
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
480
+ self._deps = self._get_dependencies()
498
481
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
499
482
 
500
483
  transform_kwargs = dict(
501
- session = dataset._session,
502
- dependencies = self._deps,
503
- drop_input_cols = self._drop_input_cols,
504
- expected_output_cols_type = expected_dtype,
484
+ session=dataset._session,
485
+ dependencies=self._deps,
486
+ drop_input_cols=self._drop_input_cols,
487
+ expected_output_cols_type=expected_dtype,
505
488
  )
506
489
 
507
490
  elif isinstance(dataset, pd.DataFrame):
508
- transform_kwargs = dict(
509
- snowpark_input_cols = self._snowpark_cols,
510
- drop_input_cols = self._drop_input_cols
511
- )
491
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
512
492
 
513
493
  transform_handlers = ModelTransformerBuilder.build(
514
494
  dataset=dataset,
@@ -527,7 +507,11 @@ class Lars(BaseTransformer):
527
507
  return output_df
528
508
 
529
509
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
530
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
510
+ def fit_predict(
511
+ self,
512
+ dataset: Union[DataFrame, pd.DataFrame],
513
+ output_cols_prefix: str = "fit_predict_",
514
+ ) -> Union[DataFrame, pd.DataFrame]:
531
515
  """ Method not supported for this class.
532
516
 
533
517
 
@@ -552,22 +536,104 @@ class Lars(BaseTransformer):
552
536
  )
553
537
  output_result, fitted_estimator = model_trainer.train_fit_predict(
554
538
  drop_input_cols=self._drop_input_cols,
555
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
539
+ expected_output_cols_list=(
540
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
541
+ ),
556
542
  )
557
543
  self._sklearn_object = fitted_estimator
558
544
  self._is_fitted = True
559
545
  return output_result
560
546
 
547
+
548
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
549
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
550
+ """ Method not supported for this class.
551
+
561
552
 
562
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
563
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
564
- """
553
+ Raises:
554
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
555
+
556
+ Args:
557
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
558
+ Snowpark or Pandas DataFrame.
559
+ output_cols_prefix: Prefix for the response columns
565
560
  Returns:
566
561
  Transformed dataset.
567
562
  """
568
- self.fit(dataset)
569
- assert self._sklearn_object is not None
570
- return self._sklearn_object.embedding_
563
+ self._infer_input_output_cols(dataset)
564
+ super()._check_dataset_type(dataset)
565
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
566
+ estimator=self._sklearn_object,
567
+ dataset=dataset,
568
+ input_cols=self.input_cols,
569
+ label_cols=self.label_cols,
570
+ sample_weight_col=self.sample_weight_col,
571
+ autogenerated=self._autogenerated,
572
+ subproject=_SUBPROJECT,
573
+ )
574
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
575
+ drop_input_cols=self._drop_input_cols,
576
+ expected_output_cols_list=self.output_cols,
577
+ )
578
+ self._sklearn_object = fitted_estimator
579
+ self._is_fitted = True
580
+ return output_result
581
+
582
+
583
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
584
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
585
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
586
+ """
587
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
588
+ # The following condition is introduced for kneighbors methods, and not used in other methods
589
+ if output_cols:
590
+ output_cols = [
591
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
592
+ for c in output_cols
593
+ ]
594
+ elif getattr(self._sklearn_object, "classes_", None) is None:
595
+ output_cols = [output_cols_prefix]
596
+ elif self._sklearn_object is not None:
597
+ classes = self._sklearn_object.classes_
598
+ if isinstance(classes, numpy.ndarray):
599
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
600
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
601
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
602
+ output_cols = []
603
+ for i, cl in enumerate(classes):
604
+ # For binary classification, there is only one output column for each class
605
+ # ndarray as the two classes are complementary.
606
+ if len(cl) == 2:
607
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
608
+ else:
609
+ output_cols.extend([
610
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
611
+ ])
612
+ else:
613
+ output_cols = []
614
+
615
+ # Make sure column names are valid snowflake identifiers.
616
+ assert output_cols is not None # Make MyPy happy
617
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
618
+
619
+ return rv
620
+
621
+ def _align_expected_output_names(
622
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
623
+ ) -> List[str]:
624
+ # in case the inferred output column names dimension is different
625
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
626
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
627
+ output_df_columns = list(output_df_pd.columns)
628
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
629
+ if self.sample_weight_col:
630
+ output_df_columns_set -= set(self.sample_weight_col)
631
+ # if the dimension of inferred output column names is correct; use it
632
+ if len(expected_output_cols_list) == len(output_df_columns_set):
633
+ return expected_output_cols_list
634
+ # otherwise, use the sklearn estimator's output
635
+ else:
636
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
571
637
 
572
638
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
573
639
  @telemetry.send_api_usage_telemetry(
@@ -599,24 +665,26 @@ class Lars(BaseTransformer):
599
665
  # are specific to the type of dataset used.
600
666
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
601
667
 
668
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
669
+
602
670
  if isinstance(dataset, DataFrame):
603
- self._deps = self._batch_inference_validate_snowpark(
604
- dataset=dataset,
605
- inference_method=inference_method,
606
- )
607
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
672
+ self._deps = self._get_dependencies()
673
+ assert isinstance(
674
+ dataset._session, Session
675
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
608
676
  transform_kwargs = dict(
609
677
  session=dataset._session,
610
678
  dependencies=self._deps,
611
- drop_input_cols = self._drop_input_cols,
679
+ drop_input_cols=self._drop_input_cols,
612
680
  expected_output_cols_type="float",
613
681
  )
682
+ expected_output_cols = self._align_expected_output_names(
683
+ inference_method, dataset, expected_output_cols, output_cols_prefix
684
+ )
614
685
 
615
686
  elif isinstance(dataset, pd.DataFrame):
616
- transform_kwargs = dict(
617
- snowpark_input_cols = self._snowpark_cols,
618
- drop_input_cols = self._drop_input_cols
619
- )
687
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
620
688
 
621
689
  transform_handlers = ModelTransformerBuilder.build(
622
690
  dataset=dataset,
@@ -628,7 +696,7 @@ class Lars(BaseTransformer):
628
696
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
629
697
  inference_method=inference_method,
630
698
  input_cols=self.input_cols,
631
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
699
+ expected_output_cols=expected_output_cols,
632
700
  **transform_kwargs
633
701
  )
634
702
  return output_df
@@ -658,29 +726,30 @@ class Lars(BaseTransformer):
658
726
  Output dataset with log probability of the sample for each class in the model.
659
727
  """
660
728
  super()._check_dataset_type(dataset)
661
- inference_method="predict_log_proba"
729
+ inference_method = "predict_log_proba"
730
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
662
731
 
663
732
  # This dictionary contains optional kwargs for batch inference. These kwargs
664
733
  # are specific to the type of dataset used.
665
734
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
666
735
 
667
736
  if isinstance(dataset, DataFrame):
668
- self._deps = self._batch_inference_validate_snowpark(
669
- dataset=dataset,
670
- inference_method=inference_method,
671
- )
672
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
737
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
738
+ self._deps = self._get_dependencies()
739
+ assert isinstance(
740
+ dataset._session, Session
741
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
673
742
  transform_kwargs = dict(
674
743
  session=dataset._session,
675
744
  dependencies=self._deps,
676
- drop_input_cols = self._drop_input_cols,
745
+ drop_input_cols=self._drop_input_cols,
677
746
  expected_output_cols_type="float",
678
747
  )
748
+ expected_output_cols = self._align_expected_output_names(
749
+ inference_method, dataset, expected_output_cols, output_cols_prefix
750
+ )
679
751
  elif isinstance(dataset, pd.DataFrame):
680
- transform_kwargs = dict(
681
- snowpark_input_cols = self._snowpark_cols,
682
- drop_input_cols = self._drop_input_cols
683
- )
752
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
684
753
 
685
754
  transform_handlers = ModelTransformerBuilder.build(
686
755
  dataset=dataset,
@@ -693,7 +762,7 @@ class Lars(BaseTransformer):
693
762
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
694
763
  inference_method=inference_method,
695
764
  input_cols=self.input_cols,
696
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
765
+ expected_output_cols=expected_output_cols,
697
766
  **transform_kwargs
698
767
  )
699
768
  return output_df
@@ -719,30 +788,32 @@ class Lars(BaseTransformer):
719
788
  Output dataset with results of the decision function for the samples in input dataset.
720
789
  """
721
790
  super()._check_dataset_type(dataset)
722
- inference_method="decision_function"
791
+ inference_method = "decision_function"
723
792
 
724
793
  # This dictionary contains optional kwargs for batch inference. These kwargs
725
794
  # are specific to the type of dataset used.
726
795
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
727
796
 
797
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
798
+
728
799
  if isinstance(dataset, DataFrame):
729
- self._deps = self._batch_inference_validate_snowpark(
730
- dataset=dataset,
731
- inference_method=inference_method,
732
- )
733
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
800
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
801
+ self._deps = self._get_dependencies()
802
+ assert isinstance(
803
+ dataset._session, Session
804
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
734
805
  transform_kwargs = dict(
735
806
  session=dataset._session,
736
807
  dependencies=self._deps,
737
- drop_input_cols = self._drop_input_cols,
808
+ drop_input_cols=self._drop_input_cols,
738
809
  expected_output_cols_type="float",
739
810
  )
811
+ expected_output_cols = self._align_expected_output_names(
812
+ inference_method, dataset, expected_output_cols, output_cols_prefix
813
+ )
740
814
 
741
815
  elif isinstance(dataset, pd.DataFrame):
742
- transform_kwargs = dict(
743
- snowpark_input_cols = self._snowpark_cols,
744
- drop_input_cols = self._drop_input_cols
745
- )
816
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
746
817
 
747
818
  transform_handlers = ModelTransformerBuilder.build(
748
819
  dataset=dataset,
@@ -755,7 +826,7 @@ class Lars(BaseTransformer):
755
826
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
756
827
  inference_method=inference_method,
757
828
  input_cols=self.input_cols,
758
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
829
+ expected_output_cols=expected_output_cols,
759
830
  **transform_kwargs
760
831
  )
761
832
  return output_df
@@ -784,17 +855,17 @@ class Lars(BaseTransformer):
784
855
  Output dataset with probability of the sample for each class in the model.
785
856
  """
786
857
  super()._check_dataset_type(dataset)
787
- inference_method="score_samples"
858
+ inference_method = "score_samples"
788
859
 
789
860
  # This dictionary contains optional kwargs for batch inference. These kwargs
790
861
  # are specific to the type of dataset used.
791
862
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
792
863
 
864
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
865
+
793
866
  if isinstance(dataset, DataFrame):
794
- self._deps = self._batch_inference_validate_snowpark(
795
- dataset=dataset,
796
- inference_method=inference_method,
797
- )
867
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
868
+ self._deps = self._get_dependencies()
798
869
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
799
870
  transform_kwargs = dict(
800
871
  session=dataset._session,
@@ -802,6 +873,9 @@ class Lars(BaseTransformer):
802
873
  drop_input_cols = self._drop_input_cols,
803
874
  expected_output_cols_type="float",
804
875
  )
876
+ expected_output_cols = self._align_expected_output_names(
877
+ inference_method, dataset, expected_output_cols, output_cols_prefix
878
+ )
805
879
 
806
880
  elif isinstance(dataset, pd.DataFrame):
807
881
  transform_kwargs = dict(
@@ -820,7 +894,7 @@ class Lars(BaseTransformer):
820
894
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
821
895
  inference_method=inference_method,
822
896
  input_cols=self.input_cols,
823
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
897
+ expected_output_cols=expected_output_cols,
824
898
  **transform_kwargs
825
899
  )
826
900
  return output_df
@@ -855,17 +929,15 @@ class Lars(BaseTransformer):
855
929
  transform_kwargs: ScoreKwargsTypedDict = dict()
856
930
 
857
931
  if isinstance(dataset, DataFrame):
858
- self._deps = self._batch_inference_validate_snowpark(
859
- dataset=dataset,
860
- inference_method="score",
861
- )
932
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
933
+ self._deps = self._get_dependencies()
862
934
  selected_cols = self._get_active_columns()
863
935
  if len(selected_cols) > 0:
864
936
  dataset = dataset.select(selected_cols)
865
937
  assert isinstance(dataset._session, Session) # keep mypy happy
866
938
  transform_kwargs = dict(
867
939
  session=dataset._session,
868
- dependencies=["snowflake-snowpark-python"] + self._deps,
940
+ dependencies=self._deps,
869
941
  score_sproc_imports=['sklearn'],
870
942
  )
871
943
  elif isinstance(dataset, pd.DataFrame):
@@ -930,11 +1002,8 @@ class Lars(BaseTransformer):
930
1002
 
931
1003
  if isinstance(dataset, DataFrame):
932
1004
 
933
- self._deps = self._batch_inference_validate_snowpark(
934
- dataset=dataset,
935
- inference_method=inference_method,
936
-
937
- )
1005
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1006
+ self._deps = self._get_dependencies()
938
1007
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
939
1008
  transform_kwargs = dict(
940
1009
  session = dataset._session,
@@ -967,50 +1036,84 @@ class Lars(BaseTransformer):
967
1036
  )
968
1037
  return output_df
969
1038
 
1039
+
1040
+
1041
+ def to_sklearn(self) -> Any:
1042
+ """Get sklearn.linear_model.Lars object.
1043
+ """
1044
+ if self._sklearn_object is None:
1045
+ self._sklearn_object = self._create_sklearn_object()
1046
+ return self._sklearn_object
1047
+
1048
+ def to_xgboost(self) -> Any:
1049
+ raise exceptions.SnowflakeMLException(
1050
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1051
+ original_exception=AttributeError(
1052
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
+ "to_xgboost()",
1054
+ "to_sklearn()"
1055
+ )
1056
+ ),
1057
+ )
1058
+
1059
+ def to_lightgbm(self) -> Any:
1060
+ raise exceptions.SnowflakeMLException(
1061
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1062
+ original_exception=AttributeError(
1063
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1064
+ "to_lightgbm()",
1065
+ "to_sklearn()"
1066
+ )
1067
+ ),
1068
+ )
1069
+
1070
+ def _get_dependencies(self) -> List[str]:
1071
+ return self._deps
1072
+
970
1073
 
971
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1074
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
972
1075
  self._model_signature_dict = dict()
973
1076
 
974
1077
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
975
1078
 
976
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1079
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
977
1080
  outputs: List[BaseFeatureSpec] = []
978
1081
  if hasattr(self, "predict"):
979
1082
  # keep mypy happy
980
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1083
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
981
1084
  # For classifier, the type of predict is the same as the type of label
982
- if self._sklearn_object._estimator_type == 'classifier':
983
- # label columns is the desired type for output
1085
+ if self._sklearn_object._estimator_type == "classifier":
1086
+ # label columns is the desired type for output
984
1087
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
985
1088
  # rename the output columns
986
1089
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
987
- self._model_signature_dict["predict"] = ModelSignature(inputs,
988
- ([] if self._drop_input_cols else inputs)
989
- + outputs)
1090
+ self._model_signature_dict["predict"] = ModelSignature(
1091
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1092
+ )
990
1093
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
991
1094
  # For outlier models, returns -1 for outliers and 1 for inliers.
992
- # Clusterer returns int64 cluster labels.
1095
+ # Clusterer returns int64 cluster labels.
993
1096
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
994
1097
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
995
- self._model_signature_dict["predict"] = ModelSignature(inputs,
996
- ([] if self._drop_input_cols else inputs)
997
- + outputs)
998
-
1098
+ self._model_signature_dict["predict"] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
1101
+
999
1102
  # For regressor, the type of predict is float64
1000
- elif self._sklearn_object._estimator_type == 'regressor':
1103
+ elif self._sklearn_object._estimator_type == "regressor":
1001
1104
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1005
-
1105
+ self._model_signature_dict["predict"] = ModelSignature(
1106
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1107
+ )
1108
+
1006
1109
  for prob_func in PROB_FUNCTIONS:
1007
1110
  if hasattr(self, prob_func):
1008
1111
  output_cols_prefix: str = f"{prob_func}_"
1009
1112
  output_column_names = self._get_output_column_names(output_cols_prefix)
1010
1113
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1011
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1012
- ([] if self._drop_input_cols else inputs)
1013
- + outputs)
1114
+ self._model_signature_dict[prob_func] = ModelSignature(
1115
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1116
+ )
1014
1117
 
1015
1118
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1016
1119
  items = list(self._model_signature_dict.items())
@@ -1023,10 +1126,10 @@ class Lars(BaseTransformer):
1023
1126
  """Returns model signature of current class.
1024
1127
 
1025
1128
  Raises:
1026
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1129
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1027
1130
 
1028
1131
  Returns:
1029
- Dict[str, ModelSignature]: each method and its input output signature
1132
+ Dict with each method and its input output signature
1030
1133
  """
1031
1134
  if self._model_signature_dict is None:
1032
1135
  raise exceptions.SnowflakeMLException(
@@ -1034,35 +1137,3 @@ class Lars(BaseTransformer):
1034
1137
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1035
1138
  )
1036
1139
  return self._model_signature_dict
1037
-
1038
- def to_sklearn(self) -> Any:
1039
- """Get sklearn.linear_model.Lars object.
1040
- """
1041
- if self._sklearn_object is None:
1042
- self._sklearn_object = self._create_sklearn_object()
1043
- return self._sklearn_object
1044
-
1045
- def to_xgboost(self) -> Any:
1046
- raise exceptions.SnowflakeMLException(
1047
- error_code=error_codes.METHOD_NOT_ALLOWED,
1048
- original_exception=AttributeError(
1049
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
- "to_xgboost()",
1051
- "to_sklearn()"
1052
- )
1053
- ),
1054
- )
1055
-
1056
- def to_lightgbm(self) -> Any:
1057
- raise exceptions.SnowflakeMLException(
1058
- error_code=error_codes.METHOD_NOT_ALLOWED,
1059
- original_exception=AttributeError(
1060
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
- "to_lightgbm()",
1062
- "to_sklearn()"
1063
- )
1064
- ),
1065
- )
1066
-
1067
- def _get_dependencies(self) -> List[str]:
1068
- return self._deps