snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return True and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class Isomap(BaseTransformer):
71
64
  r"""Isomap Embedding
72
65
  For more details on this class, see [sklearn.manifold.Isomap]
@@ -278,12 +271,7 @@ class Isomap(BaseTransformer):
278
271
  )
279
272
  return selected_cols
280
273
 
281
- @telemetry.send_api_usage_telemetry(
282
- project=_PROJECT,
283
- subproject=_SUBPROJECT,
284
- custom_tags=dict([("autogen", True)]),
285
- )
286
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Isomap":
274
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Isomap":
287
275
  """Compute the embedding vectors for data X
288
276
  For more details on this function, see [sklearn.manifold.Isomap.fit]
289
277
  (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap.fit)
@@ -310,12 +298,14 @@ class Isomap(BaseTransformer):
310
298
 
311
299
  self._snowpark_cols = dataset.select(self.input_cols).columns
312
300
 
313
- # If we are already in a stored procedure, no need to kick off another one.
301
+ # If we are already in a stored procedure, no need to kick off another one.
314
302
  if SNOWML_SPROC_ENV in os.environ:
315
303
  statement_params = telemetry.get_function_usage_statement_params(
316
304
  project=_PROJECT,
317
305
  subproject=_SUBPROJECT,
318
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Isomap.__class__.__name__),
306
+ function_name=telemetry.get_statement_params_full_func_name(
307
+ inspect.currentframe(), Isomap.__class__.__name__
308
+ ),
319
309
  api_calls=[Session.call],
320
310
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
321
311
  )
@@ -336,27 +326,24 @@ class Isomap(BaseTransformer):
336
326
  )
337
327
  self._sklearn_object = model_trainer.train()
338
328
  self._is_fitted = True
339
- self._get_model_signatures(dataset)
329
+ self._generate_model_signatures(dataset)
340
330
  return self
341
331
 
342
332
  def _batch_inference_validate_snowpark(
343
333
  self,
344
334
  dataset: DataFrame,
345
335
  inference_method: str,
346
- ) -> List[str]:
347
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
348
- return the available package that exists in the snowflake anaconda channel
336
+ ) -> None:
337
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
349
338
 
350
339
  Args:
351
340
  dataset: snowpark dataframe
352
341
  inference_method: the inference method such as predict, score...
353
-
342
+
354
343
  Raises:
355
344
  SnowflakeMLException: If the estimator is not fitted, raise error
356
345
  SnowflakeMLException: If the session is None, raise error
357
346
 
358
- Returns:
359
- A list of available package that exists in the snowflake anaconda channel
360
347
  """
361
348
  if not self._is_fitted:
362
349
  raise exceptions.SnowflakeMLException(
@@ -374,9 +361,7 @@ class Isomap(BaseTransformer):
374
361
  "Session must not specified for snowpark dataset."
375
362
  ),
376
363
  )
377
- # Validate that key package version in user workspace are supported in snowflake conda channel
378
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
379
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
364
+
380
365
 
381
366
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
382
367
  @telemetry.send_api_usage_telemetry(
@@ -410,7 +395,9 @@ class Isomap(BaseTransformer):
410
395
  # when it is classifier, infer the datatype from label columns
411
396
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
412
397
  # Batch inference takes a single expected output column type. Use the first columns type for now.
413
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
398
+ label_cols_signatures = [
399
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
400
+ ]
414
401
  if len(label_cols_signatures) == 0:
415
402
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
416
403
  raise exceptions.SnowflakeMLException(
@@ -418,25 +405,23 @@ class Isomap(BaseTransformer):
418
405
  original_exception=ValueError(error_str),
419
406
  )
420
407
 
421
- expected_type_inferred = convert_sp_to_sf_type(
422
- label_cols_signatures[0].as_snowpark_type()
423
- )
408
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
424
409
 
425
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
426
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
410
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
411
+ self._deps = self._get_dependencies()
412
+ assert isinstance(
413
+ dataset._session, Session
414
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
427
415
 
428
416
  transform_kwargs = dict(
429
- session = dataset._session,
430
- dependencies = self._deps,
431
- drop_input_cols = self._drop_input_cols,
432
- expected_output_cols_type = expected_type_inferred,
417
+ session=dataset._session,
418
+ dependencies=self._deps,
419
+ drop_input_cols=self._drop_input_cols,
420
+ expected_output_cols_type=expected_type_inferred,
433
421
  )
434
422
 
435
423
  elif isinstance(dataset, pd.DataFrame):
436
- transform_kwargs = dict(
437
- snowpark_input_cols = self._snowpark_cols,
438
- drop_input_cols = self._drop_input_cols
439
- )
424
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
440
425
 
441
426
  transform_handlers = ModelTransformerBuilder.build(
442
427
  dataset=dataset,
@@ -478,7 +463,7 @@ class Isomap(BaseTransformer):
478
463
  Transformed dataset.
479
464
  """
480
465
  super()._check_dataset_type(dataset)
481
- inference_method="transform"
466
+ inference_method = "transform"
482
467
 
483
468
  # This dictionary contains optional kwargs for batch inference. These kwargs
484
469
  # are specific to the type of dataset used.
@@ -508,24 +493,19 @@ class Isomap(BaseTransformer):
508
493
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
509
494
  expected_dtype = convert_sp_to_sf_type(output_types[0])
510
495
 
511
- self._deps = self._batch_inference_validate_snowpark(
512
- dataset=dataset,
513
- inference_method=inference_method,
514
- )
496
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
497
+ self._deps = self._get_dependencies()
515
498
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
516
499
 
517
500
  transform_kwargs = dict(
518
- session = dataset._session,
519
- dependencies = self._deps,
520
- drop_input_cols = self._drop_input_cols,
521
- expected_output_cols_type = expected_dtype,
501
+ session=dataset._session,
502
+ dependencies=self._deps,
503
+ drop_input_cols=self._drop_input_cols,
504
+ expected_output_cols_type=expected_dtype,
522
505
  )
523
506
 
524
507
  elif isinstance(dataset, pd.DataFrame):
525
- transform_kwargs = dict(
526
- snowpark_input_cols = self._snowpark_cols,
527
- drop_input_cols = self._drop_input_cols
528
- )
508
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
529
509
 
530
510
  transform_handlers = ModelTransformerBuilder.build(
531
511
  dataset=dataset,
@@ -544,7 +524,11 @@ class Isomap(BaseTransformer):
544
524
  return output_df
545
525
 
546
526
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
547
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
527
+ def fit_predict(
528
+ self,
529
+ dataset: Union[DataFrame, pd.DataFrame],
530
+ output_cols_prefix: str = "fit_predict_",
531
+ ) -> Union[DataFrame, pd.DataFrame]:
548
532
  """ Method not supported for this class.
549
533
 
550
534
 
@@ -569,22 +553,106 @@ class Isomap(BaseTransformer):
569
553
  )
570
554
  output_result, fitted_estimator = model_trainer.train_fit_predict(
571
555
  drop_input_cols=self._drop_input_cols,
572
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
556
+ expected_output_cols_list=(
557
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
558
+ ),
573
559
  )
574
560
  self._sklearn_object = fitted_estimator
575
561
  self._is_fitted = True
576
562
  return output_result
577
563
 
564
+
565
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
566
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
567
+ """ Fit the model from data in X and transform X
568
+ For more details on this function, see [sklearn.manifold.Isomap.fit_transform]
569
+ (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.Isomap.html#sklearn.manifold.Isomap.fit_transform)
570
+
571
+
572
+ Raises:
573
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
578
574
 
579
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
580
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
581
- """
575
+ Args:
576
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
577
+ Snowpark or Pandas DataFrame.
578
+ output_cols_prefix: Prefix for the response columns
582
579
  Returns:
583
580
  Transformed dataset.
584
581
  """
585
- self.fit(dataset)
586
- assert self._sklearn_object is not None
587
- return self._sklearn_object.embedding_
582
+ self._infer_input_output_cols(dataset)
583
+ super()._check_dataset_type(dataset)
584
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
585
+ estimator=self._sklearn_object,
586
+ dataset=dataset,
587
+ input_cols=self.input_cols,
588
+ label_cols=self.label_cols,
589
+ sample_weight_col=self.sample_weight_col,
590
+ autogenerated=self._autogenerated,
591
+ subproject=_SUBPROJECT,
592
+ )
593
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
594
+ drop_input_cols=self._drop_input_cols,
595
+ expected_output_cols_list=self.output_cols,
596
+ )
597
+ self._sklearn_object = fitted_estimator
598
+ self._is_fitted = True
599
+ return output_result
600
+
601
+
602
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
603
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
604
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
605
+ """
606
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
607
+ # The following condition is introduced for kneighbors methods, and not used in other methods
608
+ if output_cols:
609
+ output_cols = [
610
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
611
+ for c in output_cols
612
+ ]
613
+ elif getattr(self._sklearn_object, "classes_", None) is None:
614
+ output_cols = [output_cols_prefix]
615
+ elif self._sklearn_object is not None:
616
+ classes = self._sklearn_object.classes_
617
+ if isinstance(classes, numpy.ndarray):
618
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
619
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
620
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
621
+ output_cols = []
622
+ for i, cl in enumerate(classes):
623
+ # For binary classification, there is only one output column for each class
624
+ # ndarray as the two classes are complementary.
625
+ if len(cl) == 2:
626
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
627
+ else:
628
+ output_cols.extend([
629
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
630
+ ])
631
+ else:
632
+ output_cols = []
633
+
634
+ # Make sure column names are valid snowflake identifiers.
635
+ assert output_cols is not None # Make MyPy happy
636
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
637
+
638
+ return rv
639
+
640
+ def _align_expected_output_names(
641
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
642
+ ) -> List[str]:
643
+ # in case the inferred output column names dimension is different
644
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
645
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
646
+ output_df_columns = list(output_df_pd.columns)
647
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
648
+ if self.sample_weight_col:
649
+ output_df_columns_set -= set(self.sample_weight_col)
650
+ # if the dimension of inferred output column names is correct; use it
651
+ if len(expected_output_cols_list) == len(output_df_columns_set):
652
+ return expected_output_cols_list
653
+ # otherwise, use the sklearn estimator's output
654
+ else:
655
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
588
656
 
589
657
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
590
658
  @telemetry.send_api_usage_telemetry(
@@ -616,24 +684,26 @@ class Isomap(BaseTransformer):
616
684
  # are specific to the type of dataset used.
617
685
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
618
686
 
687
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
688
+
619
689
  if isinstance(dataset, DataFrame):
620
- self._deps = self._batch_inference_validate_snowpark(
621
- dataset=dataset,
622
- inference_method=inference_method,
623
- )
624
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
690
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
691
+ self._deps = self._get_dependencies()
692
+ assert isinstance(
693
+ dataset._session, Session
694
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
625
695
  transform_kwargs = dict(
626
696
  session=dataset._session,
627
697
  dependencies=self._deps,
628
- drop_input_cols = self._drop_input_cols,
698
+ drop_input_cols=self._drop_input_cols,
629
699
  expected_output_cols_type="float",
630
700
  )
701
+ expected_output_cols = self._align_expected_output_names(
702
+ inference_method, dataset, expected_output_cols, output_cols_prefix
703
+ )
631
704
 
632
705
  elif isinstance(dataset, pd.DataFrame):
633
- transform_kwargs = dict(
634
- snowpark_input_cols = self._snowpark_cols,
635
- drop_input_cols = self._drop_input_cols
636
- )
706
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
637
707
 
638
708
  transform_handlers = ModelTransformerBuilder.build(
639
709
  dataset=dataset,
@@ -645,7 +715,7 @@ class Isomap(BaseTransformer):
645
715
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
646
716
  inference_method=inference_method,
647
717
  input_cols=self.input_cols,
648
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
718
+ expected_output_cols=expected_output_cols,
649
719
  **transform_kwargs
650
720
  )
651
721
  return output_df
@@ -675,29 +745,30 @@ class Isomap(BaseTransformer):
675
745
  Output dataset with log probability of the sample for each class in the model.
676
746
  """
677
747
  super()._check_dataset_type(dataset)
678
- inference_method="predict_log_proba"
748
+ inference_method = "predict_log_proba"
749
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
679
750
 
680
751
  # This dictionary contains optional kwargs for batch inference. These kwargs
681
752
  # are specific to the type of dataset used.
682
753
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
683
754
 
684
755
  if isinstance(dataset, DataFrame):
685
- self._deps = self._batch_inference_validate_snowpark(
686
- dataset=dataset,
687
- inference_method=inference_method,
688
- )
689
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
756
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
757
+ self._deps = self._get_dependencies()
758
+ assert isinstance(
759
+ dataset._session, Session
760
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
690
761
  transform_kwargs = dict(
691
762
  session=dataset._session,
692
763
  dependencies=self._deps,
693
- drop_input_cols = self._drop_input_cols,
764
+ drop_input_cols=self._drop_input_cols,
694
765
  expected_output_cols_type="float",
695
766
  )
767
+ expected_output_cols = self._align_expected_output_names(
768
+ inference_method, dataset, expected_output_cols, output_cols_prefix
769
+ )
696
770
  elif isinstance(dataset, pd.DataFrame):
697
- transform_kwargs = dict(
698
- snowpark_input_cols = self._snowpark_cols,
699
- drop_input_cols = self._drop_input_cols
700
- )
771
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
701
772
 
702
773
  transform_handlers = ModelTransformerBuilder.build(
703
774
  dataset=dataset,
@@ -710,7 +781,7 @@ class Isomap(BaseTransformer):
710
781
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
711
782
  inference_method=inference_method,
712
783
  input_cols=self.input_cols,
713
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
784
+ expected_output_cols=expected_output_cols,
714
785
  **transform_kwargs
715
786
  )
716
787
  return output_df
@@ -736,30 +807,32 @@ class Isomap(BaseTransformer):
736
807
  Output dataset with results of the decision function for the samples in input dataset.
737
808
  """
738
809
  super()._check_dataset_type(dataset)
739
- inference_method="decision_function"
810
+ inference_method = "decision_function"
740
811
 
741
812
  # This dictionary contains optional kwargs for batch inference. These kwargs
742
813
  # are specific to the type of dataset used.
743
814
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
744
815
 
816
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
817
+
745
818
  if isinstance(dataset, DataFrame):
746
- self._deps = self._batch_inference_validate_snowpark(
747
- dataset=dataset,
748
- inference_method=inference_method,
749
- )
750
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
819
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
820
+ self._deps = self._get_dependencies()
821
+ assert isinstance(
822
+ dataset._session, Session
823
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
824
  transform_kwargs = dict(
752
825
  session=dataset._session,
753
826
  dependencies=self._deps,
754
- drop_input_cols = self._drop_input_cols,
827
+ drop_input_cols=self._drop_input_cols,
755
828
  expected_output_cols_type="float",
756
829
  )
830
+ expected_output_cols = self._align_expected_output_names(
831
+ inference_method, dataset, expected_output_cols, output_cols_prefix
832
+ )
757
833
 
758
834
  elif isinstance(dataset, pd.DataFrame):
759
- transform_kwargs = dict(
760
- snowpark_input_cols = self._snowpark_cols,
761
- drop_input_cols = self._drop_input_cols
762
- )
835
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
763
836
 
764
837
  transform_handlers = ModelTransformerBuilder.build(
765
838
  dataset=dataset,
@@ -772,7 +845,7 @@ class Isomap(BaseTransformer):
772
845
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
773
846
  inference_method=inference_method,
774
847
  input_cols=self.input_cols,
775
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
848
+ expected_output_cols=expected_output_cols,
776
849
  **transform_kwargs
777
850
  )
778
851
  return output_df
@@ -801,17 +874,17 @@ class Isomap(BaseTransformer):
801
874
  Output dataset with probability of the sample for each class in the model.
802
875
  """
803
876
  super()._check_dataset_type(dataset)
804
- inference_method="score_samples"
877
+ inference_method = "score_samples"
805
878
 
806
879
  # This dictionary contains optional kwargs for batch inference. These kwargs
807
880
  # are specific to the type of dataset used.
808
881
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
809
882
 
883
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
884
+
810
885
  if isinstance(dataset, DataFrame):
811
- self._deps = self._batch_inference_validate_snowpark(
812
- dataset=dataset,
813
- inference_method=inference_method,
814
- )
886
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
887
+ self._deps = self._get_dependencies()
815
888
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
816
889
  transform_kwargs = dict(
817
890
  session=dataset._session,
@@ -819,6 +892,9 @@ class Isomap(BaseTransformer):
819
892
  drop_input_cols = self._drop_input_cols,
820
893
  expected_output_cols_type="float",
821
894
  )
895
+ expected_output_cols = self._align_expected_output_names(
896
+ inference_method, dataset, expected_output_cols, output_cols_prefix
897
+ )
822
898
 
823
899
  elif isinstance(dataset, pd.DataFrame):
824
900
  transform_kwargs = dict(
@@ -837,7 +913,7 @@ class Isomap(BaseTransformer):
837
913
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
838
914
  inference_method=inference_method,
839
915
  input_cols=self.input_cols,
840
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
916
+ expected_output_cols=expected_output_cols,
841
917
  **transform_kwargs
842
918
  )
843
919
  return output_df
@@ -870,17 +946,15 @@ class Isomap(BaseTransformer):
870
946
  transform_kwargs: ScoreKwargsTypedDict = dict()
871
947
 
872
948
  if isinstance(dataset, DataFrame):
873
- self._deps = self._batch_inference_validate_snowpark(
874
- dataset=dataset,
875
- inference_method="score",
876
- )
949
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
950
+ self._deps = self._get_dependencies()
877
951
  selected_cols = self._get_active_columns()
878
952
  if len(selected_cols) > 0:
879
953
  dataset = dataset.select(selected_cols)
880
954
  assert isinstance(dataset._session, Session) # keep mypy happy
881
955
  transform_kwargs = dict(
882
956
  session=dataset._session,
883
- dependencies=["snowflake-snowpark-python"] + self._deps,
957
+ dependencies=self._deps,
884
958
  score_sproc_imports=['sklearn'],
885
959
  )
886
960
  elif isinstance(dataset, pd.DataFrame):
@@ -945,11 +1019,8 @@ class Isomap(BaseTransformer):
945
1019
 
946
1020
  if isinstance(dataset, DataFrame):
947
1021
 
948
- self._deps = self._batch_inference_validate_snowpark(
949
- dataset=dataset,
950
- inference_method=inference_method,
951
-
952
- )
1022
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1023
+ self._deps = self._get_dependencies()
953
1024
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
954
1025
  transform_kwargs = dict(
955
1026
  session = dataset._session,
@@ -982,50 +1053,84 @@ class Isomap(BaseTransformer):
982
1053
  )
983
1054
  return output_df
984
1055
 
1056
+
1057
+
1058
+ def to_sklearn(self) -> Any:
1059
+ """Get sklearn.manifold.Isomap object.
1060
+ """
1061
+ if self._sklearn_object is None:
1062
+ self._sklearn_object = self._create_sklearn_object()
1063
+ return self._sklearn_object
1064
+
1065
+ def to_xgboost(self) -> Any:
1066
+ raise exceptions.SnowflakeMLException(
1067
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1068
+ original_exception=AttributeError(
1069
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1070
+ "to_xgboost()",
1071
+ "to_sklearn()"
1072
+ )
1073
+ ),
1074
+ )
985
1075
 
986
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1076
+ def to_lightgbm(self) -> Any:
1077
+ raise exceptions.SnowflakeMLException(
1078
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1079
+ original_exception=AttributeError(
1080
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1081
+ "to_lightgbm()",
1082
+ "to_sklearn()"
1083
+ )
1084
+ ),
1085
+ )
1086
+
1087
+ def _get_dependencies(self) -> List[str]:
1088
+ return self._deps
1089
+
1090
+
1091
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
987
1092
  self._model_signature_dict = dict()
988
1093
 
989
1094
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
990
1095
 
991
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1096
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
992
1097
  outputs: List[BaseFeatureSpec] = []
993
1098
  if hasattr(self, "predict"):
994
1099
  # keep mypy happy
995
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1100
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
996
1101
  # For classifier, the type of predict is the same as the type of label
997
- if self._sklearn_object._estimator_type == 'classifier':
998
- # label columns is the desired type for output
1102
+ if self._sklearn_object._estimator_type == "classifier":
1103
+ # label columns is the desired type for output
999
1104
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1000
1105
  # rename the output columns
1001
1106
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1107
+ self._model_signature_dict["predict"] = ModelSignature(
1108
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1109
+ )
1005
1110
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1006
1111
  # For outlier models, returns -1 for outliers and 1 for inliers.
1007
- # Clusterer returns int64 cluster labels.
1112
+ # Clusterer returns int64 cluster labels.
1008
1113
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1009
1114
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1010
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1011
- ([] if self._drop_input_cols else inputs)
1012
- + outputs)
1013
-
1115
+ self._model_signature_dict["predict"] = ModelSignature(
1116
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1117
+ )
1118
+
1014
1119
  # For regressor, the type of predict is float64
1015
- elif self._sklearn_object._estimator_type == 'regressor':
1120
+ elif self._sklearn_object._estimator_type == "regressor":
1016
1121
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1017
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1018
- ([] if self._drop_input_cols else inputs)
1019
- + outputs)
1020
-
1122
+ self._model_signature_dict["predict"] = ModelSignature(
1123
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1124
+ )
1125
+
1021
1126
  for prob_func in PROB_FUNCTIONS:
1022
1127
  if hasattr(self, prob_func):
1023
1128
  output_cols_prefix: str = f"{prob_func}_"
1024
1129
  output_column_names = self._get_output_column_names(output_cols_prefix)
1025
1130
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1026
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1027
- ([] if self._drop_input_cols else inputs)
1028
- + outputs)
1131
+ self._model_signature_dict[prob_func] = ModelSignature(
1132
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1133
+ )
1029
1134
 
1030
1135
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1031
1136
  items = list(self._model_signature_dict.items())
@@ -1038,10 +1143,10 @@ class Isomap(BaseTransformer):
1038
1143
  """Returns model signature of current class.
1039
1144
 
1040
1145
  Raises:
1041
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1146
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1042
1147
 
1043
1148
  Returns:
1044
- Dict[str, ModelSignature]: each method and its input output signature
1149
+ Dict with each method and its input output signature
1045
1150
  """
1046
1151
  if self._model_signature_dict is None:
1047
1152
  raise exceptions.SnowflakeMLException(
@@ -1049,35 +1154,3 @@ class Isomap(BaseTransformer):
1049
1154
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1050
1155
  )
1051
1156
  return self._model_signature_dict
1052
-
1053
- def to_sklearn(self) -> Any:
1054
- """Get sklearn.manifold.Isomap object.
1055
- """
1056
- if self._sklearn_object is None:
1057
- self._sklearn_object = self._create_sklearn_object()
1058
- return self._sklearn_object
1059
-
1060
- def to_xgboost(self) -> Any:
1061
- raise exceptions.SnowflakeMLException(
1062
- error_code=error_codes.METHOD_NOT_ALLOWED,
1063
- original_exception=AttributeError(
1064
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
- "to_xgboost()",
1066
- "to_sklearn()"
1067
- )
1068
- ),
1069
- )
1070
-
1071
- def to_lightgbm(self) -> Any:
1072
- raise exceptions.SnowflakeMLException(
1073
- error_code=error_codes.METHOD_NOT_ALLOWED,
1074
- original_exception=AttributeError(
1075
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1076
- "to_lightgbm()",
1077
- "to_sklearn()"
1078
- )
1079
- ),
1080
- )
1081
-
1082
- def _get_dependencies(self) -> List[str]:
1083
- return self._deps