snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class HistGradientBoostingClassifier(BaseTransformer):
|
71
64
|
r"""Histogram-based Gradient Boosting Classification Tree
|
72
65
|
For more details on this class, see [sklearn.ensemble.HistGradientBoostingClassifier]
|
@@ -372,12 +365,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
372
365
|
)
|
373
366
|
return selected_cols
|
374
367
|
|
375
|
-
|
376
|
-
project=_PROJECT,
|
377
|
-
subproject=_SUBPROJECT,
|
378
|
-
custom_tags=dict([("autogen", True)]),
|
379
|
-
)
|
380
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingClassifier":
|
368
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingClassifier":
|
381
369
|
"""Fit the gradient boosting model
|
382
370
|
For more details on this function, see [sklearn.ensemble.HistGradientBoostingClassifier.fit]
|
383
371
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html#sklearn.ensemble.HistGradientBoostingClassifier.fit)
|
@@ -404,12 +392,14 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
404
392
|
|
405
393
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
406
394
|
|
407
|
-
|
395
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
408
396
|
if SNOWML_SPROC_ENV in os.environ:
|
409
397
|
statement_params = telemetry.get_function_usage_statement_params(
|
410
398
|
project=_PROJECT,
|
411
399
|
subproject=_SUBPROJECT,
|
412
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
400
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
401
|
+
inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__
|
402
|
+
),
|
413
403
|
api_calls=[Session.call],
|
414
404
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
415
405
|
)
|
@@ -430,27 +420,24 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
430
420
|
)
|
431
421
|
self._sklearn_object = model_trainer.train()
|
432
422
|
self._is_fitted = True
|
433
|
-
self.
|
423
|
+
self._generate_model_signatures(dataset)
|
434
424
|
return self
|
435
425
|
|
436
426
|
def _batch_inference_validate_snowpark(
|
437
427
|
self,
|
438
428
|
dataset: DataFrame,
|
439
429
|
inference_method: str,
|
440
|
-
) ->
|
441
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
442
|
-
return the available package that exists in the snowflake anaconda channel
|
430
|
+
) -> None:
|
431
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
443
432
|
|
444
433
|
Args:
|
445
434
|
dataset: snowpark dataframe
|
446
435
|
inference_method: the inference method such as predict, score...
|
447
|
-
|
436
|
+
|
448
437
|
Raises:
|
449
438
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
450
439
|
SnowflakeMLException: If the session is None, raise error
|
451
440
|
|
452
|
-
Returns:
|
453
|
-
A list of available package that exists in the snowflake anaconda channel
|
454
441
|
"""
|
455
442
|
if not self._is_fitted:
|
456
443
|
raise exceptions.SnowflakeMLException(
|
@@ -468,9 +455,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
468
455
|
"Session must not specified for snowpark dataset."
|
469
456
|
),
|
470
457
|
)
|
471
|
-
|
472
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
473
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
458
|
+
|
474
459
|
|
475
460
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
476
461
|
@telemetry.send_api_usage_telemetry(
|
@@ -506,7 +491,9 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
506
491
|
# when it is classifier, infer the datatype from label columns
|
507
492
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
508
493
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
509
|
-
label_cols_signatures = [
|
494
|
+
label_cols_signatures = [
|
495
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
496
|
+
]
|
510
497
|
if len(label_cols_signatures) == 0:
|
511
498
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
512
499
|
raise exceptions.SnowflakeMLException(
|
@@ -514,25 +501,23 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
514
501
|
original_exception=ValueError(error_str),
|
515
502
|
)
|
516
503
|
|
517
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
518
|
-
label_cols_signatures[0].as_snowpark_type()
|
519
|
-
)
|
504
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
520
505
|
|
521
|
-
self.
|
522
|
-
|
506
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
507
|
+
self._deps = self._get_dependencies()
|
508
|
+
assert isinstance(
|
509
|
+
dataset._session, Session
|
510
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
523
511
|
|
524
512
|
transform_kwargs = dict(
|
525
|
-
session
|
526
|
-
dependencies
|
527
|
-
drop_input_cols
|
528
|
-
expected_output_cols_type
|
513
|
+
session=dataset._session,
|
514
|
+
dependencies=self._deps,
|
515
|
+
drop_input_cols=self._drop_input_cols,
|
516
|
+
expected_output_cols_type=expected_type_inferred,
|
529
517
|
)
|
530
518
|
|
531
519
|
elif isinstance(dataset, pd.DataFrame):
|
532
|
-
transform_kwargs = dict(
|
533
|
-
snowpark_input_cols = self._snowpark_cols,
|
534
|
-
drop_input_cols = self._drop_input_cols
|
535
|
-
)
|
520
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
536
521
|
|
537
522
|
transform_handlers = ModelTransformerBuilder.build(
|
538
523
|
dataset=dataset,
|
@@ -572,7 +557,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
572
557
|
Transformed dataset.
|
573
558
|
"""
|
574
559
|
super()._check_dataset_type(dataset)
|
575
|
-
inference_method="transform"
|
560
|
+
inference_method = "transform"
|
576
561
|
|
577
562
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
578
563
|
# are specific to the type of dataset used.
|
@@ -602,24 +587,19 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
602
587
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
603
588
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
604
589
|
|
605
|
-
self.
|
606
|
-
|
607
|
-
inference_method=inference_method,
|
608
|
-
)
|
590
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
591
|
+
self._deps = self._get_dependencies()
|
609
592
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
610
593
|
|
611
594
|
transform_kwargs = dict(
|
612
|
-
session
|
613
|
-
dependencies
|
614
|
-
drop_input_cols
|
615
|
-
expected_output_cols_type
|
595
|
+
session=dataset._session,
|
596
|
+
dependencies=self._deps,
|
597
|
+
drop_input_cols=self._drop_input_cols,
|
598
|
+
expected_output_cols_type=expected_dtype,
|
616
599
|
)
|
617
600
|
|
618
601
|
elif isinstance(dataset, pd.DataFrame):
|
619
|
-
transform_kwargs = dict(
|
620
|
-
snowpark_input_cols = self._snowpark_cols,
|
621
|
-
drop_input_cols = self._drop_input_cols
|
622
|
-
)
|
602
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
623
603
|
|
624
604
|
transform_handlers = ModelTransformerBuilder.build(
|
625
605
|
dataset=dataset,
|
@@ -638,7 +618,11 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
638
618
|
return output_df
|
639
619
|
|
640
620
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
641
|
-
def fit_predict(
|
621
|
+
def fit_predict(
|
622
|
+
self,
|
623
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
624
|
+
output_cols_prefix: str = "fit_predict_",
|
625
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
642
626
|
""" Method not supported for this class.
|
643
627
|
|
644
628
|
|
@@ -663,22 +647,104 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
663
647
|
)
|
664
648
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
665
649
|
drop_input_cols=self._drop_input_cols,
|
666
|
-
expected_output_cols_list=
|
650
|
+
expected_output_cols_list=(
|
651
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
652
|
+
),
|
667
653
|
)
|
668
654
|
self._sklearn_object = fitted_estimator
|
669
655
|
self._is_fitted = True
|
670
656
|
return output_result
|
671
657
|
|
658
|
+
|
659
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
660
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
661
|
+
""" Method not supported for this class.
|
662
|
+
|
672
663
|
|
673
|
-
|
674
|
-
|
675
|
-
|
664
|
+
Raises:
|
665
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
666
|
+
|
667
|
+
Args:
|
668
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
669
|
+
Snowpark or Pandas DataFrame.
|
670
|
+
output_cols_prefix: Prefix for the response columns
|
676
671
|
Returns:
|
677
672
|
Transformed dataset.
|
678
673
|
"""
|
679
|
-
self.
|
680
|
-
|
681
|
-
|
674
|
+
self._infer_input_output_cols(dataset)
|
675
|
+
super()._check_dataset_type(dataset)
|
676
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
677
|
+
estimator=self._sklearn_object,
|
678
|
+
dataset=dataset,
|
679
|
+
input_cols=self.input_cols,
|
680
|
+
label_cols=self.label_cols,
|
681
|
+
sample_weight_col=self.sample_weight_col,
|
682
|
+
autogenerated=self._autogenerated,
|
683
|
+
subproject=_SUBPROJECT,
|
684
|
+
)
|
685
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
686
|
+
drop_input_cols=self._drop_input_cols,
|
687
|
+
expected_output_cols_list=self.output_cols,
|
688
|
+
)
|
689
|
+
self._sklearn_object = fitted_estimator
|
690
|
+
self._is_fitted = True
|
691
|
+
return output_result
|
692
|
+
|
693
|
+
|
694
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
695
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
696
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
697
|
+
"""
|
698
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
699
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
700
|
+
if output_cols:
|
701
|
+
output_cols = [
|
702
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
703
|
+
for c in output_cols
|
704
|
+
]
|
705
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
706
|
+
output_cols = [output_cols_prefix]
|
707
|
+
elif self._sklearn_object is not None:
|
708
|
+
classes = self._sklearn_object.classes_
|
709
|
+
if isinstance(classes, numpy.ndarray):
|
710
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
711
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
712
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
713
|
+
output_cols = []
|
714
|
+
for i, cl in enumerate(classes):
|
715
|
+
# For binary classification, there is only one output column for each class
|
716
|
+
# ndarray as the two classes are complementary.
|
717
|
+
if len(cl) == 2:
|
718
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
719
|
+
else:
|
720
|
+
output_cols.extend([
|
721
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
722
|
+
])
|
723
|
+
else:
|
724
|
+
output_cols = []
|
725
|
+
|
726
|
+
# Make sure column names are valid snowflake identifiers.
|
727
|
+
assert output_cols is not None # Make MyPy happy
|
728
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
729
|
+
|
730
|
+
return rv
|
731
|
+
|
732
|
+
def _align_expected_output_names(
|
733
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
734
|
+
) -> List[str]:
|
735
|
+
# in case the inferred output column names dimension is different
|
736
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
737
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
738
|
+
output_df_columns = list(output_df_pd.columns)
|
739
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
740
|
+
if self.sample_weight_col:
|
741
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
742
|
+
# if the dimension of inferred output column names is correct; use it
|
743
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
744
|
+
return expected_output_cols_list
|
745
|
+
# otherwise, use the sklearn estimator's output
|
746
|
+
else:
|
747
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
682
748
|
|
683
749
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
684
750
|
@telemetry.send_api_usage_telemetry(
|
@@ -712,24 +778,26 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
712
778
|
# are specific to the type of dataset used.
|
713
779
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
714
780
|
|
781
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
782
|
+
|
715
783
|
if isinstance(dataset, DataFrame):
|
716
|
-
self.
|
717
|
-
|
718
|
-
|
719
|
-
|
720
|
-
|
784
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
785
|
+
self._deps = self._get_dependencies()
|
786
|
+
assert isinstance(
|
787
|
+
dataset._session, Session
|
788
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
721
789
|
transform_kwargs = dict(
|
722
790
|
session=dataset._session,
|
723
791
|
dependencies=self._deps,
|
724
|
-
drop_input_cols
|
792
|
+
drop_input_cols=self._drop_input_cols,
|
725
793
|
expected_output_cols_type="float",
|
726
794
|
)
|
795
|
+
expected_output_cols = self._align_expected_output_names(
|
796
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
797
|
+
)
|
727
798
|
|
728
799
|
elif isinstance(dataset, pd.DataFrame):
|
729
|
-
transform_kwargs = dict(
|
730
|
-
snowpark_input_cols = self._snowpark_cols,
|
731
|
-
drop_input_cols = self._drop_input_cols
|
732
|
-
)
|
800
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
733
801
|
|
734
802
|
transform_handlers = ModelTransformerBuilder.build(
|
735
803
|
dataset=dataset,
|
@@ -741,7 +809,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
741
809
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
742
810
|
inference_method=inference_method,
|
743
811
|
input_cols=self.input_cols,
|
744
|
-
expected_output_cols=
|
812
|
+
expected_output_cols=expected_output_cols,
|
745
813
|
**transform_kwargs
|
746
814
|
)
|
747
815
|
return output_df
|
@@ -773,29 +841,30 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
773
841
|
Output dataset with log probability of the sample for each class in the model.
|
774
842
|
"""
|
775
843
|
super()._check_dataset_type(dataset)
|
776
|
-
inference_method="predict_log_proba"
|
844
|
+
inference_method = "predict_log_proba"
|
845
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
777
846
|
|
778
847
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
779
848
|
# are specific to the type of dataset used.
|
780
849
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
781
850
|
|
782
851
|
if isinstance(dataset, DataFrame):
|
783
|
-
self.
|
784
|
-
|
785
|
-
|
786
|
-
|
787
|
-
|
852
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
853
|
+
self._deps = self._get_dependencies()
|
854
|
+
assert isinstance(
|
855
|
+
dataset._session, Session
|
856
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
788
857
|
transform_kwargs = dict(
|
789
858
|
session=dataset._session,
|
790
859
|
dependencies=self._deps,
|
791
|
-
drop_input_cols
|
860
|
+
drop_input_cols=self._drop_input_cols,
|
792
861
|
expected_output_cols_type="float",
|
793
862
|
)
|
863
|
+
expected_output_cols = self._align_expected_output_names(
|
864
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
865
|
+
)
|
794
866
|
elif isinstance(dataset, pd.DataFrame):
|
795
|
-
transform_kwargs = dict(
|
796
|
-
snowpark_input_cols = self._snowpark_cols,
|
797
|
-
drop_input_cols = self._drop_input_cols
|
798
|
-
)
|
867
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
799
868
|
|
800
869
|
transform_handlers = ModelTransformerBuilder.build(
|
801
870
|
dataset=dataset,
|
@@ -808,7 +877,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
808
877
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
809
878
|
inference_method=inference_method,
|
810
879
|
input_cols=self.input_cols,
|
811
|
-
expected_output_cols=
|
880
|
+
expected_output_cols=expected_output_cols,
|
812
881
|
**transform_kwargs
|
813
882
|
)
|
814
883
|
return output_df
|
@@ -836,30 +905,32 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
836
905
|
Output dataset with results of the decision function for the samples in input dataset.
|
837
906
|
"""
|
838
907
|
super()._check_dataset_type(dataset)
|
839
|
-
inference_method="decision_function"
|
908
|
+
inference_method = "decision_function"
|
840
909
|
|
841
910
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
842
911
|
# are specific to the type of dataset used.
|
843
912
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
844
913
|
|
914
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
915
|
+
|
845
916
|
if isinstance(dataset, DataFrame):
|
846
|
-
self.
|
847
|
-
|
848
|
-
|
849
|
-
|
850
|
-
|
917
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
918
|
+
self._deps = self._get_dependencies()
|
919
|
+
assert isinstance(
|
920
|
+
dataset._session, Session
|
921
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
851
922
|
transform_kwargs = dict(
|
852
923
|
session=dataset._session,
|
853
924
|
dependencies=self._deps,
|
854
|
-
drop_input_cols
|
925
|
+
drop_input_cols=self._drop_input_cols,
|
855
926
|
expected_output_cols_type="float",
|
856
927
|
)
|
928
|
+
expected_output_cols = self._align_expected_output_names(
|
929
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
930
|
+
)
|
857
931
|
|
858
932
|
elif isinstance(dataset, pd.DataFrame):
|
859
|
-
transform_kwargs = dict(
|
860
|
-
snowpark_input_cols = self._snowpark_cols,
|
861
|
-
drop_input_cols = self._drop_input_cols
|
862
|
-
)
|
933
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
863
934
|
|
864
935
|
transform_handlers = ModelTransformerBuilder.build(
|
865
936
|
dataset=dataset,
|
@@ -872,7 +943,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
872
943
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
873
944
|
inference_method=inference_method,
|
874
945
|
input_cols=self.input_cols,
|
875
|
-
expected_output_cols=
|
946
|
+
expected_output_cols=expected_output_cols,
|
876
947
|
**transform_kwargs
|
877
948
|
)
|
878
949
|
return output_df
|
@@ -901,17 +972,17 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
901
972
|
Output dataset with probability of the sample for each class in the model.
|
902
973
|
"""
|
903
974
|
super()._check_dataset_type(dataset)
|
904
|
-
inference_method="score_samples"
|
975
|
+
inference_method = "score_samples"
|
905
976
|
|
906
977
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
907
978
|
# are specific to the type of dataset used.
|
908
979
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
909
980
|
|
981
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
982
|
+
|
910
983
|
if isinstance(dataset, DataFrame):
|
911
|
-
self.
|
912
|
-
|
913
|
-
inference_method=inference_method,
|
914
|
-
)
|
984
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
985
|
+
self._deps = self._get_dependencies()
|
915
986
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
916
987
|
transform_kwargs = dict(
|
917
988
|
session=dataset._session,
|
@@ -919,6 +990,9 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
919
990
|
drop_input_cols = self._drop_input_cols,
|
920
991
|
expected_output_cols_type="float",
|
921
992
|
)
|
993
|
+
expected_output_cols = self._align_expected_output_names(
|
994
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
995
|
+
)
|
922
996
|
|
923
997
|
elif isinstance(dataset, pd.DataFrame):
|
924
998
|
transform_kwargs = dict(
|
@@ -937,7 +1011,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
937
1011
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
938
1012
|
inference_method=inference_method,
|
939
1013
|
input_cols=self.input_cols,
|
940
|
-
expected_output_cols=
|
1014
|
+
expected_output_cols=expected_output_cols,
|
941
1015
|
**transform_kwargs
|
942
1016
|
)
|
943
1017
|
return output_df
|
@@ -972,17 +1046,15 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
972
1046
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
973
1047
|
|
974
1048
|
if isinstance(dataset, DataFrame):
|
975
|
-
self.
|
976
|
-
|
977
|
-
inference_method="score",
|
978
|
-
)
|
1049
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
1050
|
+
self._deps = self._get_dependencies()
|
979
1051
|
selected_cols = self._get_active_columns()
|
980
1052
|
if len(selected_cols) > 0:
|
981
1053
|
dataset = dataset.select(selected_cols)
|
982
1054
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
983
1055
|
transform_kwargs = dict(
|
984
1056
|
session=dataset._session,
|
985
|
-
dependencies=
|
1057
|
+
dependencies=self._deps,
|
986
1058
|
score_sproc_imports=['sklearn'],
|
987
1059
|
)
|
988
1060
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -1047,11 +1119,8 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
1047
1119
|
|
1048
1120
|
if isinstance(dataset, DataFrame):
|
1049
1121
|
|
1050
|
-
self.
|
1051
|
-
|
1052
|
-
inference_method=inference_method,
|
1053
|
-
|
1054
|
-
)
|
1122
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1123
|
+
self._deps = self._get_dependencies()
|
1055
1124
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
1056
1125
|
transform_kwargs = dict(
|
1057
1126
|
session = dataset._session,
|
@@ -1084,50 +1153,84 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
1084
1153
|
)
|
1085
1154
|
return output_df
|
1086
1155
|
|
1156
|
+
|
1157
|
+
|
1158
|
+
def to_sklearn(self) -> Any:
|
1159
|
+
"""Get sklearn.ensemble.HistGradientBoostingClassifier object.
|
1160
|
+
"""
|
1161
|
+
if self._sklearn_object is None:
|
1162
|
+
self._sklearn_object = self._create_sklearn_object()
|
1163
|
+
return self._sklearn_object
|
1164
|
+
|
1165
|
+
def to_xgboost(self) -> Any:
|
1166
|
+
raise exceptions.SnowflakeMLException(
|
1167
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1168
|
+
original_exception=AttributeError(
|
1169
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1170
|
+
"to_xgboost()",
|
1171
|
+
"to_sklearn()"
|
1172
|
+
)
|
1173
|
+
),
|
1174
|
+
)
|
1175
|
+
|
1176
|
+
def to_lightgbm(self) -> Any:
|
1177
|
+
raise exceptions.SnowflakeMLException(
|
1178
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1179
|
+
original_exception=AttributeError(
|
1180
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1181
|
+
"to_lightgbm()",
|
1182
|
+
"to_sklearn()"
|
1183
|
+
)
|
1184
|
+
),
|
1185
|
+
)
|
1186
|
+
|
1187
|
+
def _get_dependencies(self) -> List[str]:
|
1188
|
+
return self._deps
|
1189
|
+
|
1087
1190
|
|
1088
|
-
def
|
1191
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1089
1192
|
self._model_signature_dict = dict()
|
1090
1193
|
|
1091
1194
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1092
1195
|
|
1093
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1196
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1094
1197
|
outputs: List[BaseFeatureSpec] = []
|
1095
1198
|
if hasattr(self, "predict"):
|
1096
1199
|
# keep mypy happy
|
1097
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1200
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1098
1201
|
# For classifier, the type of predict is the same as the type of label
|
1099
|
-
if self._sklearn_object._estimator_type ==
|
1100
|
-
|
1202
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1203
|
+
# label columns is the desired type for output
|
1101
1204
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1102
1205
|
# rename the output columns
|
1103
1206
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1104
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1105
|
-
|
1106
|
-
|
1207
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1208
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1209
|
+
)
|
1107
1210
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1108
1211
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1109
|
-
# Clusterer returns int64 cluster labels.
|
1212
|
+
# Clusterer returns int64 cluster labels.
|
1110
1213
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1111
1214
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1112
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1113
|
-
|
1114
|
-
|
1115
|
-
|
1215
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1216
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1217
|
+
)
|
1218
|
+
|
1116
1219
|
# For regressor, the type of predict is float64
|
1117
|
-
elif self._sklearn_object._estimator_type ==
|
1220
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1118
1221
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1119
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1120
|
-
|
1121
|
-
|
1122
|
-
|
1222
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1223
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1224
|
+
)
|
1225
|
+
|
1123
1226
|
for prob_func in PROB_FUNCTIONS:
|
1124
1227
|
if hasattr(self, prob_func):
|
1125
1228
|
output_cols_prefix: str = f"{prob_func}_"
|
1126
1229
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1127
1230
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1128
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1129
|
-
|
1130
|
-
|
1231
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1232
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1233
|
+
)
|
1131
1234
|
|
1132
1235
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1133
1236
|
items = list(self._model_signature_dict.items())
|
@@ -1140,10 +1243,10 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
1140
1243
|
"""Returns model signature of current class.
|
1141
1244
|
|
1142
1245
|
Raises:
|
1143
|
-
|
1246
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1144
1247
|
|
1145
1248
|
Returns:
|
1146
|
-
Dict
|
1249
|
+
Dict with each method and its input output signature
|
1147
1250
|
"""
|
1148
1251
|
if self._model_signature_dict is None:
|
1149
1252
|
raise exceptions.SnowflakeMLException(
|
@@ -1151,35 +1254,3 @@ class HistGradientBoostingClassifier(BaseTransformer):
|
|
1151
1254
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1152
1255
|
)
|
1153
1256
|
return self._model_signature_dict
|
1154
|
-
|
1155
|
-
def to_sklearn(self) -> Any:
|
1156
|
-
"""Get sklearn.ensemble.HistGradientBoostingClassifier object.
|
1157
|
-
"""
|
1158
|
-
if self._sklearn_object is None:
|
1159
|
-
self._sklearn_object = self._create_sklearn_object()
|
1160
|
-
return self._sklearn_object
|
1161
|
-
|
1162
|
-
def to_xgboost(self) -> Any:
|
1163
|
-
raise exceptions.SnowflakeMLException(
|
1164
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1165
|
-
original_exception=AttributeError(
|
1166
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1167
|
-
"to_xgboost()",
|
1168
|
-
"to_sklearn()"
|
1169
|
-
)
|
1170
|
-
),
|
1171
|
-
)
|
1172
|
-
|
1173
|
-
def to_lightgbm(self) -> Any:
|
1174
|
-
raise exceptions.SnowflakeMLException(
|
1175
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1176
|
-
original_exception=AttributeError(
|
1177
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1178
|
-
"to_lightgbm()",
|
1179
|
-
"to_sklearn()"
|
1180
|
-
)
|
1181
|
-
),
|
1182
|
-
)
|
1183
|
-
|
1184
|
-
def _get_dependencies(self) -> List[str]:
|
1185
|
-
return self._deps
|