snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class HistGradientBoostingClassifier(BaseTransformer):
71
64
  r"""Histogram-based Gradient Boosting Classification Tree
72
65
  For more details on this class, see [sklearn.ensemble.HistGradientBoostingClassifier]
@@ -372,12 +365,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
372
365
  )
373
366
  return selected_cols
374
367
 
375
- @telemetry.send_api_usage_telemetry(
376
- project=_PROJECT,
377
- subproject=_SUBPROJECT,
378
- custom_tags=dict([("autogen", True)]),
379
- )
380
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingClassifier":
368
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingClassifier":
381
369
  """Fit the gradient boosting model
382
370
  For more details on this function, see [sklearn.ensemble.HistGradientBoostingClassifier.fit]
383
371
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingClassifier.html#sklearn.ensemble.HistGradientBoostingClassifier.fit)
@@ -404,12 +392,14 @@ class HistGradientBoostingClassifier(BaseTransformer):
404
392
 
405
393
  self._snowpark_cols = dataset.select(self.input_cols).columns
406
394
 
407
- # If we are already in a stored procedure, no need to kick off another one.
395
+ # If we are already in a stored procedure, no need to kick off another one.
408
396
  if SNOWML_SPROC_ENV in os.environ:
409
397
  statement_params = telemetry.get_function_usage_statement_params(
410
398
  project=_PROJECT,
411
399
  subproject=_SUBPROJECT,
412
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__),
400
+ function_name=telemetry.get_statement_params_full_func_name(
401
+ inspect.currentframe(), HistGradientBoostingClassifier.__class__.__name__
402
+ ),
413
403
  api_calls=[Session.call],
414
404
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
415
405
  )
@@ -430,27 +420,24 @@ class HistGradientBoostingClassifier(BaseTransformer):
430
420
  )
431
421
  self._sklearn_object = model_trainer.train()
432
422
  self._is_fitted = True
433
- self._get_model_signatures(dataset)
423
+ self._generate_model_signatures(dataset)
434
424
  return self
435
425
 
436
426
  def _batch_inference_validate_snowpark(
437
427
  self,
438
428
  dataset: DataFrame,
439
429
  inference_method: str,
440
- ) -> List[str]:
441
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
442
- return the available package that exists in the snowflake anaconda channel
430
+ ) -> None:
431
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
443
432
 
444
433
  Args:
445
434
  dataset: snowpark dataframe
446
435
  inference_method: the inference method such as predict, score...
447
-
436
+
448
437
  Raises:
449
438
  SnowflakeMLException: If the estimator is not fitted, raise error
450
439
  SnowflakeMLException: If the session is None, raise error
451
440
 
452
- Returns:
453
- A list of available package that exists in the snowflake anaconda channel
454
441
  """
455
442
  if not self._is_fitted:
456
443
  raise exceptions.SnowflakeMLException(
@@ -468,9 +455,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
468
455
  "Session must not specified for snowpark dataset."
469
456
  ),
470
457
  )
471
- # Validate that key package version in user workspace are supported in snowflake conda channel
472
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
473
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
458
+
474
459
 
475
460
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
476
461
  @telemetry.send_api_usage_telemetry(
@@ -506,7 +491,9 @@ class HistGradientBoostingClassifier(BaseTransformer):
506
491
  # when it is classifier, infer the datatype from label columns
507
492
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
508
493
  # Batch inference takes a single expected output column type. Use the first columns type for now.
509
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
494
+ label_cols_signatures = [
495
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
496
+ ]
510
497
  if len(label_cols_signatures) == 0:
511
498
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
512
499
  raise exceptions.SnowflakeMLException(
@@ -514,25 +501,23 @@ class HistGradientBoostingClassifier(BaseTransformer):
514
501
  original_exception=ValueError(error_str),
515
502
  )
516
503
 
517
- expected_type_inferred = convert_sp_to_sf_type(
518
- label_cols_signatures[0].as_snowpark_type()
519
- )
504
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
520
505
 
521
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
522
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
506
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
507
+ self._deps = self._get_dependencies()
508
+ assert isinstance(
509
+ dataset._session, Session
510
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
523
511
 
524
512
  transform_kwargs = dict(
525
- session = dataset._session,
526
- dependencies = self._deps,
527
- drop_input_cols = self._drop_input_cols,
528
- expected_output_cols_type = expected_type_inferred,
513
+ session=dataset._session,
514
+ dependencies=self._deps,
515
+ drop_input_cols=self._drop_input_cols,
516
+ expected_output_cols_type=expected_type_inferred,
529
517
  )
530
518
 
531
519
  elif isinstance(dataset, pd.DataFrame):
532
- transform_kwargs = dict(
533
- snowpark_input_cols = self._snowpark_cols,
534
- drop_input_cols = self._drop_input_cols
535
- )
520
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
536
521
 
537
522
  transform_handlers = ModelTransformerBuilder.build(
538
523
  dataset=dataset,
@@ -572,7 +557,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
572
557
  Transformed dataset.
573
558
  """
574
559
  super()._check_dataset_type(dataset)
575
- inference_method="transform"
560
+ inference_method = "transform"
576
561
 
577
562
  # This dictionary contains optional kwargs for batch inference. These kwargs
578
563
  # are specific to the type of dataset used.
@@ -602,24 +587,19 @@ class HistGradientBoostingClassifier(BaseTransformer):
602
587
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
603
588
  expected_dtype = convert_sp_to_sf_type(output_types[0])
604
589
 
605
- self._deps = self._batch_inference_validate_snowpark(
606
- dataset=dataset,
607
- inference_method=inference_method,
608
- )
590
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
591
+ self._deps = self._get_dependencies()
609
592
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
610
593
 
611
594
  transform_kwargs = dict(
612
- session = dataset._session,
613
- dependencies = self._deps,
614
- drop_input_cols = self._drop_input_cols,
615
- expected_output_cols_type = expected_dtype,
595
+ session=dataset._session,
596
+ dependencies=self._deps,
597
+ drop_input_cols=self._drop_input_cols,
598
+ expected_output_cols_type=expected_dtype,
616
599
  )
617
600
 
618
601
  elif isinstance(dataset, pd.DataFrame):
619
- transform_kwargs = dict(
620
- snowpark_input_cols = self._snowpark_cols,
621
- drop_input_cols = self._drop_input_cols
622
- )
602
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
623
603
 
624
604
  transform_handlers = ModelTransformerBuilder.build(
625
605
  dataset=dataset,
@@ -638,7 +618,11 @@ class HistGradientBoostingClassifier(BaseTransformer):
638
618
  return output_df
639
619
 
640
620
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
641
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
621
+ def fit_predict(
622
+ self,
623
+ dataset: Union[DataFrame, pd.DataFrame],
624
+ output_cols_prefix: str = "fit_predict_",
625
+ ) -> Union[DataFrame, pd.DataFrame]:
642
626
  """ Method not supported for this class.
643
627
 
644
628
 
@@ -663,22 +647,104 @@ class HistGradientBoostingClassifier(BaseTransformer):
663
647
  )
664
648
  output_result, fitted_estimator = model_trainer.train_fit_predict(
665
649
  drop_input_cols=self._drop_input_cols,
666
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
650
+ expected_output_cols_list=(
651
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
652
+ ),
667
653
  )
668
654
  self._sklearn_object = fitted_estimator
669
655
  self._is_fitted = True
670
656
  return output_result
671
657
 
658
+
659
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
660
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
661
+ """ Method not supported for this class.
662
+
672
663
 
673
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
674
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
675
- """
664
+ Raises:
665
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
666
+
667
+ Args:
668
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
669
+ Snowpark or Pandas DataFrame.
670
+ output_cols_prefix: Prefix for the response columns
676
671
  Returns:
677
672
  Transformed dataset.
678
673
  """
679
- self.fit(dataset)
680
- assert self._sklearn_object is not None
681
- return self._sklearn_object.embedding_
674
+ self._infer_input_output_cols(dataset)
675
+ super()._check_dataset_type(dataset)
676
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
677
+ estimator=self._sklearn_object,
678
+ dataset=dataset,
679
+ input_cols=self.input_cols,
680
+ label_cols=self.label_cols,
681
+ sample_weight_col=self.sample_weight_col,
682
+ autogenerated=self._autogenerated,
683
+ subproject=_SUBPROJECT,
684
+ )
685
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
686
+ drop_input_cols=self._drop_input_cols,
687
+ expected_output_cols_list=self.output_cols,
688
+ )
689
+ self._sklearn_object = fitted_estimator
690
+ self._is_fitted = True
691
+ return output_result
692
+
693
+
694
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
695
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
696
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
697
+ """
698
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
699
+ # The following condition is introduced for kneighbors methods, and not used in other methods
700
+ if output_cols:
701
+ output_cols = [
702
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
703
+ for c in output_cols
704
+ ]
705
+ elif getattr(self._sklearn_object, "classes_", None) is None:
706
+ output_cols = [output_cols_prefix]
707
+ elif self._sklearn_object is not None:
708
+ classes = self._sklearn_object.classes_
709
+ if isinstance(classes, numpy.ndarray):
710
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
711
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
712
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
713
+ output_cols = []
714
+ for i, cl in enumerate(classes):
715
+ # For binary classification, there is only one output column for each class
716
+ # ndarray as the two classes are complementary.
717
+ if len(cl) == 2:
718
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
719
+ else:
720
+ output_cols.extend([
721
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
722
+ ])
723
+ else:
724
+ output_cols = []
725
+
726
+ # Make sure column names are valid snowflake identifiers.
727
+ assert output_cols is not None # Make MyPy happy
728
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
729
+
730
+ return rv
731
+
732
+ def _align_expected_output_names(
733
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
734
+ ) -> List[str]:
735
+ # in case the inferred output column names dimension is different
736
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
737
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
738
+ output_df_columns = list(output_df_pd.columns)
739
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
740
+ if self.sample_weight_col:
741
+ output_df_columns_set -= set(self.sample_weight_col)
742
+ # if the dimension of inferred output column names is correct; use it
743
+ if len(expected_output_cols_list) == len(output_df_columns_set):
744
+ return expected_output_cols_list
745
+ # otherwise, use the sklearn estimator's output
746
+ else:
747
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
682
748
 
683
749
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
684
750
  @telemetry.send_api_usage_telemetry(
@@ -712,24 +778,26 @@ class HistGradientBoostingClassifier(BaseTransformer):
712
778
  # are specific to the type of dataset used.
713
779
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
714
780
 
781
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
782
+
715
783
  if isinstance(dataset, DataFrame):
716
- self._deps = self._batch_inference_validate_snowpark(
717
- dataset=dataset,
718
- inference_method=inference_method,
719
- )
720
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
784
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
785
+ self._deps = self._get_dependencies()
786
+ assert isinstance(
787
+ dataset._session, Session
788
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
721
789
  transform_kwargs = dict(
722
790
  session=dataset._session,
723
791
  dependencies=self._deps,
724
- drop_input_cols = self._drop_input_cols,
792
+ drop_input_cols=self._drop_input_cols,
725
793
  expected_output_cols_type="float",
726
794
  )
795
+ expected_output_cols = self._align_expected_output_names(
796
+ inference_method, dataset, expected_output_cols, output_cols_prefix
797
+ )
727
798
 
728
799
  elif isinstance(dataset, pd.DataFrame):
729
- transform_kwargs = dict(
730
- snowpark_input_cols = self._snowpark_cols,
731
- drop_input_cols = self._drop_input_cols
732
- )
800
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
733
801
 
734
802
  transform_handlers = ModelTransformerBuilder.build(
735
803
  dataset=dataset,
@@ -741,7 +809,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
741
809
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
742
810
  inference_method=inference_method,
743
811
  input_cols=self.input_cols,
744
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
812
+ expected_output_cols=expected_output_cols,
745
813
  **transform_kwargs
746
814
  )
747
815
  return output_df
@@ -773,29 +841,30 @@ class HistGradientBoostingClassifier(BaseTransformer):
773
841
  Output dataset with log probability of the sample for each class in the model.
774
842
  """
775
843
  super()._check_dataset_type(dataset)
776
- inference_method="predict_log_proba"
844
+ inference_method = "predict_log_proba"
845
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
777
846
 
778
847
  # This dictionary contains optional kwargs for batch inference. These kwargs
779
848
  # are specific to the type of dataset used.
780
849
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
781
850
 
782
851
  if isinstance(dataset, DataFrame):
783
- self._deps = self._batch_inference_validate_snowpark(
784
- dataset=dataset,
785
- inference_method=inference_method,
786
- )
787
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
852
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
853
+ self._deps = self._get_dependencies()
854
+ assert isinstance(
855
+ dataset._session, Session
856
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
788
857
  transform_kwargs = dict(
789
858
  session=dataset._session,
790
859
  dependencies=self._deps,
791
- drop_input_cols = self._drop_input_cols,
860
+ drop_input_cols=self._drop_input_cols,
792
861
  expected_output_cols_type="float",
793
862
  )
863
+ expected_output_cols = self._align_expected_output_names(
864
+ inference_method, dataset, expected_output_cols, output_cols_prefix
865
+ )
794
866
  elif isinstance(dataset, pd.DataFrame):
795
- transform_kwargs = dict(
796
- snowpark_input_cols = self._snowpark_cols,
797
- drop_input_cols = self._drop_input_cols
798
- )
867
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
799
868
 
800
869
  transform_handlers = ModelTransformerBuilder.build(
801
870
  dataset=dataset,
@@ -808,7 +877,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
808
877
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
809
878
  inference_method=inference_method,
810
879
  input_cols=self.input_cols,
811
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
880
+ expected_output_cols=expected_output_cols,
812
881
  **transform_kwargs
813
882
  )
814
883
  return output_df
@@ -836,30 +905,32 @@ class HistGradientBoostingClassifier(BaseTransformer):
836
905
  Output dataset with results of the decision function for the samples in input dataset.
837
906
  """
838
907
  super()._check_dataset_type(dataset)
839
- inference_method="decision_function"
908
+ inference_method = "decision_function"
840
909
 
841
910
  # This dictionary contains optional kwargs for batch inference. These kwargs
842
911
  # are specific to the type of dataset used.
843
912
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
844
913
 
914
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
915
+
845
916
  if isinstance(dataset, DataFrame):
846
- self._deps = self._batch_inference_validate_snowpark(
847
- dataset=dataset,
848
- inference_method=inference_method,
849
- )
850
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
917
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
918
+ self._deps = self._get_dependencies()
919
+ assert isinstance(
920
+ dataset._session, Session
921
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
851
922
  transform_kwargs = dict(
852
923
  session=dataset._session,
853
924
  dependencies=self._deps,
854
- drop_input_cols = self._drop_input_cols,
925
+ drop_input_cols=self._drop_input_cols,
855
926
  expected_output_cols_type="float",
856
927
  )
928
+ expected_output_cols = self._align_expected_output_names(
929
+ inference_method, dataset, expected_output_cols, output_cols_prefix
930
+ )
857
931
 
858
932
  elif isinstance(dataset, pd.DataFrame):
859
- transform_kwargs = dict(
860
- snowpark_input_cols = self._snowpark_cols,
861
- drop_input_cols = self._drop_input_cols
862
- )
933
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
863
934
 
864
935
  transform_handlers = ModelTransformerBuilder.build(
865
936
  dataset=dataset,
@@ -872,7 +943,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
872
943
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
873
944
  inference_method=inference_method,
874
945
  input_cols=self.input_cols,
875
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
946
+ expected_output_cols=expected_output_cols,
876
947
  **transform_kwargs
877
948
  )
878
949
  return output_df
@@ -901,17 +972,17 @@ class HistGradientBoostingClassifier(BaseTransformer):
901
972
  Output dataset with probability of the sample for each class in the model.
902
973
  """
903
974
  super()._check_dataset_type(dataset)
904
- inference_method="score_samples"
975
+ inference_method = "score_samples"
905
976
 
906
977
  # This dictionary contains optional kwargs for batch inference. These kwargs
907
978
  # are specific to the type of dataset used.
908
979
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
909
980
 
981
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
982
+
910
983
  if isinstance(dataset, DataFrame):
911
- self._deps = self._batch_inference_validate_snowpark(
912
- dataset=dataset,
913
- inference_method=inference_method,
914
- )
984
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
985
+ self._deps = self._get_dependencies()
915
986
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
916
987
  transform_kwargs = dict(
917
988
  session=dataset._session,
@@ -919,6 +990,9 @@ class HistGradientBoostingClassifier(BaseTransformer):
919
990
  drop_input_cols = self._drop_input_cols,
920
991
  expected_output_cols_type="float",
921
992
  )
993
+ expected_output_cols = self._align_expected_output_names(
994
+ inference_method, dataset, expected_output_cols, output_cols_prefix
995
+ )
922
996
 
923
997
  elif isinstance(dataset, pd.DataFrame):
924
998
  transform_kwargs = dict(
@@ -937,7 +1011,7 @@ class HistGradientBoostingClassifier(BaseTransformer):
937
1011
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
938
1012
  inference_method=inference_method,
939
1013
  input_cols=self.input_cols,
940
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1014
+ expected_output_cols=expected_output_cols,
941
1015
  **transform_kwargs
942
1016
  )
943
1017
  return output_df
@@ -972,17 +1046,15 @@ class HistGradientBoostingClassifier(BaseTransformer):
972
1046
  transform_kwargs: ScoreKwargsTypedDict = dict()
973
1047
 
974
1048
  if isinstance(dataset, DataFrame):
975
- self._deps = self._batch_inference_validate_snowpark(
976
- dataset=dataset,
977
- inference_method="score",
978
- )
1049
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1050
+ self._deps = self._get_dependencies()
979
1051
  selected_cols = self._get_active_columns()
980
1052
  if len(selected_cols) > 0:
981
1053
  dataset = dataset.select(selected_cols)
982
1054
  assert isinstance(dataset._session, Session) # keep mypy happy
983
1055
  transform_kwargs = dict(
984
1056
  session=dataset._session,
985
- dependencies=["snowflake-snowpark-python"] + self._deps,
1057
+ dependencies=self._deps,
986
1058
  score_sproc_imports=['sklearn'],
987
1059
  )
988
1060
  elif isinstance(dataset, pd.DataFrame):
@@ -1047,11 +1119,8 @@ class HistGradientBoostingClassifier(BaseTransformer):
1047
1119
 
1048
1120
  if isinstance(dataset, DataFrame):
1049
1121
 
1050
- self._deps = self._batch_inference_validate_snowpark(
1051
- dataset=dataset,
1052
- inference_method=inference_method,
1053
-
1054
- )
1122
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1123
+ self._deps = self._get_dependencies()
1055
1124
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1056
1125
  transform_kwargs = dict(
1057
1126
  session = dataset._session,
@@ -1084,50 +1153,84 @@ class HistGradientBoostingClassifier(BaseTransformer):
1084
1153
  )
1085
1154
  return output_df
1086
1155
 
1156
+
1157
+
1158
+ def to_sklearn(self) -> Any:
1159
+ """Get sklearn.ensemble.HistGradientBoostingClassifier object.
1160
+ """
1161
+ if self._sklearn_object is None:
1162
+ self._sklearn_object = self._create_sklearn_object()
1163
+ return self._sklearn_object
1164
+
1165
+ def to_xgboost(self) -> Any:
1166
+ raise exceptions.SnowflakeMLException(
1167
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1168
+ original_exception=AttributeError(
1169
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1170
+ "to_xgboost()",
1171
+ "to_sklearn()"
1172
+ )
1173
+ ),
1174
+ )
1175
+
1176
+ def to_lightgbm(self) -> Any:
1177
+ raise exceptions.SnowflakeMLException(
1178
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1179
+ original_exception=AttributeError(
1180
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1181
+ "to_lightgbm()",
1182
+ "to_sklearn()"
1183
+ )
1184
+ ),
1185
+ )
1186
+
1187
+ def _get_dependencies(self) -> List[str]:
1188
+ return self._deps
1189
+
1087
1190
 
1088
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1191
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1089
1192
  self._model_signature_dict = dict()
1090
1193
 
1091
1194
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1092
1195
 
1093
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1196
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1094
1197
  outputs: List[BaseFeatureSpec] = []
1095
1198
  if hasattr(self, "predict"):
1096
1199
  # keep mypy happy
1097
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1200
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1098
1201
  # For classifier, the type of predict is the same as the type of label
1099
- if self._sklearn_object._estimator_type == 'classifier':
1100
- # label columns is the desired type for output
1202
+ if self._sklearn_object._estimator_type == "classifier":
1203
+ # label columns is the desired type for output
1101
1204
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1102
1205
  # rename the output columns
1103
1206
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1104
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1105
- ([] if self._drop_input_cols else inputs)
1106
- + outputs)
1207
+ self._model_signature_dict["predict"] = ModelSignature(
1208
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1209
+ )
1107
1210
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1108
1211
  # For outlier models, returns -1 for outliers and 1 for inliers.
1109
- # Clusterer returns int64 cluster labels.
1212
+ # Clusterer returns int64 cluster labels.
1110
1213
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1111
1214
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1112
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1113
- ([] if self._drop_input_cols else inputs)
1114
- + outputs)
1115
-
1215
+ self._model_signature_dict["predict"] = ModelSignature(
1216
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1217
+ )
1218
+
1116
1219
  # For regressor, the type of predict is float64
1117
- elif self._sklearn_object._estimator_type == 'regressor':
1220
+ elif self._sklearn_object._estimator_type == "regressor":
1118
1221
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1119
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1120
- ([] if self._drop_input_cols else inputs)
1121
- + outputs)
1122
-
1222
+ self._model_signature_dict["predict"] = ModelSignature(
1223
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1224
+ )
1225
+
1123
1226
  for prob_func in PROB_FUNCTIONS:
1124
1227
  if hasattr(self, prob_func):
1125
1228
  output_cols_prefix: str = f"{prob_func}_"
1126
1229
  output_column_names = self._get_output_column_names(output_cols_prefix)
1127
1230
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1128
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1129
- ([] if self._drop_input_cols else inputs)
1130
- + outputs)
1231
+ self._model_signature_dict[prob_func] = ModelSignature(
1232
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1233
+ )
1131
1234
 
1132
1235
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1133
1236
  items = list(self._model_signature_dict.items())
@@ -1140,10 +1243,10 @@ class HistGradientBoostingClassifier(BaseTransformer):
1140
1243
  """Returns model signature of current class.
1141
1244
 
1142
1245
  Raises:
1143
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1246
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1144
1247
 
1145
1248
  Returns:
1146
- Dict[str, ModelSignature]: each method and its input output signature
1249
+ Dict with each method and its input output signature
1147
1250
  """
1148
1251
  if self._model_signature_dict is None:
1149
1252
  raise exceptions.SnowflakeMLException(
@@ -1151,35 +1254,3 @@ class HistGradientBoostingClassifier(BaseTransformer):
1151
1254
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1152
1255
  )
1153
1256
  return self._model_signature_dict
1154
-
1155
- def to_sklearn(self) -> Any:
1156
- """Get sklearn.ensemble.HistGradientBoostingClassifier object.
1157
- """
1158
- if self._sklearn_object is None:
1159
- self._sklearn_object = self._create_sklearn_object()
1160
- return self._sklearn_object
1161
-
1162
- def to_xgboost(self) -> Any:
1163
- raise exceptions.SnowflakeMLException(
1164
- error_code=error_codes.METHOD_NOT_ALLOWED,
1165
- original_exception=AttributeError(
1166
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1167
- "to_xgboost()",
1168
- "to_sklearn()"
1169
- )
1170
- ),
1171
- )
1172
-
1173
- def to_lightgbm(self) -> Any:
1174
- raise exceptions.SnowflakeMLException(
1175
- error_code=error_codes.METHOD_NOT_ALLOWED,
1176
- original_exception=AttributeError(
1177
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1178
- "to_lightgbm()",
1179
- "to_sklearn()"
1180
- )
1181
- ),
1182
- )
1183
-
1184
- def _get_dependencies(self) -> List[str]:
1185
- return self._deps