snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -20,6 +20,7 @@ from snowflake.ml.model.model_signature import (
20
20
  FeatureSpec,
21
21
  ModelSignature,
22
22
  _infer_signature,
23
+ _rename_signature_with_snowflake_identifiers,
23
24
  )
24
25
  from snowflake.ml.modeling._internal.estimator_utils import (
25
26
  gather_dependencies,
@@ -330,12 +331,15 @@ class GridSearchCV(BaseTransformer):
330
331
  )
331
332
  self._sklearn_object = model_trainer.train()
332
333
  self._is_fitted = True
333
- self._get_model_signatures(dataset)
334
+ self._generate_model_signatures(dataset)
334
335
  return self
335
336
 
336
- def _batch_inference_validate_snowpark(self, dataset: DataFrame, inference_method: str) -> List[str]:
337
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
338
- return the available package that exists in the snowflake anaconda channel
337
+ def _batch_inference_validate_snowpark(
338
+ self,
339
+ dataset: DataFrame,
340
+ inference_method: str,
341
+ ) -> None:
342
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
339
343
 
340
344
  Args:
341
345
  dataset: snowpark dataframe
@@ -345,8 +349,6 @@ class GridSearchCV(BaseTransformer):
345
349
  SnowflakeMLException: If the estimator is not fitted, raise error
346
350
  SnowflakeMLException: If the session is None, raise error
347
351
 
348
- Returns:
349
- A list of available package that exists in the snowflake anaconda channel
350
352
  """
351
353
  if not self._is_fitted:
352
354
  raise exceptions.SnowflakeMLException(
@@ -362,10 +364,6 @@ class GridSearchCV(BaseTransformer):
362
364
  error_code=error_codes.NOT_FOUND,
363
365
  original_exception=ValueError("Session must not specified for snowpark dataset."),
364
366
  )
365
- # Validate that key package version in user workspace are supported in snowflake conda channel
366
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
367
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
368
- )
369
367
 
370
368
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
371
369
  @telemetry.send_api_usage_telemetry(
@@ -384,6 +382,9 @@ class GridSearchCV(BaseTransformer):
384
382
 
385
383
  Returns:
386
384
  Transformed dataset.
385
+
386
+ Raises:
387
+ SnowflakeMLException: when the output column(s) doesn't exist in the model signature, raise error
387
388
  """
388
389
  super()._check_dataset_type(dataset)
389
390
 
@@ -396,13 +397,23 @@ class GridSearchCV(BaseTransformer):
396
397
  expected_type_inferred = ""
397
398
  # infer the datatype from label columns
398
399
  if "predict" in self.model_signatures:
399
- expected_type_inferred = convert_sp_to_sf_type(
400
- self.model_signatures["predict"].outputs[0].as_snowpark_type()
401
- )
402
- self._deps = self._batch_inference_validate_snowpark(
403
- dataset=dataset,
404
- inference_method=inference_method,
405
- )
400
+ # Batch inference takes a single expected output column type. Use the first columns type for now.
401
+ label_cols_signatures = [
402
+ row for row in self.model_signatures["predict"].outputs if row.name in self.output_cols
403
+ ]
404
+ if len(label_cols_signatures) == 0:
405
+ error_str = (
406
+ f"Output columns {self.output_cols} do not match"
407
+ f"model signatures {self.model_signatures['predict'].outputs}."
408
+ )
409
+ raise exceptions.SnowflakeMLException(
410
+ error_code=error_codes.INVALID_ATTRIBUTE,
411
+ original_exception=ValueError(error_str),
412
+ )
413
+
414
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
415
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
416
+ self._deps = self._get_dependencies()
406
417
 
407
418
  assert isinstance(
408
419
  dataset._session, Session
@@ -460,7 +471,8 @@ class GridSearchCV(BaseTransformer):
460
471
  inference_method = "transform"
461
472
 
462
473
  if isinstance(dataset, DataFrame):
463
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
474
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
475
+ self._deps = self._get_dependencies()
464
476
  assert isinstance(
465
477
  dataset._session, Session
466
478
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -519,7 +531,8 @@ class GridSearchCV(BaseTransformer):
519
531
  inference_method = "predict_proba"
520
532
 
521
533
  if isinstance(dataset, DataFrame):
522
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
534
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
535
+ self._deps = self._get_dependencies()
523
536
  assert isinstance(
524
537
  dataset._session, Session
525
538
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -579,7 +592,8 @@ class GridSearchCV(BaseTransformer):
579
592
  inference_method = "predict_log_proba"
580
593
 
581
594
  if isinstance(dataset, DataFrame):
582
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
595
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
596
+ self._deps = self._get_dependencies()
583
597
  assert isinstance(
584
598
  dataset._session, Session
585
599
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -639,7 +653,8 @@ class GridSearchCV(BaseTransformer):
639
653
  inference_method = "decision_function"
640
654
 
641
655
  if isinstance(dataset, DataFrame):
642
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
656
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
657
+ self._deps = self._get_dependencies()
643
658
  assert isinstance(
644
659
  dataset._session, Session
645
660
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -700,7 +715,8 @@ class GridSearchCV(BaseTransformer):
700
715
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
701
716
 
702
717
  if isinstance(dataset, DataFrame):
703
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
718
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
719
+ self._deps = self._get_dependencies()
704
720
  assert isinstance(
705
721
  dataset._session, Session
706
722
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -751,17 +767,15 @@ class GridSearchCV(BaseTransformer):
751
767
  transform_kwargs: ScoreKwargsTypedDict = dict()
752
768
 
753
769
  if isinstance(dataset, DataFrame):
754
- self._deps = self._batch_inference_validate_snowpark(
755
- dataset=dataset,
756
- inference_method="score",
757
- )
770
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
771
+ self._deps = self._get_dependencies()
758
772
  selected_cols = self._get_active_columns()
759
773
  if len(selected_cols) > 0:
760
774
  dataset = dataset.select(selected_cols)
761
775
  assert isinstance(dataset._session, Session) # keep mypy happy
762
776
  transform_kwargs = dict(
763
777
  session=dataset._session,
764
- dependencies=["snowflake-snowpark-python"] + self._deps,
778
+ dependencies=self._deps,
765
779
  score_sproc_imports=["sklearn"],
766
780
  )
767
781
  elif isinstance(dataset, pd.DataFrame):
@@ -785,12 +799,22 @@ class GridSearchCV(BaseTransformer):
785
799
 
786
800
  return output_score
787
801
 
788
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
802
+ def to_sklearn(self) -> sklearn.model_selection.GridSearchCV:
803
+ """
804
+ Get sklearn.model_selection.GridSearchCV object.
805
+ """
806
+ assert self._sklearn_object is not None
807
+ return self._sklearn_object
808
+
809
+ def _get_dependencies(self) -> List[str]:
810
+ return self._deps
811
+
812
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
789
813
  self._model_signature_dict = dict()
790
814
 
791
815
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
792
816
 
793
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
817
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
794
818
  outputs: List[BaseFeatureSpec] = []
795
819
  if hasattr(self, "predict"):
796
820
  # keep mypy happy
@@ -798,18 +822,20 @@ class GridSearchCV(BaseTransformer):
798
822
  # For classifier, the type of predict is the same as the type of label
799
823
  if self._sklearn_object._estimator_type == "classifier":
800
824
  # label columns is the desired type for output
801
- outputs = list(_infer_signature(dataset[self.label_cols], "output"))
825
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
802
826
  # rename the output columns
803
827
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
804
828
  self._model_signature_dict["predict"] = ModelSignature(
805
829
  inputs, ([] if self._drop_input_cols else inputs) + outputs
806
830
  )
831
+
807
832
  # For regressor, the type of predict is float64
808
833
  elif self._sklearn_object._estimator_type == "regressor":
809
834
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
810
835
  self._model_signature_dict["predict"] = ModelSignature(
811
836
  inputs, ([] if self._drop_input_cols else inputs) + outputs
812
837
  )
838
+
813
839
  for prob_func in PROB_FUNCTIONS:
814
840
  if hasattr(self, prob_func):
815
841
  output_cols_prefix: str = f"{prob_func}_"
@@ -819,6 +845,12 @@ class GridSearchCV(BaseTransformer):
819
845
  inputs, ([] if self._drop_input_cols else inputs) + outputs
820
846
  )
821
847
 
848
+ # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
849
+ items = list(self._model_signature_dict.items())
850
+ for method, signature in items:
851
+ signature._outputs = _rename_signature_with_snowflake_identifiers(signature._outputs)
852
+ self._model_signature_dict[method] = signature
853
+
822
854
  @property
823
855
  def model_signatures(self) -> Dict[str, ModelSignature]:
824
856
  """Returns model signature of current class.
@@ -827,7 +859,7 @@ class GridSearchCV(BaseTransformer):
827
859
  SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
828
860
 
829
861
  Returns:
830
- Dict[str, ModelSignature]: each method and its input output signature
862
+ each method and its input output signature
831
863
  """
832
864
  if self._model_signature_dict is None:
833
865
  raise exceptions.SnowflakeMLException(
@@ -835,13 +867,3 @@ class GridSearchCV(BaseTransformer):
835
867
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
836
868
  )
837
869
  return self._model_signature_dict
838
-
839
- def to_sklearn(self) -> sklearn.model_selection.GridSearchCV:
840
- """
841
- Get sklearn.model_selection.GridSearchCV object.
842
- """
843
- assert self._sklearn_object is not None
844
- return self._sklearn_object
845
-
846
- def _get_dependencies(self) -> List[str]:
847
- return self._deps
@@ -17,6 +17,7 @@ from snowflake.ml.model.model_signature import (
17
17
  FeatureSpec,
18
18
  ModelSignature,
19
19
  _infer_signature,
20
+ _rename_signature_with_snowflake_identifiers,
20
21
  )
21
22
  from snowflake.ml.modeling._internal.estimator_utils import (
22
23
  gather_dependencies,
@@ -343,11 +344,25 @@ class RandomizedSearchCV(BaseTransformer):
343
344
  )
344
345
  self._sklearn_object = model_trainer.train()
345
346
  self._is_fitted = True
346
- self._get_model_signatures(dataset)
347
+ self._generate_model_signatures(dataset)
347
348
  return self
348
349
 
349
- def _batch_inference_validate_snowpark(self, dataset: DataFrame, inference_method: str) -> List[str]:
350
- """Util method to run validate that batch inference can be run on a snowpark dataframe."""
350
+ def _batch_inference_validate_snowpark(
351
+ self,
352
+ dataset: DataFrame,
353
+ inference_method: str,
354
+ ) -> None:
355
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
356
+
357
+ Args:
358
+ dataset: snowpark dataframe
359
+ inference_method: the inference method such as predict, score...
360
+
361
+ Raises:
362
+ SnowflakeMLException: If the estimator is not fitted, raise error
363
+ SnowflakeMLException: If the session is None, raise error
364
+
365
+ """
351
366
  if not self._is_fitted:
352
367
  raise exceptions.SnowflakeMLException(
353
368
  error_code=error_codes.METHOD_NOT_ALLOWED,
@@ -362,10 +377,6 @@ class RandomizedSearchCV(BaseTransformer):
362
377
  error_code=error_codes.NOT_FOUND,
363
378
  original_exception=ValueError("Session must not specified for snowpark dataset."),
364
379
  )
365
- # Validate that key package version in user workspace are supported in snowflake conda channel
366
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
367
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT
368
- )
369
380
 
370
381
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
371
382
  @telemetry.send_api_usage_telemetry(
@@ -383,6 +394,9 @@ class RandomizedSearchCV(BaseTransformer):
383
394
 
384
395
  Returns:
385
396
  Transformed dataset.
397
+
398
+ Raises:
399
+ SnowflakeMLException: when the output column(s) doesn't exist in the model signature, raise error
386
400
  """
387
401
  super()._check_dataset_type(dataset)
388
402
 
@@ -395,13 +409,24 @@ class RandomizedSearchCV(BaseTransformer):
395
409
  expected_type_inferred = ""
396
410
  # infer the datatype from label columns
397
411
  if "predict" in self.model_signatures:
398
- expected_type_inferred = convert_sp_to_sf_type(
399
- self.model_signatures["predict"].outputs[0].as_snowpark_type()
400
- )
401
- self._deps = self._batch_inference_validate_snowpark(
402
- dataset=dataset,
403
- inference_method=inference_method,
404
- )
412
+ # Batch inference takes a single expected output column type. Use the first columns type for now.
413
+ label_cols_signatures = [
414
+ row for row in self.model_signatures["predict"].outputs if row.name in self.output_cols
415
+ ]
416
+ if len(label_cols_signatures) == 0:
417
+ error_str = (
418
+ f"Output columns {self.output_cols} do not match"
419
+ f"model signatures {self.model_signatures['predict'].outputs}."
420
+ )
421
+ raise exceptions.SnowflakeMLException(
422
+ error_code=error_codes.INVALID_ATTRIBUTE,
423
+ original_exception=ValueError(error_str),
424
+ )
425
+
426
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
427
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
428
+ self._deps = self._get_dependencies()
429
+
405
430
  assert isinstance(
406
431
  dataset._session, Session
407
432
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -457,7 +482,9 @@ class RandomizedSearchCV(BaseTransformer):
457
482
  inference_method = "transform"
458
483
 
459
484
  if isinstance(dataset, DataFrame):
460
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
485
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
486
+ self._deps = self._get_dependencies()
487
+
461
488
  assert isinstance(
462
489
  dataset._session, Session
463
490
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -515,7 +542,9 @@ class RandomizedSearchCV(BaseTransformer):
515
542
  inference_method = "predict_proba"
516
543
 
517
544
  if isinstance(dataset, DataFrame):
518
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
545
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
546
+ self._deps = self._get_dependencies()
547
+
519
548
  assert isinstance(
520
549
  dataset._session, Session
521
550
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -575,7 +604,9 @@ class RandomizedSearchCV(BaseTransformer):
575
604
  inference_method = "predict_log_proba"
576
605
 
577
606
  if isinstance(dataset, DataFrame):
578
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
607
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
608
+ self._deps = self._get_dependencies()
609
+
579
610
  assert isinstance(
580
611
  dataset._session, Session
581
612
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -634,7 +665,9 @@ class RandomizedSearchCV(BaseTransformer):
634
665
  inference_method = "decision_function"
635
666
 
636
667
  if isinstance(dataset, DataFrame):
637
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
668
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
669
+ self._deps = self._get_dependencies()
670
+
638
671
  assert isinstance(
639
672
  dataset._session, Session
640
673
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -695,7 +728,9 @@ class RandomizedSearchCV(BaseTransformer):
695
728
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
696
729
 
697
730
  if isinstance(dataset, DataFrame):
698
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
731
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
732
+ self._deps = self._get_dependencies()
733
+
699
734
  assert isinstance(
700
735
  dataset._session, Session
701
736
  ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
@@ -745,10 +780,9 @@ class RandomizedSearchCV(BaseTransformer):
745
780
  transform_kwargs: ScoreKwargsTypedDict = dict()
746
781
 
747
782
  if isinstance(dataset, DataFrame):
748
- self._deps = self._batch_inference_validate_snowpark(
749
- dataset=dataset,
750
- inference_method="score",
751
- )
783
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
784
+ self._deps = self._get_dependencies()
785
+
752
786
  selected_cols = self._get_active_columns()
753
787
  if len(selected_cols) > 0:
754
788
  dataset = dataset.select(selected_cols)
@@ -756,7 +790,7 @@ class RandomizedSearchCV(BaseTransformer):
756
790
  assert isinstance(dataset._session, Session) # keep mypy happy
757
791
  transform_kwargs = dict(
758
792
  session=dataset._session,
759
- dependencies=["snowflake-snowpark-python"] + self._deps,
793
+ dependencies=self._deps,
760
794
  score_sproc_imports=["sklearn"],
761
795
  )
762
796
  elif isinstance(dataset, pd.DataFrame):
@@ -780,12 +814,22 @@ class RandomizedSearchCV(BaseTransformer):
780
814
 
781
815
  return output_score
782
816
 
783
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
817
+ def to_sklearn(self) -> sklearn.model_selection.RandomizedSearchCV:
818
+ """
819
+ Get sklearn.model_selection.RandomizedSearchCV object.
820
+ """
821
+ assert self._sklearn_object is not None
822
+ return self._sklearn_object
823
+
824
+ def _get_dependencies(self) -> List[str]:
825
+ return self._deps
826
+
827
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
784
828
  self._model_signature_dict = dict()
785
829
 
786
830
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
787
831
 
788
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
832
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
789
833
  outputs: List[BaseFeatureSpec] = []
790
834
  if hasattr(self, "predict"):
791
835
  # keep mypy happy
@@ -793,18 +837,20 @@ class RandomizedSearchCV(BaseTransformer):
793
837
  # For classifier, the type of predict is the same as the type of label
794
838
  if self._sklearn_object._estimator_type == "classifier":
795
839
  # label columns is the desired type for output
796
- outputs = list(_infer_signature(dataset[self.label_cols], "output"))
840
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
797
841
  # rename the output columns
798
842
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
799
843
  self._model_signature_dict["predict"] = ModelSignature(
800
844
  inputs, ([] if self._drop_input_cols else inputs) + outputs
801
845
  )
846
+
802
847
  # For regressor, the type of predict is float64
803
848
  elif self._sklearn_object._estimator_type == "regressor":
804
849
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
805
850
  self._model_signature_dict["predict"] = ModelSignature(
806
851
  inputs, ([] if self._drop_input_cols else inputs) + outputs
807
852
  )
853
+
808
854
  for prob_func in PROB_FUNCTIONS:
809
855
  if hasattr(self, prob_func):
810
856
  output_cols_prefix: str = f"{prob_func}_"
@@ -814,6 +860,12 @@ class RandomizedSearchCV(BaseTransformer):
814
860
  inputs, ([] if self._drop_input_cols else inputs) + outputs
815
861
  )
816
862
 
863
+ # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
864
+ items = list(self._model_signature_dict.items())
865
+ for method, signature in items:
866
+ signature._outputs = _rename_signature_with_snowflake_identifiers(signature._outputs)
867
+ self._model_signature_dict[method] = signature
868
+
817
869
  @property
818
870
  def model_signatures(self) -> Dict[str, ModelSignature]:
819
871
  """Returns model signature of current class.
@@ -822,7 +874,7 @@ class RandomizedSearchCV(BaseTransformer):
822
874
  SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
823
875
 
824
876
  Returns:
825
- Dict[str, ModelSignature]: each method and its input output signature
877
+ each method and its input output signature
826
878
  """
827
879
  if self._model_signature_dict is None:
828
880
  raise exceptions.SnowflakeMLException(
@@ -830,13 +882,3 @@ class RandomizedSearchCV(BaseTransformer):
830
882
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
831
883
  )
832
884
  return self._model_signature_dict
833
-
834
- def to_sklearn(self) -> sklearn.model_selection.RandomizedSearchCV:
835
- """
836
- Get sklearn.model_selection.RandomizedSearchCV object.
837
- """
838
- assert self._sklearn_object is not None
839
- return self._sklearn_object
840
-
841
- def _get_dependencies(self) -> List[str]:
842
- return self._deps