snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class MissingIndicator(BaseTransformer):
71
64
  r"""Binary indicators for missing values
72
65
  For more details on this class, see [sklearn.impute.MissingIndicator]
@@ -224,12 +217,7 @@ class MissingIndicator(BaseTransformer):
224
217
  )
225
218
  return selected_cols
226
219
 
227
- @telemetry.send_api_usage_telemetry(
228
- project=_PROJECT,
229
- subproject=_SUBPROJECT,
230
- custom_tags=dict([("autogen", True)]),
231
- )
232
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MissingIndicator":
220
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MissingIndicator":
233
221
  """Fit the transformer on `X`
234
222
  For more details on this function, see [sklearn.impute.MissingIndicator.fit]
235
223
  (https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html#sklearn.impute.MissingIndicator.fit)
@@ -256,12 +244,14 @@ class MissingIndicator(BaseTransformer):
256
244
 
257
245
  self._snowpark_cols = dataset.select(self.input_cols).columns
258
246
 
259
- # If we are already in a stored procedure, no need to kick off another one.
247
+ # If we are already in a stored procedure, no need to kick off another one.
260
248
  if SNOWML_SPROC_ENV in os.environ:
261
249
  statement_params = telemetry.get_function_usage_statement_params(
262
250
  project=_PROJECT,
263
251
  subproject=_SUBPROJECT,
264
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MissingIndicator.__class__.__name__),
252
+ function_name=telemetry.get_statement_params_full_func_name(
253
+ inspect.currentframe(), MissingIndicator.__class__.__name__
254
+ ),
265
255
  api_calls=[Session.call],
266
256
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
267
257
  )
@@ -282,27 +272,24 @@ class MissingIndicator(BaseTransformer):
282
272
  )
283
273
  self._sklearn_object = model_trainer.train()
284
274
  self._is_fitted = True
285
- self._get_model_signatures(dataset)
275
+ self._generate_model_signatures(dataset)
286
276
  return self
287
277
 
288
278
  def _batch_inference_validate_snowpark(
289
279
  self,
290
280
  dataset: DataFrame,
291
281
  inference_method: str,
292
- ) -> List[str]:
293
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
294
- return the available package that exists in the snowflake anaconda channel
282
+ ) -> None:
283
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
295
284
 
296
285
  Args:
297
286
  dataset: snowpark dataframe
298
287
  inference_method: the inference method such as predict, score...
299
-
288
+
300
289
  Raises:
301
290
  SnowflakeMLException: If the estimator is not fitted, raise error
302
291
  SnowflakeMLException: If the session is None, raise error
303
292
 
304
- Returns:
305
- A list of available package that exists in the snowflake anaconda channel
306
293
  """
307
294
  if not self._is_fitted:
308
295
  raise exceptions.SnowflakeMLException(
@@ -320,9 +307,7 @@ class MissingIndicator(BaseTransformer):
320
307
  "Session must not specified for snowpark dataset."
321
308
  ),
322
309
  )
323
- # Validate that key package version in user workspace are supported in snowflake conda channel
324
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
325
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
310
+
326
311
 
327
312
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
328
313
  @telemetry.send_api_usage_telemetry(
@@ -356,7 +341,9 @@ class MissingIndicator(BaseTransformer):
356
341
  # when it is classifier, infer the datatype from label columns
357
342
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
358
343
  # Batch inference takes a single expected output column type. Use the first columns type for now.
359
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
344
+ label_cols_signatures = [
345
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
346
+ ]
360
347
  if len(label_cols_signatures) == 0:
361
348
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
362
349
  raise exceptions.SnowflakeMLException(
@@ -364,25 +351,23 @@ class MissingIndicator(BaseTransformer):
364
351
  original_exception=ValueError(error_str),
365
352
  )
366
353
 
367
- expected_type_inferred = convert_sp_to_sf_type(
368
- label_cols_signatures[0].as_snowpark_type()
369
- )
354
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
370
355
 
371
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
372
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
356
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
357
+ self._deps = self._get_dependencies()
358
+ assert isinstance(
359
+ dataset._session, Session
360
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
373
361
 
374
362
  transform_kwargs = dict(
375
- session = dataset._session,
376
- dependencies = self._deps,
377
- drop_input_cols = self._drop_input_cols,
378
- expected_output_cols_type = expected_type_inferred,
363
+ session=dataset._session,
364
+ dependencies=self._deps,
365
+ drop_input_cols=self._drop_input_cols,
366
+ expected_output_cols_type=expected_type_inferred,
379
367
  )
380
368
 
381
369
  elif isinstance(dataset, pd.DataFrame):
382
- transform_kwargs = dict(
383
- snowpark_input_cols = self._snowpark_cols,
384
- drop_input_cols = self._drop_input_cols
385
- )
370
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
386
371
 
387
372
  transform_handlers = ModelTransformerBuilder.build(
388
373
  dataset=dataset,
@@ -424,7 +409,7 @@ class MissingIndicator(BaseTransformer):
424
409
  Transformed dataset.
425
410
  """
426
411
  super()._check_dataset_type(dataset)
427
- inference_method="transform"
412
+ inference_method = "transform"
428
413
 
429
414
  # This dictionary contains optional kwargs for batch inference. These kwargs
430
415
  # are specific to the type of dataset used.
@@ -454,24 +439,19 @@ class MissingIndicator(BaseTransformer):
454
439
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
455
440
  expected_dtype = convert_sp_to_sf_type(output_types[0])
456
441
 
457
- self._deps = self._batch_inference_validate_snowpark(
458
- dataset=dataset,
459
- inference_method=inference_method,
460
- )
442
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
443
+ self._deps = self._get_dependencies()
461
444
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
462
445
 
463
446
  transform_kwargs = dict(
464
- session = dataset._session,
465
- dependencies = self._deps,
466
- drop_input_cols = self._drop_input_cols,
467
- expected_output_cols_type = expected_dtype,
447
+ session=dataset._session,
448
+ dependencies=self._deps,
449
+ drop_input_cols=self._drop_input_cols,
450
+ expected_output_cols_type=expected_dtype,
468
451
  )
469
452
 
470
453
  elif isinstance(dataset, pd.DataFrame):
471
- transform_kwargs = dict(
472
- snowpark_input_cols = self._snowpark_cols,
473
- drop_input_cols = self._drop_input_cols
474
- )
454
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
475
455
 
476
456
  transform_handlers = ModelTransformerBuilder.build(
477
457
  dataset=dataset,
@@ -490,7 +470,11 @@ class MissingIndicator(BaseTransformer):
490
470
  return output_df
491
471
 
492
472
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
493
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
473
+ def fit_predict(
474
+ self,
475
+ dataset: Union[DataFrame, pd.DataFrame],
476
+ output_cols_prefix: str = "fit_predict_",
477
+ ) -> Union[DataFrame, pd.DataFrame]:
494
478
  """ Method not supported for this class.
495
479
 
496
480
 
@@ -515,22 +499,106 @@ class MissingIndicator(BaseTransformer):
515
499
  )
516
500
  output_result, fitted_estimator = model_trainer.train_fit_predict(
517
501
  drop_input_cols=self._drop_input_cols,
518
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
502
+ expected_output_cols_list=(
503
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
504
+ ),
519
505
  )
520
506
  self._sklearn_object = fitted_estimator
521
507
  self._is_fitted = True
522
508
  return output_result
523
509
 
510
+
511
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
512
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
513
+ """ Generate missing values indicator for `X`
514
+ For more details on this function, see [sklearn.impute.MissingIndicator.fit_transform]
515
+ (https://scikit-learn.org/stable/modules/generated/sklearn.impute.MissingIndicator.html#sklearn.impute.MissingIndicator.fit_transform)
516
+
517
+
518
+ Raises:
519
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
524
520
 
525
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
526
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
527
- """
521
+ Args:
522
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
523
+ Snowpark or Pandas DataFrame.
524
+ output_cols_prefix: Prefix for the response columns
528
525
  Returns:
529
526
  Transformed dataset.
530
527
  """
531
- self.fit(dataset)
532
- assert self._sklearn_object is not None
533
- return self._sklearn_object.embedding_
528
+ self._infer_input_output_cols(dataset)
529
+ super()._check_dataset_type(dataset)
530
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
531
+ estimator=self._sklearn_object,
532
+ dataset=dataset,
533
+ input_cols=self.input_cols,
534
+ label_cols=self.label_cols,
535
+ sample_weight_col=self.sample_weight_col,
536
+ autogenerated=self._autogenerated,
537
+ subproject=_SUBPROJECT,
538
+ )
539
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
540
+ drop_input_cols=self._drop_input_cols,
541
+ expected_output_cols_list=self.output_cols,
542
+ )
543
+ self._sklearn_object = fitted_estimator
544
+ self._is_fitted = True
545
+ return output_result
546
+
547
+
548
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
549
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
550
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
551
+ """
552
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
553
+ # The following condition is introduced for kneighbors methods, and not used in other methods
554
+ if output_cols:
555
+ output_cols = [
556
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
557
+ for c in output_cols
558
+ ]
559
+ elif getattr(self._sklearn_object, "classes_", None) is None:
560
+ output_cols = [output_cols_prefix]
561
+ elif self._sklearn_object is not None:
562
+ classes = self._sklearn_object.classes_
563
+ if isinstance(classes, numpy.ndarray):
564
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
565
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
566
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
567
+ output_cols = []
568
+ for i, cl in enumerate(classes):
569
+ # For binary classification, there is only one output column for each class
570
+ # ndarray as the two classes are complementary.
571
+ if len(cl) == 2:
572
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
573
+ else:
574
+ output_cols.extend([
575
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
576
+ ])
577
+ else:
578
+ output_cols = []
579
+
580
+ # Make sure column names are valid snowflake identifiers.
581
+ assert output_cols is not None # Make MyPy happy
582
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
583
+
584
+ return rv
585
+
586
+ def _align_expected_output_names(
587
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
588
+ ) -> List[str]:
589
+ # in case the inferred output column names dimension is different
590
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
591
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
592
+ output_df_columns = list(output_df_pd.columns)
593
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
594
+ if self.sample_weight_col:
595
+ output_df_columns_set -= set(self.sample_weight_col)
596
+ # if the dimension of inferred output column names is correct; use it
597
+ if len(expected_output_cols_list) == len(output_df_columns_set):
598
+ return expected_output_cols_list
599
+ # otherwise, use the sklearn estimator's output
600
+ else:
601
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
534
602
 
535
603
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
536
604
  @telemetry.send_api_usage_telemetry(
@@ -562,24 +630,26 @@ class MissingIndicator(BaseTransformer):
562
630
  # are specific to the type of dataset used.
563
631
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
564
632
 
633
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
634
+
565
635
  if isinstance(dataset, DataFrame):
566
- self._deps = self._batch_inference_validate_snowpark(
567
- dataset=dataset,
568
- inference_method=inference_method,
569
- )
570
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
636
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
637
+ self._deps = self._get_dependencies()
638
+ assert isinstance(
639
+ dataset._session, Session
640
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
571
641
  transform_kwargs = dict(
572
642
  session=dataset._session,
573
643
  dependencies=self._deps,
574
- drop_input_cols = self._drop_input_cols,
644
+ drop_input_cols=self._drop_input_cols,
575
645
  expected_output_cols_type="float",
576
646
  )
647
+ expected_output_cols = self._align_expected_output_names(
648
+ inference_method, dataset, expected_output_cols, output_cols_prefix
649
+ )
577
650
 
578
651
  elif isinstance(dataset, pd.DataFrame):
579
- transform_kwargs = dict(
580
- snowpark_input_cols = self._snowpark_cols,
581
- drop_input_cols = self._drop_input_cols
582
- )
652
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
583
653
 
584
654
  transform_handlers = ModelTransformerBuilder.build(
585
655
  dataset=dataset,
@@ -591,7 +661,7 @@ class MissingIndicator(BaseTransformer):
591
661
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
592
662
  inference_method=inference_method,
593
663
  input_cols=self.input_cols,
594
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
664
+ expected_output_cols=expected_output_cols,
595
665
  **transform_kwargs
596
666
  )
597
667
  return output_df
@@ -621,29 +691,30 @@ class MissingIndicator(BaseTransformer):
621
691
  Output dataset with log probability of the sample for each class in the model.
622
692
  """
623
693
  super()._check_dataset_type(dataset)
624
- inference_method="predict_log_proba"
694
+ inference_method = "predict_log_proba"
695
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
625
696
 
626
697
  # This dictionary contains optional kwargs for batch inference. These kwargs
627
698
  # are specific to the type of dataset used.
628
699
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
629
700
 
630
701
  if isinstance(dataset, DataFrame):
631
- self._deps = self._batch_inference_validate_snowpark(
632
- dataset=dataset,
633
- inference_method=inference_method,
634
- )
635
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
702
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
703
+ self._deps = self._get_dependencies()
704
+ assert isinstance(
705
+ dataset._session, Session
706
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
636
707
  transform_kwargs = dict(
637
708
  session=dataset._session,
638
709
  dependencies=self._deps,
639
- drop_input_cols = self._drop_input_cols,
710
+ drop_input_cols=self._drop_input_cols,
640
711
  expected_output_cols_type="float",
641
712
  )
713
+ expected_output_cols = self._align_expected_output_names(
714
+ inference_method, dataset, expected_output_cols, output_cols_prefix
715
+ )
642
716
  elif isinstance(dataset, pd.DataFrame):
643
- transform_kwargs = dict(
644
- snowpark_input_cols = self._snowpark_cols,
645
- drop_input_cols = self._drop_input_cols
646
- )
717
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
647
718
 
648
719
  transform_handlers = ModelTransformerBuilder.build(
649
720
  dataset=dataset,
@@ -656,7 +727,7 @@ class MissingIndicator(BaseTransformer):
656
727
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
657
728
  inference_method=inference_method,
658
729
  input_cols=self.input_cols,
659
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
730
+ expected_output_cols=expected_output_cols,
660
731
  **transform_kwargs
661
732
  )
662
733
  return output_df
@@ -682,30 +753,32 @@ class MissingIndicator(BaseTransformer):
682
753
  Output dataset with results of the decision function for the samples in input dataset.
683
754
  """
684
755
  super()._check_dataset_type(dataset)
685
- inference_method="decision_function"
756
+ inference_method = "decision_function"
686
757
 
687
758
  # This dictionary contains optional kwargs for batch inference. These kwargs
688
759
  # are specific to the type of dataset used.
689
760
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
690
761
 
762
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
763
+
691
764
  if isinstance(dataset, DataFrame):
692
- self._deps = self._batch_inference_validate_snowpark(
693
- dataset=dataset,
694
- inference_method=inference_method,
695
- )
696
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
765
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
766
+ self._deps = self._get_dependencies()
767
+ assert isinstance(
768
+ dataset._session, Session
769
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
697
770
  transform_kwargs = dict(
698
771
  session=dataset._session,
699
772
  dependencies=self._deps,
700
- drop_input_cols = self._drop_input_cols,
773
+ drop_input_cols=self._drop_input_cols,
701
774
  expected_output_cols_type="float",
702
775
  )
776
+ expected_output_cols = self._align_expected_output_names(
777
+ inference_method, dataset, expected_output_cols, output_cols_prefix
778
+ )
703
779
 
704
780
  elif isinstance(dataset, pd.DataFrame):
705
- transform_kwargs = dict(
706
- snowpark_input_cols = self._snowpark_cols,
707
- drop_input_cols = self._drop_input_cols
708
- )
781
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
709
782
 
710
783
  transform_handlers = ModelTransformerBuilder.build(
711
784
  dataset=dataset,
@@ -718,7 +791,7 @@ class MissingIndicator(BaseTransformer):
718
791
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
719
792
  inference_method=inference_method,
720
793
  input_cols=self.input_cols,
721
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
794
+ expected_output_cols=expected_output_cols,
722
795
  **transform_kwargs
723
796
  )
724
797
  return output_df
@@ -747,17 +820,17 @@ class MissingIndicator(BaseTransformer):
747
820
  Output dataset with probability of the sample for each class in the model.
748
821
  """
749
822
  super()._check_dataset_type(dataset)
750
- inference_method="score_samples"
823
+ inference_method = "score_samples"
751
824
 
752
825
  # This dictionary contains optional kwargs for batch inference. These kwargs
753
826
  # are specific to the type of dataset used.
754
827
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
755
828
 
829
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
830
+
756
831
  if isinstance(dataset, DataFrame):
757
- self._deps = self._batch_inference_validate_snowpark(
758
- dataset=dataset,
759
- inference_method=inference_method,
760
- )
832
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
833
+ self._deps = self._get_dependencies()
761
834
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
762
835
  transform_kwargs = dict(
763
836
  session=dataset._session,
@@ -765,6 +838,9 @@ class MissingIndicator(BaseTransformer):
765
838
  drop_input_cols = self._drop_input_cols,
766
839
  expected_output_cols_type="float",
767
840
  )
841
+ expected_output_cols = self._align_expected_output_names(
842
+ inference_method, dataset, expected_output_cols, output_cols_prefix
843
+ )
768
844
 
769
845
  elif isinstance(dataset, pd.DataFrame):
770
846
  transform_kwargs = dict(
@@ -783,7 +859,7 @@ class MissingIndicator(BaseTransformer):
783
859
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
784
860
  inference_method=inference_method,
785
861
  input_cols=self.input_cols,
786
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
862
+ expected_output_cols=expected_output_cols,
787
863
  **transform_kwargs
788
864
  )
789
865
  return output_df
@@ -816,17 +892,15 @@ class MissingIndicator(BaseTransformer):
816
892
  transform_kwargs: ScoreKwargsTypedDict = dict()
817
893
 
818
894
  if isinstance(dataset, DataFrame):
819
- self._deps = self._batch_inference_validate_snowpark(
820
- dataset=dataset,
821
- inference_method="score",
822
- )
895
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
896
+ self._deps = self._get_dependencies()
823
897
  selected_cols = self._get_active_columns()
824
898
  if len(selected_cols) > 0:
825
899
  dataset = dataset.select(selected_cols)
826
900
  assert isinstance(dataset._session, Session) # keep mypy happy
827
901
  transform_kwargs = dict(
828
902
  session=dataset._session,
829
- dependencies=["snowflake-snowpark-python"] + self._deps,
903
+ dependencies=self._deps,
830
904
  score_sproc_imports=['sklearn'],
831
905
  )
832
906
  elif isinstance(dataset, pd.DataFrame):
@@ -891,11 +965,8 @@ class MissingIndicator(BaseTransformer):
891
965
 
892
966
  if isinstance(dataset, DataFrame):
893
967
 
894
- self._deps = self._batch_inference_validate_snowpark(
895
- dataset=dataset,
896
- inference_method=inference_method,
897
-
898
- )
968
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
969
+ self._deps = self._get_dependencies()
899
970
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
900
971
  transform_kwargs = dict(
901
972
  session = dataset._session,
@@ -928,50 +999,84 @@ class MissingIndicator(BaseTransformer):
928
999
  )
929
1000
  return output_df
930
1001
 
1002
+
1003
+
1004
+ def to_sklearn(self) -> Any:
1005
+ """Get sklearn.impute.MissingIndicator object.
1006
+ """
1007
+ if self._sklearn_object is None:
1008
+ self._sklearn_object = self._create_sklearn_object()
1009
+ return self._sklearn_object
1010
+
1011
+ def to_xgboost(self) -> Any:
1012
+ raise exceptions.SnowflakeMLException(
1013
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1014
+ original_exception=AttributeError(
1015
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1016
+ "to_xgboost()",
1017
+ "to_sklearn()"
1018
+ )
1019
+ ),
1020
+ )
931
1021
 
932
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1022
+ def to_lightgbm(self) -> Any:
1023
+ raise exceptions.SnowflakeMLException(
1024
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1025
+ original_exception=AttributeError(
1026
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1027
+ "to_lightgbm()",
1028
+ "to_sklearn()"
1029
+ )
1030
+ ),
1031
+ )
1032
+
1033
+ def _get_dependencies(self) -> List[str]:
1034
+ return self._deps
1035
+
1036
+
1037
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
933
1038
  self._model_signature_dict = dict()
934
1039
 
935
1040
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
936
1041
 
937
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1042
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
938
1043
  outputs: List[BaseFeatureSpec] = []
939
1044
  if hasattr(self, "predict"):
940
1045
  # keep mypy happy
941
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1046
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
942
1047
  # For classifier, the type of predict is the same as the type of label
943
- if self._sklearn_object._estimator_type == 'classifier':
944
- # label columns is the desired type for output
1048
+ if self._sklearn_object._estimator_type == "classifier":
1049
+ # label columns is the desired type for output
945
1050
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
946
1051
  # rename the output columns
947
1052
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
948
- self._model_signature_dict["predict"] = ModelSignature(inputs,
949
- ([] if self._drop_input_cols else inputs)
950
- + outputs)
1053
+ self._model_signature_dict["predict"] = ModelSignature(
1054
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1055
+ )
951
1056
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
952
1057
  # For outlier models, returns -1 for outliers and 1 for inliers.
953
- # Clusterer returns int64 cluster labels.
1058
+ # Clusterer returns int64 cluster labels.
954
1059
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
955
1060
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
956
- self._model_signature_dict["predict"] = ModelSignature(inputs,
957
- ([] if self._drop_input_cols else inputs)
958
- + outputs)
959
-
1061
+ self._model_signature_dict["predict"] = ModelSignature(
1062
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1063
+ )
1064
+
960
1065
  # For regressor, the type of predict is float64
961
- elif self._sklearn_object._estimator_type == 'regressor':
1066
+ elif self._sklearn_object._estimator_type == "regressor":
962
1067
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
963
- self._model_signature_dict["predict"] = ModelSignature(inputs,
964
- ([] if self._drop_input_cols else inputs)
965
- + outputs)
966
-
1068
+ self._model_signature_dict["predict"] = ModelSignature(
1069
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1070
+ )
1071
+
967
1072
  for prob_func in PROB_FUNCTIONS:
968
1073
  if hasattr(self, prob_func):
969
1074
  output_cols_prefix: str = f"{prob_func}_"
970
1075
  output_column_names = self._get_output_column_names(output_cols_prefix)
971
1076
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
972
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
973
- ([] if self._drop_input_cols else inputs)
974
- + outputs)
1077
+ self._model_signature_dict[prob_func] = ModelSignature(
1078
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1079
+ )
975
1080
 
976
1081
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
977
1082
  items = list(self._model_signature_dict.items())
@@ -984,10 +1089,10 @@ class MissingIndicator(BaseTransformer):
984
1089
  """Returns model signature of current class.
985
1090
 
986
1091
  Raises:
987
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1092
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
988
1093
 
989
1094
  Returns:
990
- Dict[str, ModelSignature]: each method and its input output signature
1095
+ Dict with each method and its input output signature
991
1096
  """
992
1097
  if self._model_signature_dict is None:
993
1098
  raise exceptions.SnowflakeMLException(
@@ -995,35 +1100,3 @@ class MissingIndicator(BaseTransformer):
995
1100
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
996
1101
  )
997
1102
  return self._model_signature_dict
998
-
999
- def to_sklearn(self) -> Any:
1000
- """Get sklearn.impute.MissingIndicator object.
1001
- """
1002
- if self._sklearn_object is None:
1003
- self._sklearn_object = self._create_sklearn_object()
1004
- return self._sklearn_object
1005
-
1006
- def to_xgboost(self) -> Any:
1007
- raise exceptions.SnowflakeMLException(
1008
- error_code=error_codes.METHOD_NOT_ALLOWED,
1009
- original_exception=AttributeError(
1010
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1011
- "to_xgboost()",
1012
- "to_sklearn()"
1013
- )
1014
- ),
1015
- )
1016
-
1017
- def to_lightgbm(self) -> Any:
1018
- raise exceptions.SnowflakeMLException(
1019
- error_code=error_codes.METHOD_NOT_ALLOWED,
1020
- original_exception=AttributeError(
1021
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1022
- "to_lightgbm()",
1023
- "to_sklearn()"
1024
- )
1025
- ),
1026
- )
1027
-
1028
- def _get_dependencies(self) -> List[str]:
1029
- return self._deps