snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace(
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class MLPRegressor(BaseTransformer):
71
64
  r"""Multi-layer Perceptron regressor
72
65
  For more details on this class, see [sklearn.neural_network.MLPRegressor]
@@ -383,12 +376,7 @@ class MLPRegressor(BaseTransformer):
383
376
  )
384
377
  return selected_cols
385
378
 
386
- @telemetry.send_api_usage_telemetry(
387
- project=_PROJECT,
388
- subproject=_SUBPROJECT,
389
- custom_tags=dict([("autogen", True)]),
390
- )
391
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MLPRegressor":
379
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MLPRegressor":
392
380
  """Fit the model to data matrix X and target(s) y
393
381
  For more details on this function, see [sklearn.neural_network.MLPRegressor.fit]
394
382
  (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor.fit)
@@ -415,12 +403,14 @@ class MLPRegressor(BaseTransformer):
415
403
 
416
404
  self._snowpark_cols = dataset.select(self.input_cols).columns
417
405
 
418
- # If we are already in a stored procedure, no need to kick off another one.
406
+ # If we are already in a stored procedure, no need to kick off another one.
419
407
  if SNOWML_SPROC_ENV in os.environ:
420
408
  statement_params = telemetry.get_function_usage_statement_params(
421
409
  project=_PROJECT,
422
410
  subproject=_SUBPROJECT,
423
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MLPRegressor.__class__.__name__),
411
+ function_name=telemetry.get_statement_params_full_func_name(
412
+ inspect.currentframe(), MLPRegressor.__class__.__name__
413
+ ),
424
414
  api_calls=[Session.call],
425
415
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
426
416
  )
@@ -441,27 +431,24 @@ class MLPRegressor(BaseTransformer):
441
431
  )
442
432
  self._sklearn_object = model_trainer.train()
443
433
  self._is_fitted = True
444
- self._get_model_signatures(dataset)
434
+ self._generate_model_signatures(dataset)
445
435
  return self
446
436
 
447
437
  def _batch_inference_validate_snowpark(
448
438
  self,
449
439
  dataset: DataFrame,
450
440
  inference_method: str,
451
- ) -> List[str]:
452
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
453
- return the available package that exists in the snowflake anaconda channel
441
+ ) -> None:
442
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
454
443
 
455
444
  Args:
456
445
  dataset: snowpark dataframe
457
446
  inference_method: the inference method such as predict, score...
458
-
447
+
459
448
  Raises:
460
449
  SnowflakeMLException: If the estimator is not fitted, raise error
461
450
  SnowflakeMLException: If the session is None, raise error
462
451
 
463
- Returns:
464
- A list of available package that exists in the snowflake anaconda channel
465
452
  """
466
453
  if not self._is_fitted:
467
454
  raise exceptions.SnowflakeMLException(
@@ -479,9 +466,7 @@ class MLPRegressor(BaseTransformer):
479
466
  "Session must not specified for snowpark dataset."
480
467
  ),
481
468
  )
482
- # Validate that key package version in user workspace are supported in snowflake conda channel
483
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
484
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
469
+
485
470
 
486
471
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
487
472
  @telemetry.send_api_usage_telemetry(
@@ -517,7 +502,9 @@ class MLPRegressor(BaseTransformer):
517
502
  # when it is classifier, infer the datatype from label columns
518
503
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
519
504
  # Batch inference takes a single expected output column type. Use the first columns type for now.
520
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
505
+ label_cols_signatures = [
506
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
507
+ ]
521
508
  if len(label_cols_signatures) == 0:
522
509
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
523
510
  raise exceptions.SnowflakeMLException(
@@ -525,25 +512,23 @@ class MLPRegressor(BaseTransformer):
525
512
  original_exception=ValueError(error_str),
526
513
  )
527
514
 
528
- expected_type_inferred = convert_sp_to_sf_type(
529
- label_cols_signatures[0].as_snowpark_type()
530
- )
515
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
531
516
 
532
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
533
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
517
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
518
+ self._deps = self._get_dependencies()
519
+ assert isinstance(
520
+ dataset._session, Session
521
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
534
522
 
535
523
  transform_kwargs = dict(
536
- session = dataset._session,
537
- dependencies = self._deps,
538
- drop_input_cols = self._drop_input_cols,
539
- expected_output_cols_type = expected_type_inferred,
524
+ session=dataset._session,
525
+ dependencies=self._deps,
526
+ drop_input_cols=self._drop_input_cols,
527
+ expected_output_cols_type=expected_type_inferred,
540
528
  )
541
529
 
542
530
  elif isinstance(dataset, pd.DataFrame):
543
- transform_kwargs = dict(
544
- snowpark_input_cols = self._snowpark_cols,
545
- drop_input_cols = self._drop_input_cols
546
- )
531
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
547
532
 
548
533
  transform_handlers = ModelTransformerBuilder.build(
549
534
  dataset=dataset,
@@ -583,7 +568,7 @@ class MLPRegressor(BaseTransformer):
583
568
  Transformed dataset.
584
569
  """
585
570
  super()._check_dataset_type(dataset)
586
- inference_method="transform"
571
+ inference_method = "transform"
587
572
 
588
573
  # This dictionary contains optional kwargs for batch inference. These kwargs
589
574
  # are specific to the type of dataset used.
@@ -613,24 +598,19 @@ class MLPRegressor(BaseTransformer):
613
598
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
614
599
  expected_dtype = convert_sp_to_sf_type(output_types[0])
615
600
 
616
- self._deps = self._batch_inference_validate_snowpark(
617
- dataset=dataset,
618
- inference_method=inference_method,
619
- )
601
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
602
+ self._deps = self._get_dependencies()
620
603
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
621
604
 
622
605
  transform_kwargs = dict(
623
- session = dataset._session,
624
- dependencies = self._deps,
625
- drop_input_cols = self._drop_input_cols,
626
- expected_output_cols_type = expected_dtype,
606
+ session=dataset._session,
607
+ dependencies=self._deps,
608
+ drop_input_cols=self._drop_input_cols,
609
+ expected_output_cols_type=expected_dtype,
627
610
  )
628
611
 
629
612
  elif isinstance(dataset, pd.DataFrame):
630
- transform_kwargs = dict(
631
- snowpark_input_cols = self._snowpark_cols,
632
- drop_input_cols = self._drop_input_cols
633
- )
613
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
634
614
 
635
615
  transform_handlers = ModelTransformerBuilder.build(
636
616
  dataset=dataset,
@@ -649,7 +629,11 @@ class MLPRegressor(BaseTransformer):
649
629
  return output_df
650
630
 
651
631
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
652
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
632
+ def fit_predict(
633
+ self,
634
+ dataset: Union[DataFrame, pd.DataFrame],
635
+ output_cols_prefix: str = "fit_predict_",
636
+ ) -> Union[DataFrame, pd.DataFrame]:
653
637
  """ Method not supported for this class.
654
638
 
655
639
 
@@ -674,22 +658,104 @@ class MLPRegressor(BaseTransformer):
674
658
  )
675
659
  output_result, fitted_estimator = model_trainer.train_fit_predict(
676
660
  drop_input_cols=self._drop_input_cols,
677
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
661
+ expected_output_cols_list=(
662
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
663
+ ),
678
664
  )
679
665
  self._sklearn_object = fitted_estimator
680
666
  self._is_fitted = True
681
667
  return output_result
682
668
 
669
+
670
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
671
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
672
+ """ Method not supported for this class.
673
+
683
674
 
684
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
685
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
686
- """
675
+ Raises:
676
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
677
+
678
+ Args:
679
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
680
+ Snowpark or Pandas DataFrame.
681
+ output_cols_prefix: Prefix for the response columns
687
682
  Returns:
688
683
  Transformed dataset.
689
684
  """
690
- self.fit(dataset)
691
- assert self._sklearn_object is not None
692
- return self._sklearn_object.embedding_
685
+ self._infer_input_output_cols(dataset)
686
+ super()._check_dataset_type(dataset)
687
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
688
+ estimator=self._sklearn_object,
689
+ dataset=dataset,
690
+ input_cols=self.input_cols,
691
+ label_cols=self.label_cols,
692
+ sample_weight_col=self.sample_weight_col,
693
+ autogenerated=self._autogenerated,
694
+ subproject=_SUBPROJECT,
695
+ )
696
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
697
+ drop_input_cols=self._drop_input_cols,
698
+ expected_output_cols_list=self.output_cols,
699
+ )
700
+ self._sklearn_object = fitted_estimator
701
+ self._is_fitted = True
702
+ return output_result
703
+
704
+
705
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
706
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
707
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
708
+ """
709
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
710
+ # The following condition is introduced for kneighbors methods, and not used in other methods
711
+ if output_cols:
712
+ output_cols = [
713
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
714
+ for c in output_cols
715
+ ]
716
+ elif getattr(self._sklearn_object, "classes_", None) is None:
717
+ output_cols = [output_cols_prefix]
718
+ elif self._sklearn_object is not None:
719
+ classes = self._sklearn_object.classes_
720
+ if isinstance(classes, numpy.ndarray):
721
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
722
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
723
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
724
+ output_cols = []
725
+ for i, cl in enumerate(classes):
726
+ # For binary classification, there is only one output column for each class
727
+ # ndarray as the two classes are complementary.
728
+ if len(cl) == 2:
729
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
730
+ else:
731
+ output_cols.extend([
732
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
733
+ ])
734
+ else:
735
+ output_cols = []
736
+
737
+ # Make sure column names are valid snowflake identifiers.
738
+ assert output_cols is not None # Make MyPy happy
739
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
740
+
741
+ return rv
742
+
743
+ def _align_expected_output_names(
744
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
745
+ ) -> List[str]:
746
+ # in case the inferred output column names dimension is different
747
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
748
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
749
+ output_df_columns = list(output_df_pd.columns)
750
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
751
+ if self.sample_weight_col:
752
+ output_df_columns_set -= set(self.sample_weight_col)
753
+ # if the dimension of inferred output column names is correct; use it
754
+ if len(expected_output_cols_list) == len(output_df_columns_set):
755
+ return expected_output_cols_list
756
+ # otherwise, use the sklearn estimator's output
757
+ else:
758
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
693
759
 
694
760
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
695
761
  @telemetry.send_api_usage_telemetry(
@@ -721,24 +787,26 @@ class MLPRegressor(BaseTransformer):
721
787
  # are specific to the type of dataset used.
722
788
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
723
789
 
790
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
791
+
724
792
  if isinstance(dataset, DataFrame):
725
- self._deps = self._batch_inference_validate_snowpark(
726
- dataset=dataset,
727
- inference_method=inference_method,
728
- )
729
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
793
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
794
+ self._deps = self._get_dependencies()
795
+ assert isinstance(
796
+ dataset._session, Session
797
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
730
798
  transform_kwargs = dict(
731
799
  session=dataset._session,
732
800
  dependencies=self._deps,
733
- drop_input_cols = self._drop_input_cols,
801
+ drop_input_cols=self._drop_input_cols,
734
802
  expected_output_cols_type="float",
735
803
  )
804
+ expected_output_cols = self._align_expected_output_names(
805
+ inference_method, dataset, expected_output_cols, output_cols_prefix
806
+ )
736
807
 
737
808
  elif isinstance(dataset, pd.DataFrame):
738
- transform_kwargs = dict(
739
- snowpark_input_cols = self._snowpark_cols,
740
- drop_input_cols = self._drop_input_cols
741
- )
809
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
742
810
 
743
811
  transform_handlers = ModelTransformerBuilder.build(
744
812
  dataset=dataset,
@@ -750,7 +818,7 @@ class MLPRegressor(BaseTransformer):
750
818
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
751
819
  inference_method=inference_method,
752
820
  input_cols=self.input_cols,
753
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
821
+ expected_output_cols=expected_output_cols,
754
822
  **transform_kwargs
755
823
  )
756
824
  return output_df
@@ -780,29 +848,30 @@ class MLPRegressor(BaseTransformer):
780
848
  Output dataset with log probability of the sample for each class in the model.
781
849
  """
782
850
  super()._check_dataset_type(dataset)
783
- inference_method="predict_log_proba"
851
+ inference_method = "predict_log_proba"
852
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
784
853
 
785
854
  # This dictionary contains optional kwargs for batch inference. These kwargs
786
855
  # are specific to the type of dataset used.
787
856
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
788
857
 
789
858
  if isinstance(dataset, DataFrame):
790
- self._deps = self._batch_inference_validate_snowpark(
791
- dataset=dataset,
792
- inference_method=inference_method,
793
- )
794
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
859
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
860
+ self._deps = self._get_dependencies()
861
+ assert isinstance(
862
+ dataset._session, Session
863
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
795
864
  transform_kwargs = dict(
796
865
  session=dataset._session,
797
866
  dependencies=self._deps,
798
- drop_input_cols = self._drop_input_cols,
867
+ drop_input_cols=self._drop_input_cols,
799
868
  expected_output_cols_type="float",
800
869
  )
870
+ expected_output_cols = self._align_expected_output_names(
871
+ inference_method, dataset, expected_output_cols, output_cols_prefix
872
+ )
801
873
  elif isinstance(dataset, pd.DataFrame):
802
- transform_kwargs = dict(
803
- snowpark_input_cols = self._snowpark_cols,
804
- drop_input_cols = self._drop_input_cols
805
- )
874
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
806
875
 
807
876
  transform_handlers = ModelTransformerBuilder.build(
808
877
  dataset=dataset,
@@ -815,7 +884,7 @@ class MLPRegressor(BaseTransformer):
815
884
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
816
885
  inference_method=inference_method,
817
886
  input_cols=self.input_cols,
818
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
887
+ expected_output_cols=expected_output_cols,
819
888
  **transform_kwargs
820
889
  )
821
890
  return output_df
@@ -841,30 +910,32 @@ class MLPRegressor(BaseTransformer):
841
910
  Output dataset with results of the decision function for the samples in input dataset.
842
911
  """
843
912
  super()._check_dataset_type(dataset)
844
- inference_method="decision_function"
913
+ inference_method = "decision_function"
845
914
 
846
915
  # This dictionary contains optional kwargs for batch inference. These kwargs
847
916
  # are specific to the type of dataset used.
848
917
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
849
918
 
919
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
920
+
850
921
  if isinstance(dataset, DataFrame):
851
- self._deps = self._batch_inference_validate_snowpark(
852
- dataset=dataset,
853
- inference_method=inference_method,
854
- )
855
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
922
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
923
+ self._deps = self._get_dependencies()
924
+ assert isinstance(
925
+ dataset._session, Session
926
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
856
927
  transform_kwargs = dict(
857
928
  session=dataset._session,
858
929
  dependencies=self._deps,
859
- drop_input_cols = self._drop_input_cols,
930
+ drop_input_cols=self._drop_input_cols,
860
931
  expected_output_cols_type="float",
861
932
  )
933
+ expected_output_cols = self._align_expected_output_names(
934
+ inference_method, dataset, expected_output_cols, output_cols_prefix
935
+ )
862
936
 
863
937
  elif isinstance(dataset, pd.DataFrame):
864
- transform_kwargs = dict(
865
- snowpark_input_cols = self._snowpark_cols,
866
- drop_input_cols = self._drop_input_cols
867
- )
938
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
868
939
 
869
940
  transform_handlers = ModelTransformerBuilder.build(
870
941
  dataset=dataset,
@@ -877,7 +948,7 @@ class MLPRegressor(BaseTransformer):
877
948
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
878
949
  inference_method=inference_method,
879
950
  input_cols=self.input_cols,
880
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
951
+ expected_output_cols=expected_output_cols,
881
952
  **transform_kwargs
882
953
  )
883
954
  return output_df
@@ -906,17 +977,17 @@ class MLPRegressor(BaseTransformer):
906
977
  Output dataset with probability of the sample for each class in the model.
907
978
  """
908
979
  super()._check_dataset_type(dataset)
909
- inference_method="score_samples"
980
+ inference_method = "score_samples"
910
981
 
911
982
  # This dictionary contains optional kwargs for batch inference. These kwargs
912
983
  # are specific to the type of dataset used.
913
984
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
914
985
 
986
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
987
+
915
988
  if isinstance(dataset, DataFrame):
916
- self._deps = self._batch_inference_validate_snowpark(
917
- dataset=dataset,
918
- inference_method=inference_method,
919
- )
989
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
990
+ self._deps = self._get_dependencies()
920
991
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
921
992
  transform_kwargs = dict(
922
993
  session=dataset._session,
@@ -924,6 +995,9 @@ class MLPRegressor(BaseTransformer):
924
995
  drop_input_cols = self._drop_input_cols,
925
996
  expected_output_cols_type="float",
926
997
  )
998
+ expected_output_cols = self._align_expected_output_names(
999
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1000
+ )
927
1001
 
928
1002
  elif isinstance(dataset, pd.DataFrame):
929
1003
  transform_kwargs = dict(
@@ -942,7 +1016,7 @@ class MLPRegressor(BaseTransformer):
942
1016
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
943
1017
  inference_method=inference_method,
944
1018
  input_cols=self.input_cols,
945
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1019
+ expected_output_cols=expected_output_cols,
946
1020
  **transform_kwargs
947
1021
  )
948
1022
  return output_df
@@ -977,17 +1051,15 @@ class MLPRegressor(BaseTransformer):
977
1051
  transform_kwargs: ScoreKwargsTypedDict = dict()
978
1052
 
979
1053
  if isinstance(dataset, DataFrame):
980
- self._deps = self._batch_inference_validate_snowpark(
981
- dataset=dataset,
982
- inference_method="score",
983
- )
1054
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1055
+ self._deps = self._get_dependencies()
984
1056
  selected_cols = self._get_active_columns()
985
1057
  if len(selected_cols) > 0:
986
1058
  dataset = dataset.select(selected_cols)
987
1059
  assert isinstance(dataset._session, Session) # keep mypy happy
988
1060
  transform_kwargs = dict(
989
1061
  session=dataset._session,
990
- dependencies=["snowflake-snowpark-python"] + self._deps,
1062
+ dependencies=self._deps,
991
1063
  score_sproc_imports=['sklearn'],
992
1064
  )
993
1065
  elif isinstance(dataset, pd.DataFrame):
@@ -1052,11 +1124,8 @@ class MLPRegressor(BaseTransformer):
1052
1124
 
1053
1125
  if isinstance(dataset, DataFrame):
1054
1126
 
1055
- self._deps = self._batch_inference_validate_snowpark(
1056
- dataset=dataset,
1057
- inference_method=inference_method,
1058
-
1059
- )
1127
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1128
+ self._deps = self._get_dependencies()
1060
1129
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1061
1130
  transform_kwargs = dict(
1062
1131
  session = dataset._session,
@@ -1089,50 +1158,84 @@ class MLPRegressor(BaseTransformer):
1089
1158
  )
1090
1159
  return output_df
1091
1160
 
1161
+
1162
+
1163
+ def to_sklearn(self) -> Any:
1164
+ """Get sklearn.neural_network.MLPRegressor object.
1165
+ """
1166
+ if self._sklearn_object is None:
1167
+ self._sklearn_object = self._create_sklearn_object()
1168
+ return self._sklearn_object
1169
+
1170
+ def to_xgboost(self) -> Any:
1171
+ raise exceptions.SnowflakeMLException(
1172
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1173
+ original_exception=AttributeError(
1174
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1175
+ "to_xgboost()",
1176
+ "to_sklearn()"
1177
+ )
1178
+ ),
1179
+ )
1180
+
1181
+ def to_lightgbm(self) -> Any:
1182
+ raise exceptions.SnowflakeMLException(
1183
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1184
+ original_exception=AttributeError(
1185
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1186
+ "to_lightgbm()",
1187
+ "to_sklearn()"
1188
+ )
1189
+ ),
1190
+ )
1191
+
1192
+ def _get_dependencies(self) -> List[str]:
1193
+ return self._deps
1194
+
1092
1195
 
1093
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1196
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1094
1197
  self._model_signature_dict = dict()
1095
1198
 
1096
1199
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1097
1200
 
1098
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1201
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1099
1202
  outputs: List[BaseFeatureSpec] = []
1100
1203
  if hasattr(self, "predict"):
1101
1204
  # keep mypy happy
1102
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1205
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1103
1206
  # For classifier, the type of predict is the same as the type of label
1104
- if self._sklearn_object._estimator_type == 'classifier':
1105
- # label columns is the desired type for output
1207
+ if self._sklearn_object._estimator_type == "classifier":
1208
+ # label columns is the desired type for output
1106
1209
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1107
1210
  # rename the output columns
1108
1211
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1109
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1110
- ([] if self._drop_input_cols else inputs)
1111
- + outputs)
1212
+ self._model_signature_dict["predict"] = ModelSignature(
1213
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1214
+ )
1112
1215
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1113
1216
  # For outlier models, returns -1 for outliers and 1 for inliers.
1114
- # Clusterer returns int64 cluster labels.
1217
+ # Clusterer returns int64 cluster labels.
1115
1218
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1116
1219
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1117
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1118
- ([] if self._drop_input_cols else inputs)
1119
- + outputs)
1120
-
1220
+ self._model_signature_dict["predict"] = ModelSignature(
1221
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1222
+ )
1223
+
1121
1224
  # For regressor, the type of predict is float64
1122
- elif self._sklearn_object._estimator_type == 'regressor':
1225
+ elif self._sklearn_object._estimator_type == "regressor":
1123
1226
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1124
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1125
- ([] if self._drop_input_cols else inputs)
1126
- + outputs)
1127
-
1227
+ self._model_signature_dict["predict"] = ModelSignature(
1228
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1229
+ )
1230
+
1128
1231
  for prob_func in PROB_FUNCTIONS:
1129
1232
  if hasattr(self, prob_func):
1130
1233
  output_cols_prefix: str = f"{prob_func}_"
1131
1234
  output_column_names = self._get_output_column_names(output_cols_prefix)
1132
1235
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1133
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1134
- ([] if self._drop_input_cols else inputs)
1135
- + outputs)
1236
+ self._model_signature_dict[prob_func] = ModelSignature(
1237
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1238
+ )
1136
1239
 
1137
1240
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1138
1241
  items = list(self._model_signature_dict.items())
@@ -1145,10 +1248,10 @@ class MLPRegressor(BaseTransformer):
1145
1248
  """Returns model signature of current class.
1146
1249
 
1147
1250
  Raises:
1148
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1251
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1149
1252
 
1150
1253
  Returns:
1151
- Dict[str, ModelSignature]: each method and its input output signature
1254
+ Dict with each method and its input output signature
1152
1255
  """
1153
1256
  if self._model_signature_dict is None:
1154
1257
  raise exceptions.SnowflakeMLException(
@@ -1156,35 +1259,3 @@ class MLPRegressor(BaseTransformer):
1156
1259
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1157
1260
  )
1158
1261
  return self._model_signature_dict
1159
-
1160
- def to_sklearn(self) -> Any:
1161
- """Get sklearn.neural_network.MLPRegressor object.
1162
- """
1163
- if self._sklearn_object is None:
1164
- self._sklearn_object = self._create_sklearn_object()
1165
- return self._sklearn_object
1166
-
1167
- def to_xgboost(self) -> Any:
1168
- raise exceptions.SnowflakeMLException(
1169
- error_code=error_codes.METHOD_NOT_ALLOWED,
1170
- original_exception=AttributeError(
1171
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1172
- "to_xgboost()",
1173
- "to_sklearn()"
1174
- )
1175
- ),
1176
- )
1177
-
1178
- def to_lightgbm(self) -> Any:
1179
- raise exceptions.SnowflakeMLException(
1180
- error_code=error_codes.METHOD_NOT_ALLOWED,
1181
- original_exception=AttributeError(
1182
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1183
- "to_lightgbm()",
1184
- "to_sklearn()"
1185
- )
1186
- ),
1187
- )
1188
-
1189
- def _get_dependencies(self) -> List[str]:
1190
- return self._deps