snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class AdaBoostClassifier(BaseTransformer):
|
71
64
|
r"""An AdaBoost classifier
|
72
65
|
For more details on this class, see [sklearn.ensemble.AdaBoostClassifier]
|
@@ -244,12 +237,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
244
237
|
)
|
245
238
|
return selected_cols
|
246
239
|
|
247
|
-
|
248
|
-
project=_PROJECT,
|
249
|
-
subproject=_SUBPROJECT,
|
250
|
-
custom_tags=dict([("autogen", True)]),
|
251
|
-
)
|
252
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdaBoostClassifier":
|
240
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdaBoostClassifier":
|
253
241
|
"""Build a boosted classifier/regressor from the training set (X, y)
|
254
242
|
For more details on this function, see [sklearn.ensemble.AdaBoostClassifier.fit]
|
255
243
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier.fit)
|
@@ -276,12 +264,14 @@ class AdaBoostClassifier(BaseTransformer):
|
|
276
264
|
|
277
265
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
278
266
|
|
279
|
-
|
267
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
280
268
|
if SNOWML_SPROC_ENV in os.environ:
|
281
269
|
statement_params = telemetry.get_function_usage_statement_params(
|
282
270
|
project=_PROJECT,
|
283
271
|
subproject=_SUBPROJECT,
|
284
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
272
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
273
|
+
inspect.currentframe(), AdaBoostClassifier.__class__.__name__
|
274
|
+
),
|
285
275
|
api_calls=[Session.call],
|
286
276
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
287
277
|
)
|
@@ -302,27 +292,24 @@ class AdaBoostClassifier(BaseTransformer):
|
|
302
292
|
)
|
303
293
|
self._sklearn_object = model_trainer.train()
|
304
294
|
self._is_fitted = True
|
305
|
-
self.
|
295
|
+
self._generate_model_signatures(dataset)
|
306
296
|
return self
|
307
297
|
|
308
298
|
def _batch_inference_validate_snowpark(
|
309
299
|
self,
|
310
300
|
dataset: DataFrame,
|
311
301
|
inference_method: str,
|
312
|
-
) ->
|
313
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
314
|
-
return the available package that exists in the snowflake anaconda channel
|
302
|
+
) -> None:
|
303
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
315
304
|
|
316
305
|
Args:
|
317
306
|
dataset: snowpark dataframe
|
318
307
|
inference_method: the inference method such as predict, score...
|
319
|
-
|
308
|
+
|
320
309
|
Raises:
|
321
310
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
322
311
|
SnowflakeMLException: If the session is None, raise error
|
323
312
|
|
324
|
-
Returns:
|
325
|
-
A list of available package that exists in the snowflake anaconda channel
|
326
313
|
"""
|
327
314
|
if not self._is_fitted:
|
328
315
|
raise exceptions.SnowflakeMLException(
|
@@ -340,9 +327,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
340
327
|
"Session must not specified for snowpark dataset."
|
341
328
|
),
|
342
329
|
)
|
343
|
-
|
344
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
345
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
330
|
+
|
346
331
|
|
347
332
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
348
333
|
@telemetry.send_api_usage_telemetry(
|
@@ -378,7 +363,9 @@ class AdaBoostClassifier(BaseTransformer):
|
|
378
363
|
# when it is classifier, infer the datatype from label columns
|
379
364
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
380
365
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
381
|
-
label_cols_signatures = [
|
366
|
+
label_cols_signatures = [
|
367
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
368
|
+
]
|
382
369
|
if len(label_cols_signatures) == 0:
|
383
370
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
384
371
|
raise exceptions.SnowflakeMLException(
|
@@ -386,25 +373,23 @@ class AdaBoostClassifier(BaseTransformer):
|
|
386
373
|
original_exception=ValueError(error_str),
|
387
374
|
)
|
388
375
|
|
389
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
390
|
-
label_cols_signatures[0].as_snowpark_type()
|
391
|
-
)
|
376
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
392
377
|
|
393
|
-
self.
|
394
|
-
|
378
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
379
|
+
self._deps = self._get_dependencies()
|
380
|
+
assert isinstance(
|
381
|
+
dataset._session, Session
|
382
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
395
383
|
|
396
384
|
transform_kwargs = dict(
|
397
|
-
session
|
398
|
-
dependencies
|
399
|
-
drop_input_cols
|
400
|
-
expected_output_cols_type
|
385
|
+
session=dataset._session,
|
386
|
+
dependencies=self._deps,
|
387
|
+
drop_input_cols=self._drop_input_cols,
|
388
|
+
expected_output_cols_type=expected_type_inferred,
|
401
389
|
)
|
402
390
|
|
403
391
|
elif isinstance(dataset, pd.DataFrame):
|
404
|
-
transform_kwargs = dict(
|
405
|
-
snowpark_input_cols = self._snowpark_cols,
|
406
|
-
drop_input_cols = self._drop_input_cols
|
407
|
-
)
|
392
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
408
393
|
|
409
394
|
transform_handlers = ModelTransformerBuilder.build(
|
410
395
|
dataset=dataset,
|
@@ -444,7 +429,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
444
429
|
Transformed dataset.
|
445
430
|
"""
|
446
431
|
super()._check_dataset_type(dataset)
|
447
|
-
inference_method="transform"
|
432
|
+
inference_method = "transform"
|
448
433
|
|
449
434
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
450
435
|
# are specific to the type of dataset used.
|
@@ -474,24 +459,19 @@ class AdaBoostClassifier(BaseTransformer):
|
|
474
459
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
475
460
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
476
461
|
|
477
|
-
self.
|
478
|
-
|
479
|
-
inference_method=inference_method,
|
480
|
-
)
|
462
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
463
|
+
self._deps = self._get_dependencies()
|
481
464
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
482
465
|
|
483
466
|
transform_kwargs = dict(
|
484
|
-
session
|
485
|
-
dependencies
|
486
|
-
drop_input_cols
|
487
|
-
expected_output_cols_type
|
467
|
+
session=dataset._session,
|
468
|
+
dependencies=self._deps,
|
469
|
+
drop_input_cols=self._drop_input_cols,
|
470
|
+
expected_output_cols_type=expected_dtype,
|
488
471
|
)
|
489
472
|
|
490
473
|
elif isinstance(dataset, pd.DataFrame):
|
491
|
-
transform_kwargs = dict(
|
492
|
-
snowpark_input_cols = self._snowpark_cols,
|
493
|
-
drop_input_cols = self._drop_input_cols
|
494
|
-
)
|
474
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
495
475
|
|
496
476
|
transform_handlers = ModelTransformerBuilder.build(
|
497
477
|
dataset=dataset,
|
@@ -510,7 +490,11 @@ class AdaBoostClassifier(BaseTransformer):
|
|
510
490
|
return output_df
|
511
491
|
|
512
492
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
513
|
-
def fit_predict(
|
493
|
+
def fit_predict(
|
494
|
+
self,
|
495
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
496
|
+
output_cols_prefix: str = "fit_predict_",
|
497
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
514
498
|
""" Method not supported for this class.
|
515
499
|
|
516
500
|
|
@@ -535,22 +519,104 @@ class AdaBoostClassifier(BaseTransformer):
|
|
535
519
|
)
|
536
520
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
537
521
|
drop_input_cols=self._drop_input_cols,
|
538
|
-
expected_output_cols_list=
|
522
|
+
expected_output_cols_list=(
|
523
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
524
|
+
),
|
539
525
|
)
|
540
526
|
self._sklearn_object = fitted_estimator
|
541
527
|
self._is_fitted = True
|
542
528
|
return output_result
|
543
529
|
|
530
|
+
|
531
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
532
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
533
|
+
""" Method not supported for this class.
|
534
|
+
|
544
535
|
|
545
|
-
|
546
|
-
|
547
|
-
|
536
|
+
Raises:
|
537
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
538
|
+
|
539
|
+
Args:
|
540
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
541
|
+
Snowpark or Pandas DataFrame.
|
542
|
+
output_cols_prefix: Prefix for the response columns
|
548
543
|
Returns:
|
549
544
|
Transformed dataset.
|
550
545
|
"""
|
551
|
-
self.
|
552
|
-
|
553
|
-
|
546
|
+
self._infer_input_output_cols(dataset)
|
547
|
+
super()._check_dataset_type(dataset)
|
548
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
549
|
+
estimator=self._sklearn_object,
|
550
|
+
dataset=dataset,
|
551
|
+
input_cols=self.input_cols,
|
552
|
+
label_cols=self.label_cols,
|
553
|
+
sample_weight_col=self.sample_weight_col,
|
554
|
+
autogenerated=self._autogenerated,
|
555
|
+
subproject=_SUBPROJECT,
|
556
|
+
)
|
557
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
558
|
+
drop_input_cols=self._drop_input_cols,
|
559
|
+
expected_output_cols_list=self.output_cols,
|
560
|
+
)
|
561
|
+
self._sklearn_object = fitted_estimator
|
562
|
+
self._is_fitted = True
|
563
|
+
return output_result
|
564
|
+
|
565
|
+
|
566
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
567
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
568
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
569
|
+
"""
|
570
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
571
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
572
|
+
if output_cols:
|
573
|
+
output_cols = [
|
574
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
575
|
+
for c in output_cols
|
576
|
+
]
|
577
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
578
|
+
output_cols = [output_cols_prefix]
|
579
|
+
elif self._sklearn_object is not None:
|
580
|
+
classes = self._sklearn_object.classes_
|
581
|
+
if isinstance(classes, numpy.ndarray):
|
582
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
583
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
584
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
585
|
+
output_cols = []
|
586
|
+
for i, cl in enumerate(classes):
|
587
|
+
# For binary classification, there is only one output column for each class
|
588
|
+
# ndarray as the two classes are complementary.
|
589
|
+
if len(cl) == 2:
|
590
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
591
|
+
else:
|
592
|
+
output_cols.extend([
|
593
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
594
|
+
])
|
595
|
+
else:
|
596
|
+
output_cols = []
|
597
|
+
|
598
|
+
# Make sure column names are valid snowflake identifiers.
|
599
|
+
assert output_cols is not None # Make MyPy happy
|
600
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
601
|
+
|
602
|
+
return rv
|
603
|
+
|
604
|
+
def _align_expected_output_names(
|
605
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
606
|
+
) -> List[str]:
|
607
|
+
# in case the inferred output column names dimension is different
|
608
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
609
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
610
|
+
output_df_columns = list(output_df_pd.columns)
|
611
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
612
|
+
if self.sample_weight_col:
|
613
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
614
|
+
# if the dimension of inferred output column names is correct; use it
|
615
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
616
|
+
return expected_output_cols_list
|
617
|
+
# otherwise, use the sklearn estimator's output
|
618
|
+
else:
|
619
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
554
620
|
|
555
621
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
556
622
|
@telemetry.send_api_usage_telemetry(
|
@@ -584,24 +650,26 @@ class AdaBoostClassifier(BaseTransformer):
|
|
584
650
|
# are specific to the type of dataset used.
|
585
651
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
586
652
|
|
653
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
654
|
+
|
587
655
|
if isinstance(dataset, DataFrame):
|
588
|
-
self.
|
589
|
-
|
590
|
-
|
591
|
-
|
592
|
-
|
656
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
657
|
+
self._deps = self._get_dependencies()
|
658
|
+
assert isinstance(
|
659
|
+
dataset._session, Session
|
660
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
593
661
|
transform_kwargs = dict(
|
594
662
|
session=dataset._session,
|
595
663
|
dependencies=self._deps,
|
596
|
-
drop_input_cols
|
664
|
+
drop_input_cols=self._drop_input_cols,
|
597
665
|
expected_output_cols_type="float",
|
598
666
|
)
|
667
|
+
expected_output_cols = self._align_expected_output_names(
|
668
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
669
|
+
)
|
599
670
|
|
600
671
|
elif isinstance(dataset, pd.DataFrame):
|
601
|
-
transform_kwargs = dict(
|
602
|
-
snowpark_input_cols = self._snowpark_cols,
|
603
|
-
drop_input_cols = self._drop_input_cols
|
604
|
-
)
|
672
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
605
673
|
|
606
674
|
transform_handlers = ModelTransformerBuilder.build(
|
607
675
|
dataset=dataset,
|
@@ -613,7 +681,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
613
681
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
614
682
|
inference_method=inference_method,
|
615
683
|
input_cols=self.input_cols,
|
616
|
-
expected_output_cols=
|
684
|
+
expected_output_cols=expected_output_cols,
|
617
685
|
**transform_kwargs
|
618
686
|
)
|
619
687
|
return output_df
|
@@ -645,29 +713,30 @@ class AdaBoostClassifier(BaseTransformer):
|
|
645
713
|
Output dataset with log probability of the sample for each class in the model.
|
646
714
|
"""
|
647
715
|
super()._check_dataset_type(dataset)
|
648
|
-
inference_method="predict_log_proba"
|
716
|
+
inference_method = "predict_log_proba"
|
717
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
649
718
|
|
650
719
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
651
720
|
# are specific to the type of dataset used.
|
652
721
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
653
722
|
|
654
723
|
if isinstance(dataset, DataFrame):
|
655
|
-
self.
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
724
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
725
|
+
self._deps = self._get_dependencies()
|
726
|
+
assert isinstance(
|
727
|
+
dataset._session, Session
|
728
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
660
729
|
transform_kwargs = dict(
|
661
730
|
session=dataset._session,
|
662
731
|
dependencies=self._deps,
|
663
|
-
drop_input_cols
|
732
|
+
drop_input_cols=self._drop_input_cols,
|
664
733
|
expected_output_cols_type="float",
|
665
734
|
)
|
735
|
+
expected_output_cols = self._align_expected_output_names(
|
736
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
737
|
+
)
|
666
738
|
elif isinstance(dataset, pd.DataFrame):
|
667
|
-
transform_kwargs = dict(
|
668
|
-
snowpark_input_cols = self._snowpark_cols,
|
669
|
-
drop_input_cols = self._drop_input_cols
|
670
|
-
)
|
739
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
671
740
|
|
672
741
|
transform_handlers = ModelTransformerBuilder.build(
|
673
742
|
dataset=dataset,
|
@@ -680,7 +749,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
680
749
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
681
750
|
inference_method=inference_method,
|
682
751
|
input_cols=self.input_cols,
|
683
|
-
expected_output_cols=
|
752
|
+
expected_output_cols=expected_output_cols,
|
684
753
|
**transform_kwargs
|
685
754
|
)
|
686
755
|
return output_df
|
@@ -708,30 +777,32 @@ class AdaBoostClassifier(BaseTransformer):
|
|
708
777
|
Output dataset with results of the decision function for the samples in input dataset.
|
709
778
|
"""
|
710
779
|
super()._check_dataset_type(dataset)
|
711
|
-
inference_method="decision_function"
|
780
|
+
inference_method = "decision_function"
|
712
781
|
|
713
782
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
714
783
|
# are specific to the type of dataset used.
|
715
784
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
716
785
|
|
786
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
787
|
+
|
717
788
|
if isinstance(dataset, DataFrame):
|
718
|
-
self.
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
789
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
790
|
+
self._deps = self._get_dependencies()
|
791
|
+
assert isinstance(
|
792
|
+
dataset._session, Session
|
793
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
723
794
|
transform_kwargs = dict(
|
724
795
|
session=dataset._session,
|
725
796
|
dependencies=self._deps,
|
726
|
-
drop_input_cols
|
797
|
+
drop_input_cols=self._drop_input_cols,
|
727
798
|
expected_output_cols_type="float",
|
728
799
|
)
|
800
|
+
expected_output_cols = self._align_expected_output_names(
|
801
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
802
|
+
)
|
729
803
|
|
730
804
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
805
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
806
|
|
736
807
|
transform_handlers = ModelTransformerBuilder.build(
|
737
808
|
dataset=dataset,
|
@@ -744,7 +815,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
744
815
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
816
|
inference_method=inference_method,
|
746
817
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
818
|
+
expected_output_cols=expected_output_cols,
|
748
819
|
**transform_kwargs
|
749
820
|
)
|
750
821
|
return output_df
|
@@ -773,17 +844,17 @@ class AdaBoostClassifier(BaseTransformer):
|
|
773
844
|
Output dataset with probability of the sample for each class in the model.
|
774
845
|
"""
|
775
846
|
super()._check_dataset_type(dataset)
|
776
|
-
inference_method="score_samples"
|
847
|
+
inference_method = "score_samples"
|
777
848
|
|
778
849
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
779
850
|
# are specific to the type of dataset used.
|
780
851
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
781
852
|
|
853
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
854
|
+
|
782
855
|
if isinstance(dataset, DataFrame):
|
783
|
-
self.
|
784
|
-
|
785
|
-
inference_method=inference_method,
|
786
|
-
)
|
856
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
857
|
+
self._deps = self._get_dependencies()
|
787
858
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
788
859
|
transform_kwargs = dict(
|
789
860
|
session=dataset._session,
|
@@ -791,6 +862,9 @@ class AdaBoostClassifier(BaseTransformer):
|
|
791
862
|
drop_input_cols = self._drop_input_cols,
|
792
863
|
expected_output_cols_type="float",
|
793
864
|
)
|
865
|
+
expected_output_cols = self._align_expected_output_names(
|
866
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
867
|
+
)
|
794
868
|
|
795
869
|
elif isinstance(dataset, pd.DataFrame):
|
796
870
|
transform_kwargs = dict(
|
@@ -809,7 +883,7 @@ class AdaBoostClassifier(BaseTransformer):
|
|
809
883
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
810
884
|
inference_method=inference_method,
|
811
885
|
input_cols=self.input_cols,
|
812
|
-
expected_output_cols=
|
886
|
+
expected_output_cols=expected_output_cols,
|
813
887
|
**transform_kwargs
|
814
888
|
)
|
815
889
|
return output_df
|
@@ -844,17 +918,15 @@ class AdaBoostClassifier(BaseTransformer):
|
|
844
918
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
845
919
|
|
846
920
|
if isinstance(dataset, DataFrame):
|
847
|
-
self.
|
848
|
-
|
849
|
-
inference_method="score",
|
850
|
-
)
|
921
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
922
|
+
self._deps = self._get_dependencies()
|
851
923
|
selected_cols = self._get_active_columns()
|
852
924
|
if len(selected_cols) > 0:
|
853
925
|
dataset = dataset.select(selected_cols)
|
854
926
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
855
927
|
transform_kwargs = dict(
|
856
928
|
session=dataset._session,
|
857
|
-
dependencies=
|
929
|
+
dependencies=self._deps,
|
858
930
|
score_sproc_imports=['sklearn'],
|
859
931
|
)
|
860
932
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -919,11 +991,8 @@ class AdaBoostClassifier(BaseTransformer):
|
|
919
991
|
|
920
992
|
if isinstance(dataset, DataFrame):
|
921
993
|
|
922
|
-
self.
|
923
|
-
|
924
|
-
inference_method=inference_method,
|
925
|
-
|
926
|
-
)
|
994
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
995
|
+
self._deps = self._get_dependencies()
|
927
996
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
928
997
|
transform_kwargs = dict(
|
929
998
|
session = dataset._session,
|
@@ -956,50 +1025,84 @@ class AdaBoostClassifier(BaseTransformer):
|
|
956
1025
|
)
|
957
1026
|
return output_df
|
958
1027
|
|
1028
|
+
|
1029
|
+
|
1030
|
+
def to_sklearn(self) -> Any:
|
1031
|
+
"""Get sklearn.ensemble.AdaBoostClassifier object.
|
1032
|
+
"""
|
1033
|
+
if self._sklearn_object is None:
|
1034
|
+
self._sklearn_object = self._create_sklearn_object()
|
1035
|
+
return self._sklearn_object
|
1036
|
+
|
1037
|
+
def to_xgboost(self) -> Any:
|
1038
|
+
raise exceptions.SnowflakeMLException(
|
1039
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1040
|
+
original_exception=AttributeError(
|
1041
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1042
|
+
"to_xgboost()",
|
1043
|
+
"to_sklearn()"
|
1044
|
+
)
|
1045
|
+
),
|
1046
|
+
)
|
1047
|
+
|
1048
|
+
def to_lightgbm(self) -> Any:
|
1049
|
+
raise exceptions.SnowflakeMLException(
|
1050
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1051
|
+
original_exception=AttributeError(
|
1052
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1053
|
+
"to_lightgbm()",
|
1054
|
+
"to_sklearn()"
|
1055
|
+
)
|
1056
|
+
),
|
1057
|
+
)
|
1058
|
+
|
1059
|
+
def _get_dependencies(self) -> List[str]:
|
1060
|
+
return self._deps
|
1061
|
+
|
959
1062
|
|
960
|
-
def
|
1063
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
961
1064
|
self._model_signature_dict = dict()
|
962
1065
|
|
963
1066
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
964
1067
|
|
965
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1068
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
966
1069
|
outputs: List[BaseFeatureSpec] = []
|
967
1070
|
if hasattr(self, "predict"):
|
968
1071
|
# keep mypy happy
|
969
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1072
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
970
1073
|
# For classifier, the type of predict is the same as the type of label
|
971
|
-
if self._sklearn_object._estimator_type ==
|
972
|
-
|
1074
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1075
|
+
# label columns is the desired type for output
|
973
1076
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
974
1077
|
# rename the output columns
|
975
1078
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
976
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
977
|
-
|
978
|
-
|
1079
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1080
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1081
|
+
)
|
979
1082
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
980
1083
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
981
|
-
# Clusterer returns int64 cluster labels.
|
1084
|
+
# Clusterer returns int64 cluster labels.
|
982
1085
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
983
1086
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
984
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
985
|
-
|
986
|
-
|
987
|
-
|
1087
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1088
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1089
|
+
)
|
1090
|
+
|
988
1091
|
# For regressor, the type of predict is float64
|
989
|
-
elif self._sklearn_object._estimator_type ==
|
1092
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
990
1093
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
991
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
992
|
-
|
993
|
-
|
994
|
-
|
1094
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1095
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1096
|
+
)
|
1097
|
+
|
995
1098
|
for prob_func in PROB_FUNCTIONS:
|
996
1099
|
if hasattr(self, prob_func):
|
997
1100
|
output_cols_prefix: str = f"{prob_func}_"
|
998
1101
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
999
1102
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1000
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1001
|
-
|
1002
|
-
|
1103
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1104
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1105
|
+
)
|
1003
1106
|
|
1004
1107
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1005
1108
|
items = list(self._model_signature_dict.items())
|
@@ -1012,10 +1115,10 @@ class AdaBoostClassifier(BaseTransformer):
|
|
1012
1115
|
"""Returns model signature of current class.
|
1013
1116
|
|
1014
1117
|
Raises:
|
1015
|
-
|
1118
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1016
1119
|
|
1017
1120
|
Returns:
|
1018
|
-
Dict
|
1121
|
+
Dict with each method and its input output signature
|
1019
1122
|
"""
|
1020
1123
|
if self._model_signature_dict is None:
|
1021
1124
|
raise exceptions.SnowflakeMLException(
|
@@ -1023,35 +1126,3 @@ class AdaBoostClassifier(BaseTransformer):
|
|
1023
1126
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1024
1127
|
)
|
1025
1128
|
return self._model_signature_dict
|
1026
|
-
|
1027
|
-
def to_sklearn(self) -> Any:
|
1028
|
-
"""Get sklearn.ensemble.AdaBoostClassifier object.
|
1029
|
-
"""
|
1030
|
-
if self._sklearn_object is None:
|
1031
|
-
self._sklearn_object = self._create_sklearn_object()
|
1032
|
-
return self._sklearn_object
|
1033
|
-
|
1034
|
-
def to_xgboost(self) -> Any:
|
1035
|
-
raise exceptions.SnowflakeMLException(
|
1036
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1037
|
-
original_exception=AttributeError(
|
1038
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1039
|
-
"to_xgboost()",
|
1040
|
-
"to_sklearn()"
|
1041
|
-
)
|
1042
|
-
),
|
1043
|
-
)
|
1044
|
-
|
1045
|
-
def to_lightgbm(self) -> Any:
|
1046
|
-
raise exceptions.SnowflakeMLException(
|
1047
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1048
|
-
original_exception=AttributeError(
|
1049
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1050
|
-
"to_lightgbm()",
|
1051
|
-
"to_sklearn()"
|
1052
|
-
)
|
1053
|
-
),
|
1054
|
-
)
|
1055
|
-
|
1056
|
-
def _get_dependencies(self) -> List[str]:
|
1057
|
-
return self._deps
|