snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class AdaBoostClassifier(BaseTransformer):
71
64
  r"""An AdaBoost classifier
72
65
  For more details on this class, see [sklearn.ensemble.AdaBoostClassifier]
@@ -244,12 +237,7 @@ class AdaBoostClassifier(BaseTransformer):
244
237
  )
245
238
  return selected_cols
246
239
 
247
- @telemetry.send_api_usage_telemetry(
248
- project=_PROJECT,
249
- subproject=_SUBPROJECT,
250
- custom_tags=dict([("autogen", True)]),
251
- )
252
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdaBoostClassifier":
240
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AdaBoostClassifier":
253
241
  """Build a boosted classifier/regressor from the training set (X, y)
254
242
  For more details on this function, see [sklearn.ensemble.AdaBoostClassifier.fit]
255
243
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier.fit)
@@ -276,12 +264,14 @@ class AdaBoostClassifier(BaseTransformer):
276
264
 
277
265
  self._snowpark_cols = dataset.select(self.input_cols).columns
278
266
 
279
- # If we are already in a stored procedure, no need to kick off another one.
267
+ # If we are already in a stored procedure, no need to kick off another one.
280
268
  if SNOWML_SPROC_ENV in os.environ:
281
269
  statement_params = telemetry.get_function_usage_statement_params(
282
270
  project=_PROJECT,
283
271
  subproject=_SUBPROJECT,
284
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AdaBoostClassifier.__class__.__name__),
272
+ function_name=telemetry.get_statement_params_full_func_name(
273
+ inspect.currentframe(), AdaBoostClassifier.__class__.__name__
274
+ ),
285
275
  api_calls=[Session.call],
286
276
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
287
277
  )
@@ -302,27 +292,24 @@ class AdaBoostClassifier(BaseTransformer):
302
292
  )
303
293
  self._sklearn_object = model_trainer.train()
304
294
  self._is_fitted = True
305
- self._get_model_signatures(dataset)
295
+ self._generate_model_signatures(dataset)
306
296
  return self
307
297
 
308
298
  def _batch_inference_validate_snowpark(
309
299
  self,
310
300
  dataset: DataFrame,
311
301
  inference_method: str,
312
- ) -> List[str]:
313
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
314
- return the available package that exists in the snowflake anaconda channel
302
+ ) -> None:
303
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
315
304
 
316
305
  Args:
317
306
  dataset: snowpark dataframe
318
307
  inference_method: the inference method such as predict, score...
319
-
308
+
320
309
  Raises:
321
310
  SnowflakeMLException: If the estimator is not fitted, raise error
322
311
  SnowflakeMLException: If the session is None, raise error
323
312
 
324
- Returns:
325
- A list of available package that exists in the snowflake anaconda channel
326
313
  """
327
314
  if not self._is_fitted:
328
315
  raise exceptions.SnowflakeMLException(
@@ -340,9 +327,7 @@ class AdaBoostClassifier(BaseTransformer):
340
327
  "Session must not specified for snowpark dataset."
341
328
  ),
342
329
  )
343
- # Validate that key package version in user workspace are supported in snowflake conda channel
344
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
345
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
330
+
346
331
 
347
332
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
348
333
  @telemetry.send_api_usage_telemetry(
@@ -378,7 +363,9 @@ class AdaBoostClassifier(BaseTransformer):
378
363
  # when it is classifier, infer the datatype from label columns
379
364
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
380
365
  # Batch inference takes a single expected output column type. Use the first columns type for now.
381
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
366
+ label_cols_signatures = [
367
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
368
+ ]
382
369
  if len(label_cols_signatures) == 0:
383
370
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
384
371
  raise exceptions.SnowflakeMLException(
@@ -386,25 +373,23 @@ class AdaBoostClassifier(BaseTransformer):
386
373
  original_exception=ValueError(error_str),
387
374
  )
388
375
 
389
- expected_type_inferred = convert_sp_to_sf_type(
390
- label_cols_signatures[0].as_snowpark_type()
391
- )
376
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
392
377
 
393
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
394
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
378
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
379
+ self._deps = self._get_dependencies()
380
+ assert isinstance(
381
+ dataset._session, Session
382
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
395
383
 
396
384
  transform_kwargs = dict(
397
- session = dataset._session,
398
- dependencies = self._deps,
399
- drop_input_cols = self._drop_input_cols,
400
- expected_output_cols_type = expected_type_inferred,
385
+ session=dataset._session,
386
+ dependencies=self._deps,
387
+ drop_input_cols=self._drop_input_cols,
388
+ expected_output_cols_type=expected_type_inferred,
401
389
  )
402
390
 
403
391
  elif isinstance(dataset, pd.DataFrame):
404
- transform_kwargs = dict(
405
- snowpark_input_cols = self._snowpark_cols,
406
- drop_input_cols = self._drop_input_cols
407
- )
392
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
408
393
 
409
394
  transform_handlers = ModelTransformerBuilder.build(
410
395
  dataset=dataset,
@@ -444,7 +429,7 @@ class AdaBoostClassifier(BaseTransformer):
444
429
  Transformed dataset.
445
430
  """
446
431
  super()._check_dataset_type(dataset)
447
- inference_method="transform"
432
+ inference_method = "transform"
448
433
 
449
434
  # This dictionary contains optional kwargs for batch inference. These kwargs
450
435
  # are specific to the type of dataset used.
@@ -474,24 +459,19 @@ class AdaBoostClassifier(BaseTransformer):
474
459
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
475
460
  expected_dtype = convert_sp_to_sf_type(output_types[0])
476
461
 
477
- self._deps = self._batch_inference_validate_snowpark(
478
- dataset=dataset,
479
- inference_method=inference_method,
480
- )
462
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
463
+ self._deps = self._get_dependencies()
481
464
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
482
465
 
483
466
  transform_kwargs = dict(
484
- session = dataset._session,
485
- dependencies = self._deps,
486
- drop_input_cols = self._drop_input_cols,
487
- expected_output_cols_type = expected_dtype,
467
+ session=dataset._session,
468
+ dependencies=self._deps,
469
+ drop_input_cols=self._drop_input_cols,
470
+ expected_output_cols_type=expected_dtype,
488
471
  )
489
472
 
490
473
  elif isinstance(dataset, pd.DataFrame):
491
- transform_kwargs = dict(
492
- snowpark_input_cols = self._snowpark_cols,
493
- drop_input_cols = self._drop_input_cols
494
- )
474
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
495
475
 
496
476
  transform_handlers = ModelTransformerBuilder.build(
497
477
  dataset=dataset,
@@ -510,7 +490,11 @@ class AdaBoostClassifier(BaseTransformer):
510
490
  return output_df
511
491
 
512
492
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
513
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
493
+ def fit_predict(
494
+ self,
495
+ dataset: Union[DataFrame, pd.DataFrame],
496
+ output_cols_prefix: str = "fit_predict_",
497
+ ) -> Union[DataFrame, pd.DataFrame]:
514
498
  """ Method not supported for this class.
515
499
 
516
500
 
@@ -535,22 +519,104 @@ class AdaBoostClassifier(BaseTransformer):
535
519
  )
536
520
  output_result, fitted_estimator = model_trainer.train_fit_predict(
537
521
  drop_input_cols=self._drop_input_cols,
538
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
522
+ expected_output_cols_list=(
523
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
524
+ ),
539
525
  )
540
526
  self._sklearn_object = fitted_estimator
541
527
  self._is_fitted = True
542
528
  return output_result
543
529
 
530
+
531
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
532
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
533
+ """ Method not supported for this class.
534
+
544
535
 
545
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
546
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
547
- """
536
+ Raises:
537
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
538
+
539
+ Args:
540
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
541
+ Snowpark or Pandas DataFrame.
542
+ output_cols_prefix: Prefix for the response columns
548
543
  Returns:
549
544
  Transformed dataset.
550
545
  """
551
- self.fit(dataset)
552
- assert self._sklearn_object is not None
553
- return self._sklearn_object.embedding_
546
+ self._infer_input_output_cols(dataset)
547
+ super()._check_dataset_type(dataset)
548
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
549
+ estimator=self._sklearn_object,
550
+ dataset=dataset,
551
+ input_cols=self.input_cols,
552
+ label_cols=self.label_cols,
553
+ sample_weight_col=self.sample_weight_col,
554
+ autogenerated=self._autogenerated,
555
+ subproject=_SUBPROJECT,
556
+ )
557
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
558
+ drop_input_cols=self._drop_input_cols,
559
+ expected_output_cols_list=self.output_cols,
560
+ )
561
+ self._sklearn_object = fitted_estimator
562
+ self._is_fitted = True
563
+ return output_result
564
+
565
+
566
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
567
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
568
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
569
+ """
570
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
571
+ # The following condition is introduced for kneighbors methods, and not used in other methods
572
+ if output_cols:
573
+ output_cols = [
574
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
575
+ for c in output_cols
576
+ ]
577
+ elif getattr(self._sklearn_object, "classes_", None) is None:
578
+ output_cols = [output_cols_prefix]
579
+ elif self._sklearn_object is not None:
580
+ classes = self._sklearn_object.classes_
581
+ if isinstance(classes, numpy.ndarray):
582
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
583
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
584
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
585
+ output_cols = []
586
+ for i, cl in enumerate(classes):
587
+ # For binary classification, there is only one output column for each class
588
+ # ndarray as the two classes are complementary.
589
+ if len(cl) == 2:
590
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
591
+ else:
592
+ output_cols.extend([
593
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
594
+ ])
595
+ else:
596
+ output_cols = []
597
+
598
+ # Make sure column names are valid snowflake identifiers.
599
+ assert output_cols is not None # Make MyPy happy
600
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
601
+
602
+ return rv
603
+
604
+ def _align_expected_output_names(
605
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
606
+ ) -> List[str]:
607
+ # in case the inferred output column names dimension is different
608
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
609
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
610
+ output_df_columns = list(output_df_pd.columns)
611
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
612
+ if self.sample_weight_col:
613
+ output_df_columns_set -= set(self.sample_weight_col)
614
+ # if the dimension of inferred output column names is correct; use it
615
+ if len(expected_output_cols_list) == len(output_df_columns_set):
616
+ return expected_output_cols_list
617
+ # otherwise, use the sklearn estimator's output
618
+ else:
619
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
554
620
 
555
621
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
556
622
  @telemetry.send_api_usage_telemetry(
@@ -584,24 +650,26 @@ class AdaBoostClassifier(BaseTransformer):
584
650
  # are specific to the type of dataset used.
585
651
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
586
652
 
653
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
654
+
587
655
  if isinstance(dataset, DataFrame):
588
- self._deps = self._batch_inference_validate_snowpark(
589
- dataset=dataset,
590
- inference_method=inference_method,
591
- )
592
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
656
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
657
+ self._deps = self._get_dependencies()
658
+ assert isinstance(
659
+ dataset._session, Session
660
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
593
661
  transform_kwargs = dict(
594
662
  session=dataset._session,
595
663
  dependencies=self._deps,
596
- drop_input_cols = self._drop_input_cols,
664
+ drop_input_cols=self._drop_input_cols,
597
665
  expected_output_cols_type="float",
598
666
  )
667
+ expected_output_cols = self._align_expected_output_names(
668
+ inference_method, dataset, expected_output_cols, output_cols_prefix
669
+ )
599
670
 
600
671
  elif isinstance(dataset, pd.DataFrame):
601
- transform_kwargs = dict(
602
- snowpark_input_cols = self._snowpark_cols,
603
- drop_input_cols = self._drop_input_cols
604
- )
672
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
605
673
 
606
674
  transform_handlers = ModelTransformerBuilder.build(
607
675
  dataset=dataset,
@@ -613,7 +681,7 @@ class AdaBoostClassifier(BaseTransformer):
613
681
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
614
682
  inference_method=inference_method,
615
683
  input_cols=self.input_cols,
616
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
684
+ expected_output_cols=expected_output_cols,
617
685
  **transform_kwargs
618
686
  )
619
687
  return output_df
@@ -645,29 +713,30 @@ class AdaBoostClassifier(BaseTransformer):
645
713
  Output dataset with log probability of the sample for each class in the model.
646
714
  """
647
715
  super()._check_dataset_type(dataset)
648
- inference_method="predict_log_proba"
716
+ inference_method = "predict_log_proba"
717
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
649
718
 
650
719
  # This dictionary contains optional kwargs for batch inference. These kwargs
651
720
  # are specific to the type of dataset used.
652
721
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
653
722
 
654
723
  if isinstance(dataset, DataFrame):
655
- self._deps = self._batch_inference_validate_snowpark(
656
- dataset=dataset,
657
- inference_method=inference_method,
658
- )
659
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
724
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
725
+ self._deps = self._get_dependencies()
726
+ assert isinstance(
727
+ dataset._session, Session
728
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
660
729
  transform_kwargs = dict(
661
730
  session=dataset._session,
662
731
  dependencies=self._deps,
663
- drop_input_cols = self._drop_input_cols,
732
+ drop_input_cols=self._drop_input_cols,
664
733
  expected_output_cols_type="float",
665
734
  )
735
+ expected_output_cols = self._align_expected_output_names(
736
+ inference_method, dataset, expected_output_cols, output_cols_prefix
737
+ )
666
738
  elif isinstance(dataset, pd.DataFrame):
667
- transform_kwargs = dict(
668
- snowpark_input_cols = self._snowpark_cols,
669
- drop_input_cols = self._drop_input_cols
670
- )
739
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
671
740
 
672
741
  transform_handlers = ModelTransformerBuilder.build(
673
742
  dataset=dataset,
@@ -680,7 +749,7 @@ class AdaBoostClassifier(BaseTransformer):
680
749
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
681
750
  inference_method=inference_method,
682
751
  input_cols=self.input_cols,
683
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
752
+ expected_output_cols=expected_output_cols,
684
753
  **transform_kwargs
685
754
  )
686
755
  return output_df
@@ -708,30 +777,32 @@ class AdaBoostClassifier(BaseTransformer):
708
777
  Output dataset with results of the decision function for the samples in input dataset.
709
778
  """
710
779
  super()._check_dataset_type(dataset)
711
- inference_method="decision_function"
780
+ inference_method = "decision_function"
712
781
 
713
782
  # This dictionary contains optional kwargs for batch inference. These kwargs
714
783
  # are specific to the type of dataset used.
715
784
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
716
785
 
786
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
787
+
717
788
  if isinstance(dataset, DataFrame):
718
- self._deps = self._batch_inference_validate_snowpark(
719
- dataset=dataset,
720
- inference_method=inference_method,
721
- )
722
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
789
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
790
+ self._deps = self._get_dependencies()
791
+ assert isinstance(
792
+ dataset._session, Session
793
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
723
794
  transform_kwargs = dict(
724
795
  session=dataset._session,
725
796
  dependencies=self._deps,
726
- drop_input_cols = self._drop_input_cols,
797
+ drop_input_cols=self._drop_input_cols,
727
798
  expected_output_cols_type="float",
728
799
  )
800
+ expected_output_cols = self._align_expected_output_names(
801
+ inference_method, dataset, expected_output_cols, output_cols_prefix
802
+ )
729
803
 
730
804
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
805
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
806
 
736
807
  transform_handlers = ModelTransformerBuilder.build(
737
808
  dataset=dataset,
@@ -744,7 +815,7 @@ class AdaBoostClassifier(BaseTransformer):
744
815
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
816
  inference_method=inference_method,
746
817
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
818
+ expected_output_cols=expected_output_cols,
748
819
  **transform_kwargs
749
820
  )
750
821
  return output_df
@@ -773,17 +844,17 @@ class AdaBoostClassifier(BaseTransformer):
773
844
  Output dataset with probability of the sample for each class in the model.
774
845
  """
775
846
  super()._check_dataset_type(dataset)
776
- inference_method="score_samples"
847
+ inference_method = "score_samples"
777
848
 
778
849
  # This dictionary contains optional kwargs for batch inference. These kwargs
779
850
  # are specific to the type of dataset used.
780
851
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
781
852
 
853
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
854
+
782
855
  if isinstance(dataset, DataFrame):
783
- self._deps = self._batch_inference_validate_snowpark(
784
- dataset=dataset,
785
- inference_method=inference_method,
786
- )
856
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
857
+ self._deps = self._get_dependencies()
787
858
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
788
859
  transform_kwargs = dict(
789
860
  session=dataset._session,
@@ -791,6 +862,9 @@ class AdaBoostClassifier(BaseTransformer):
791
862
  drop_input_cols = self._drop_input_cols,
792
863
  expected_output_cols_type="float",
793
864
  )
865
+ expected_output_cols = self._align_expected_output_names(
866
+ inference_method, dataset, expected_output_cols, output_cols_prefix
867
+ )
794
868
 
795
869
  elif isinstance(dataset, pd.DataFrame):
796
870
  transform_kwargs = dict(
@@ -809,7 +883,7 @@ class AdaBoostClassifier(BaseTransformer):
809
883
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
810
884
  inference_method=inference_method,
811
885
  input_cols=self.input_cols,
812
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
886
+ expected_output_cols=expected_output_cols,
813
887
  **transform_kwargs
814
888
  )
815
889
  return output_df
@@ -844,17 +918,15 @@ class AdaBoostClassifier(BaseTransformer):
844
918
  transform_kwargs: ScoreKwargsTypedDict = dict()
845
919
 
846
920
  if isinstance(dataset, DataFrame):
847
- self._deps = self._batch_inference_validate_snowpark(
848
- dataset=dataset,
849
- inference_method="score",
850
- )
921
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
922
+ self._deps = self._get_dependencies()
851
923
  selected_cols = self._get_active_columns()
852
924
  if len(selected_cols) > 0:
853
925
  dataset = dataset.select(selected_cols)
854
926
  assert isinstance(dataset._session, Session) # keep mypy happy
855
927
  transform_kwargs = dict(
856
928
  session=dataset._session,
857
- dependencies=["snowflake-snowpark-python"] + self._deps,
929
+ dependencies=self._deps,
858
930
  score_sproc_imports=['sklearn'],
859
931
  )
860
932
  elif isinstance(dataset, pd.DataFrame):
@@ -919,11 +991,8 @@ class AdaBoostClassifier(BaseTransformer):
919
991
 
920
992
  if isinstance(dataset, DataFrame):
921
993
 
922
- self._deps = self._batch_inference_validate_snowpark(
923
- dataset=dataset,
924
- inference_method=inference_method,
925
-
926
- )
994
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
995
+ self._deps = self._get_dependencies()
927
996
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
928
997
  transform_kwargs = dict(
929
998
  session = dataset._session,
@@ -956,50 +1025,84 @@ class AdaBoostClassifier(BaseTransformer):
956
1025
  )
957
1026
  return output_df
958
1027
 
1028
+
1029
+
1030
+ def to_sklearn(self) -> Any:
1031
+ """Get sklearn.ensemble.AdaBoostClassifier object.
1032
+ """
1033
+ if self._sklearn_object is None:
1034
+ self._sklearn_object = self._create_sklearn_object()
1035
+ return self._sklearn_object
1036
+
1037
+ def to_xgboost(self) -> Any:
1038
+ raise exceptions.SnowflakeMLException(
1039
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1040
+ original_exception=AttributeError(
1041
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
+ "to_xgboost()",
1043
+ "to_sklearn()"
1044
+ )
1045
+ ),
1046
+ )
1047
+
1048
+ def to_lightgbm(self) -> Any:
1049
+ raise exceptions.SnowflakeMLException(
1050
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1051
+ original_exception=AttributeError(
1052
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
+ "to_lightgbm()",
1054
+ "to_sklearn()"
1055
+ )
1056
+ ),
1057
+ )
1058
+
1059
+ def _get_dependencies(self) -> List[str]:
1060
+ return self._deps
1061
+
959
1062
 
960
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1063
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
961
1064
  self._model_signature_dict = dict()
962
1065
 
963
1066
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
964
1067
 
965
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1068
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
966
1069
  outputs: List[BaseFeatureSpec] = []
967
1070
  if hasattr(self, "predict"):
968
1071
  # keep mypy happy
969
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1072
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
970
1073
  # For classifier, the type of predict is the same as the type of label
971
- if self._sklearn_object._estimator_type == 'classifier':
972
- # label columns is the desired type for output
1074
+ if self._sklearn_object._estimator_type == "classifier":
1075
+ # label columns is the desired type for output
973
1076
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
974
1077
  # rename the output columns
975
1078
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
976
- self._model_signature_dict["predict"] = ModelSignature(inputs,
977
- ([] if self._drop_input_cols else inputs)
978
- + outputs)
1079
+ self._model_signature_dict["predict"] = ModelSignature(
1080
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1081
+ )
979
1082
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
980
1083
  # For outlier models, returns -1 for outliers and 1 for inliers.
981
- # Clusterer returns int64 cluster labels.
1084
+ # Clusterer returns int64 cluster labels.
982
1085
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
983
1086
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
984
- self._model_signature_dict["predict"] = ModelSignature(inputs,
985
- ([] if self._drop_input_cols else inputs)
986
- + outputs)
987
-
1087
+ self._model_signature_dict["predict"] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
1090
+
988
1091
  # For regressor, the type of predict is float64
989
- elif self._sklearn_object._estimator_type == 'regressor':
1092
+ elif self._sklearn_object._estimator_type == "regressor":
990
1093
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
994
-
1094
+ self._model_signature_dict["predict"] = ModelSignature(
1095
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1096
+ )
1097
+
995
1098
  for prob_func in PROB_FUNCTIONS:
996
1099
  if hasattr(self, prob_func):
997
1100
  output_cols_prefix: str = f"{prob_func}_"
998
1101
  output_column_names = self._get_output_column_names(output_cols_prefix)
999
1102
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1000
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1001
- ([] if self._drop_input_cols else inputs)
1002
- + outputs)
1103
+ self._model_signature_dict[prob_func] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1003
1106
 
1004
1107
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1005
1108
  items = list(self._model_signature_dict.items())
@@ -1012,10 +1115,10 @@ class AdaBoostClassifier(BaseTransformer):
1012
1115
  """Returns model signature of current class.
1013
1116
 
1014
1117
  Raises:
1015
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1118
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1016
1119
 
1017
1120
  Returns:
1018
- Dict[str, ModelSignature]: each method and its input output signature
1121
+ Dict with each method and its input output signature
1019
1122
  """
1020
1123
  if self._model_signature_dict is None:
1021
1124
  raise exceptions.SnowflakeMLException(
@@ -1023,35 +1126,3 @@ class AdaBoostClassifier(BaseTransformer):
1023
1126
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1024
1127
  )
1025
1128
  return self._model_signature_dict
1026
-
1027
- def to_sklearn(self) -> Any:
1028
- """Get sklearn.ensemble.AdaBoostClassifier object.
1029
- """
1030
- if self._sklearn_object is None:
1031
- self._sklearn_object = self._create_sklearn_object()
1032
- return self._sklearn_object
1033
-
1034
- def to_xgboost(self) -> Any:
1035
- raise exceptions.SnowflakeMLException(
1036
- error_code=error_codes.METHOD_NOT_ALLOWED,
1037
- original_exception=AttributeError(
1038
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1039
- "to_xgboost()",
1040
- "to_sklearn()"
1041
- )
1042
- ),
1043
- )
1044
-
1045
- def to_lightgbm(self) -> Any:
1046
- raise exceptions.SnowflakeMLException(
1047
- error_code=error_codes.METHOD_NOT_ALLOWED,
1048
- original_exception=AttributeError(
1049
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
- "to_lightgbm()",
1051
- "to_sklearn()"
1052
- )
1053
- ),
1054
- )
1055
-
1056
- def _get_dependencies(self) -> List[str]:
1057
- return self._deps