snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return True and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SpectralEmbedding(BaseTransformer):
71
64
  r"""Spectral embedding for non-linear dimensionality reduction
72
65
  For more details on this class, see [sklearn.manifold.SpectralEmbedding]
@@ -263,12 +256,7 @@ class SpectralEmbedding(BaseTransformer):
263
256
  )
264
257
  return selected_cols
265
258
 
266
- @telemetry.send_api_usage_telemetry(
267
- project=_PROJECT,
268
- subproject=_SUBPROJECT,
269
- custom_tags=dict([("autogen", True)]),
270
- )
271
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralEmbedding":
259
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralEmbedding":
272
260
  """Fit the model from data in X
273
261
  For more details on this function, see [sklearn.manifold.SpectralEmbedding.fit]
274
262
  (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html#sklearn.manifold.SpectralEmbedding.fit)
@@ -295,12 +283,14 @@ class SpectralEmbedding(BaseTransformer):
295
283
 
296
284
  self._snowpark_cols = dataset.select(self.input_cols).columns
297
285
 
298
- # If we are already in a stored procedure, no need to kick off another one.
286
+ # If we are already in a stored procedure, no need to kick off another one.
299
287
  if SNOWML_SPROC_ENV in os.environ:
300
288
  statement_params = telemetry.get_function_usage_statement_params(
301
289
  project=_PROJECT,
302
290
  subproject=_SUBPROJECT,
303
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralEmbedding.__class__.__name__),
291
+ function_name=telemetry.get_statement_params_full_func_name(
292
+ inspect.currentframe(), SpectralEmbedding.__class__.__name__
293
+ ),
304
294
  api_calls=[Session.call],
305
295
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
306
296
  )
@@ -321,27 +311,24 @@ class SpectralEmbedding(BaseTransformer):
321
311
  )
322
312
  self._sklearn_object = model_trainer.train()
323
313
  self._is_fitted = True
324
- self._get_model_signatures(dataset)
314
+ self._generate_model_signatures(dataset)
325
315
  return self
326
316
 
327
317
  def _batch_inference_validate_snowpark(
328
318
  self,
329
319
  dataset: DataFrame,
330
320
  inference_method: str,
331
- ) -> List[str]:
332
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
333
- return the available package that exists in the snowflake anaconda channel
321
+ ) -> None:
322
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
334
323
 
335
324
  Args:
336
325
  dataset: snowpark dataframe
337
326
  inference_method: the inference method such as predict, score...
338
-
327
+
339
328
  Raises:
340
329
  SnowflakeMLException: If the estimator is not fitted, raise error
341
330
  SnowflakeMLException: If the session is None, raise error
342
331
 
343
- Returns:
344
- A list of available package that exists in the snowflake anaconda channel
345
332
  """
346
333
  if not self._is_fitted:
347
334
  raise exceptions.SnowflakeMLException(
@@ -359,9 +346,7 @@ class SpectralEmbedding(BaseTransformer):
359
346
  "Session must not specified for snowpark dataset."
360
347
  ),
361
348
  )
362
- # Validate that key package version in user workspace are supported in snowflake conda channel
363
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
364
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
349
+
365
350
 
366
351
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
367
352
  @telemetry.send_api_usage_telemetry(
@@ -395,7 +380,9 @@ class SpectralEmbedding(BaseTransformer):
395
380
  # when it is classifier, infer the datatype from label columns
396
381
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
397
382
  # Batch inference takes a single expected output column type. Use the first columns type for now.
398
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
383
+ label_cols_signatures = [
384
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
385
+ ]
399
386
  if len(label_cols_signatures) == 0:
400
387
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
401
388
  raise exceptions.SnowflakeMLException(
@@ -403,25 +390,23 @@ class SpectralEmbedding(BaseTransformer):
403
390
  original_exception=ValueError(error_str),
404
391
  )
405
392
 
406
- expected_type_inferred = convert_sp_to_sf_type(
407
- label_cols_signatures[0].as_snowpark_type()
408
- )
393
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
409
394
 
410
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
411
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
395
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
396
+ self._deps = self._get_dependencies()
397
+ assert isinstance(
398
+ dataset._session, Session
399
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
412
400
 
413
401
  transform_kwargs = dict(
414
- session = dataset._session,
415
- dependencies = self._deps,
416
- drop_input_cols = self._drop_input_cols,
417
- expected_output_cols_type = expected_type_inferred,
402
+ session=dataset._session,
403
+ dependencies=self._deps,
404
+ drop_input_cols=self._drop_input_cols,
405
+ expected_output_cols_type=expected_type_inferred,
418
406
  )
419
407
 
420
408
  elif isinstance(dataset, pd.DataFrame):
421
- transform_kwargs = dict(
422
- snowpark_input_cols = self._snowpark_cols,
423
- drop_input_cols = self._drop_input_cols
424
- )
409
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
425
410
 
426
411
  transform_handlers = ModelTransformerBuilder.build(
427
412
  dataset=dataset,
@@ -461,7 +446,7 @@ class SpectralEmbedding(BaseTransformer):
461
446
  Transformed dataset.
462
447
  """
463
448
  super()._check_dataset_type(dataset)
464
- inference_method="transform"
449
+ inference_method = "transform"
465
450
 
466
451
  # This dictionary contains optional kwargs for batch inference. These kwargs
467
452
  # are specific to the type of dataset used.
@@ -491,24 +476,19 @@ class SpectralEmbedding(BaseTransformer):
491
476
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
492
477
  expected_dtype = convert_sp_to_sf_type(output_types[0])
493
478
 
494
- self._deps = self._batch_inference_validate_snowpark(
495
- dataset=dataset,
496
- inference_method=inference_method,
497
- )
479
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
480
+ self._deps = self._get_dependencies()
498
481
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
499
482
 
500
483
  transform_kwargs = dict(
501
- session = dataset._session,
502
- dependencies = self._deps,
503
- drop_input_cols = self._drop_input_cols,
504
- expected_output_cols_type = expected_dtype,
484
+ session=dataset._session,
485
+ dependencies=self._deps,
486
+ drop_input_cols=self._drop_input_cols,
487
+ expected_output_cols_type=expected_dtype,
505
488
  )
506
489
 
507
490
  elif isinstance(dataset, pd.DataFrame):
508
- transform_kwargs = dict(
509
- snowpark_input_cols = self._snowpark_cols,
510
- drop_input_cols = self._drop_input_cols
511
- )
491
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
512
492
 
513
493
  transform_handlers = ModelTransformerBuilder.build(
514
494
  dataset=dataset,
@@ -527,7 +507,11 @@ class SpectralEmbedding(BaseTransformer):
527
507
  return output_df
528
508
 
529
509
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
530
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
510
+ def fit_predict(
511
+ self,
512
+ dataset: Union[DataFrame, pd.DataFrame],
513
+ output_cols_prefix: str = "fit_predict_",
514
+ ) -> Union[DataFrame, pd.DataFrame]:
531
515
  """ Method not supported for this class.
532
516
 
533
517
 
@@ -552,22 +536,106 @@ class SpectralEmbedding(BaseTransformer):
552
536
  )
553
537
  output_result, fitted_estimator = model_trainer.train_fit_predict(
554
538
  drop_input_cols=self._drop_input_cols,
555
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
539
+ expected_output_cols_list=(
540
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
541
+ ),
556
542
  )
557
543
  self._sklearn_object = fitted_estimator
558
544
  self._is_fitted = True
559
545
  return output_result
560
546
 
547
+
548
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
549
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
550
+ """ Fit the model from data in X and transform X
551
+ For more details on this function, see [sklearn.manifold.SpectralEmbedding.fit_transform]
552
+ (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.SpectralEmbedding.html#sklearn.manifold.SpectralEmbedding.fit_transform)
553
+
554
+
555
+ Raises:
556
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
561
557
 
562
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
563
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
564
- """
558
+ Args:
559
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
560
+ Snowpark or Pandas DataFrame.
561
+ output_cols_prefix: Prefix for the response columns
565
562
  Returns:
566
563
  Transformed dataset.
567
564
  """
568
- self.fit(dataset)
569
- assert self._sklearn_object is not None
570
- return self._sklearn_object.embedding_
565
+ self._infer_input_output_cols(dataset)
566
+ super()._check_dataset_type(dataset)
567
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
568
+ estimator=self._sklearn_object,
569
+ dataset=dataset,
570
+ input_cols=self.input_cols,
571
+ label_cols=self.label_cols,
572
+ sample_weight_col=self.sample_weight_col,
573
+ autogenerated=self._autogenerated,
574
+ subproject=_SUBPROJECT,
575
+ )
576
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
577
+ drop_input_cols=self._drop_input_cols,
578
+ expected_output_cols_list=self.output_cols,
579
+ )
580
+ self._sklearn_object = fitted_estimator
581
+ self._is_fitted = True
582
+ return output_result
583
+
584
+
585
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
586
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
587
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
588
+ """
589
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
590
+ # The following condition is introduced for kneighbors methods, and not used in other methods
591
+ if output_cols:
592
+ output_cols = [
593
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
594
+ for c in output_cols
595
+ ]
596
+ elif getattr(self._sklearn_object, "classes_", None) is None:
597
+ output_cols = [output_cols_prefix]
598
+ elif self._sklearn_object is not None:
599
+ classes = self._sklearn_object.classes_
600
+ if isinstance(classes, numpy.ndarray):
601
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
602
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
603
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
604
+ output_cols = []
605
+ for i, cl in enumerate(classes):
606
+ # For binary classification, there is only one output column for each class
607
+ # ndarray as the two classes are complementary.
608
+ if len(cl) == 2:
609
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
610
+ else:
611
+ output_cols.extend([
612
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
613
+ ])
614
+ else:
615
+ output_cols = []
616
+
617
+ # Make sure column names are valid snowflake identifiers.
618
+ assert output_cols is not None # Make MyPy happy
619
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
620
+
621
+ return rv
622
+
623
+ def _align_expected_output_names(
624
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
625
+ ) -> List[str]:
626
+ # in case the inferred output column names dimension is different
627
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
628
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
629
+ output_df_columns = list(output_df_pd.columns)
630
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
631
+ if self.sample_weight_col:
632
+ output_df_columns_set -= set(self.sample_weight_col)
633
+ # if the dimension of inferred output column names is correct; use it
634
+ if len(expected_output_cols_list) == len(output_df_columns_set):
635
+ return expected_output_cols_list
636
+ # otherwise, use the sklearn estimator's output
637
+ else:
638
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
571
639
 
572
640
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
573
641
  @telemetry.send_api_usage_telemetry(
@@ -599,24 +667,26 @@ class SpectralEmbedding(BaseTransformer):
599
667
  # are specific to the type of dataset used.
600
668
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
601
669
 
670
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
671
+
602
672
  if isinstance(dataset, DataFrame):
603
- self._deps = self._batch_inference_validate_snowpark(
604
- dataset=dataset,
605
- inference_method=inference_method,
606
- )
607
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
673
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
674
+ self._deps = self._get_dependencies()
675
+ assert isinstance(
676
+ dataset._session, Session
677
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
608
678
  transform_kwargs = dict(
609
679
  session=dataset._session,
610
680
  dependencies=self._deps,
611
- drop_input_cols = self._drop_input_cols,
681
+ drop_input_cols=self._drop_input_cols,
612
682
  expected_output_cols_type="float",
613
683
  )
684
+ expected_output_cols = self._align_expected_output_names(
685
+ inference_method, dataset, expected_output_cols, output_cols_prefix
686
+ )
614
687
 
615
688
  elif isinstance(dataset, pd.DataFrame):
616
- transform_kwargs = dict(
617
- snowpark_input_cols = self._snowpark_cols,
618
- drop_input_cols = self._drop_input_cols
619
- )
689
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
620
690
 
621
691
  transform_handlers = ModelTransformerBuilder.build(
622
692
  dataset=dataset,
@@ -628,7 +698,7 @@ class SpectralEmbedding(BaseTransformer):
628
698
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
629
699
  inference_method=inference_method,
630
700
  input_cols=self.input_cols,
631
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
701
+ expected_output_cols=expected_output_cols,
632
702
  **transform_kwargs
633
703
  )
634
704
  return output_df
@@ -658,29 +728,30 @@ class SpectralEmbedding(BaseTransformer):
658
728
  Output dataset with log probability of the sample for each class in the model.
659
729
  """
660
730
  super()._check_dataset_type(dataset)
661
- inference_method="predict_log_proba"
731
+ inference_method = "predict_log_proba"
732
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
662
733
 
663
734
  # This dictionary contains optional kwargs for batch inference. These kwargs
664
735
  # are specific to the type of dataset used.
665
736
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
666
737
 
667
738
  if isinstance(dataset, DataFrame):
668
- self._deps = self._batch_inference_validate_snowpark(
669
- dataset=dataset,
670
- inference_method=inference_method,
671
- )
672
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
739
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
740
+ self._deps = self._get_dependencies()
741
+ assert isinstance(
742
+ dataset._session, Session
743
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
673
744
  transform_kwargs = dict(
674
745
  session=dataset._session,
675
746
  dependencies=self._deps,
676
- drop_input_cols = self._drop_input_cols,
747
+ drop_input_cols=self._drop_input_cols,
677
748
  expected_output_cols_type="float",
678
749
  )
750
+ expected_output_cols = self._align_expected_output_names(
751
+ inference_method, dataset, expected_output_cols, output_cols_prefix
752
+ )
679
753
  elif isinstance(dataset, pd.DataFrame):
680
- transform_kwargs = dict(
681
- snowpark_input_cols = self._snowpark_cols,
682
- drop_input_cols = self._drop_input_cols
683
- )
754
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
684
755
 
685
756
  transform_handlers = ModelTransformerBuilder.build(
686
757
  dataset=dataset,
@@ -693,7 +764,7 @@ class SpectralEmbedding(BaseTransformer):
693
764
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
694
765
  inference_method=inference_method,
695
766
  input_cols=self.input_cols,
696
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
767
+ expected_output_cols=expected_output_cols,
697
768
  **transform_kwargs
698
769
  )
699
770
  return output_df
@@ -719,30 +790,32 @@ class SpectralEmbedding(BaseTransformer):
719
790
  Output dataset with results of the decision function for the samples in input dataset.
720
791
  """
721
792
  super()._check_dataset_type(dataset)
722
- inference_method="decision_function"
793
+ inference_method = "decision_function"
723
794
 
724
795
  # This dictionary contains optional kwargs for batch inference. These kwargs
725
796
  # are specific to the type of dataset used.
726
797
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
727
798
 
799
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
800
+
728
801
  if isinstance(dataset, DataFrame):
729
- self._deps = self._batch_inference_validate_snowpark(
730
- dataset=dataset,
731
- inference_method=inference_method,
732
- )
733
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
802
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
803
+ self._deps = self._get_dependencies()
804
+ assert isinstance(
805
+ dataset._session, Session
806
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
734
807
  transform_kwargs = dict(
735
808
  session=dataset._session,
736
809
  dependencies=self._deps,
737
- drop_input_cols = self._drop_input_cols,
810
+ drop_input_cols=self._drop_input_cols,
738
811
  expected_output_cols_type="float",
739
812
  )
813
+ expected_output_cols = self._align_expected_output_names(
814
+ inference_method, dataset, expected_output_cols, output_cols_prefix
815
+ )
740
816
 
741
817
  elif isinstance(dataset, pd.DataFrame):
742
- transform_kwargs = dict(
743
- snowpark_input_cols = self._snowpark_cols,
744
- drop_input_cols = self._drop_input_cols
745
- )
818
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
746
819
 
747
820
  transform_handlers = ModelTransformerBuilder.build(
748
821
  dataset=dataset,
@@ -755,7 +828,7 @@ class SpectralEmbedding(BaseTransformer):
755
828
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
756
829
  inference_method=inference_method,
757
830
  input_cols=self.input_cols,
758
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
831
+ expected_output_cols=expected_output_cols,
759
832
  **transform_kwargs
760
833
  )
761
834
  return output_df
@@ -784,17 +857,17 @@ class SpectralEmbedding(BaseTransformer):
784
857
  Output dataset with probability of the sample for each class in the model.
785
858
  """
786
859
  super()._check_dataset_type(dataset)
787
- inference_method="score_samples"
860
+ inference_method = "score_samples"
788
861
 
789
862
  # This dictionary contains optional kwargs for batch inference. These kwargs
790
863
  # are specific to the type of dataset used.
791
864
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
792
865
 
866
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
867
+
793
868
  if isinstance(dataset, DataFrame):
794
- self._deps = self._batch_inference_validate_snowpark(
795
- dataset=dataset,
796
- inference_method=inference_method,
797
- )
869
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
870
+ self._deps = self._get_dependencies()
798
871
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
799
872
  transform_kwargs = dict(
800
873
  session=dataset._session,
@@ -802,6 +875,9 @@ class SpectralEmbedding(BaseTransformer):
802
875
  drop_input_cols = self._drop_input_cols,
803
876
  expected_output_cols_type="float",
804
877
  )
878
+ expected_output_cols = self._align_expected_output_names(
879
+ inference_method, dataset, expected_output_cols, output_cols_prefix
880
+ )
805
881
 
806
882
  elif isinstance(dataset, pd.DataFrame):
807
883
  transform_kwargs = dict(
@@ -820,7 +896,7 @@ class SpectralEmbedding(BaseTransformer):
820
896
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
821
897
  inference_method=inference_method,
822
898
  input_cols=self.input_cols,
823
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
899
+ expected_output_cols=expected_output_cols,
824
900
  **transform_kwargs
825
901
  )
826
902
  return output_df
@@ -853,17 +929,15 @@ class SpectralEmbedding(BaseTransformer):
853
929
  transform_kwargs: ScoreKwargsTypedDict = dict()
854
930
 
855
931
  if isinstance(dataset, DataFrame):
856
- self._deps = self._batch_inference_validate_snowpark(
857
- dataset=dataset,
858
- inference_method="score",
859
- )
932
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
933
+ self._deps = self._get_dependencies()
860
934
  selected_cols = self._get_active_columns()
861
935
  if len(selected_cols) > 0:
862
936
  dataset = dataset.select(selected_cols)
863
937
  assert isinstance(dataset._session, Session) # keep mypy happy
864
938
  transform_kwargs = dict(
865
939
  session=dataset._session,
866
- dependencies=["snowflake-snowpark-python"] + self._deps,
940
+ dependencies=self._deps,
867
941
  score_sproc_imports=['sklearn'],
868
942
  )
869
943
  elif isinstance(dataset, pd.DataFrame):
@@ -928,11 +1002,8 @@ class SpectralEmbedding(BaseTransformer):
928
1002
 
929
1003
  if isinstance(dataset, DataFrame):
930
1004
 
931
- self._deps = self._batch_inference_validate_snowpark(
932
- dataset=dataset,
933
- inference_method=inference_method,
934
-
935
- )
1005
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1006
+ self._deps = self._get_dependencies()
936
1007
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
937
1008
  transform_kwargs = dict(
938
1009
  session = dataset._session,
@@ -965,50 +1036,84 @@ class SpectralEmbedding(BaseTransformer):
965
1036
  )
966
1037
  return output_df
967
1038
 
1039
+
1040
+
1041
+ def to_sklearn(self) -> Any:
1042
+ """Get sklearn.manifold.SpectralEmbedding object.
1043
+ """
1044
+ if self._sklearn_object is None:
1045
+ self._sklearn_object = self._create_sklearn_object()
1046
+ return self._sklearn_object
1047
+
1048
+ def to_xgboost(self) -> Any:
1049
+ raise exceptions.SnowflakeMLException(
1050
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1051
+ original_exception=AttributeError(
1052
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
+ "to_xgboost()",
1054
+ "to_sklearn()"
1055
+ )
1056
+ ),
1057
+ )
968
1058
 
969
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1059
+ def to_lightgbm(self) -> Any:
1060
+ raise exceptions.SnowflakeMLException(
1061
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1062
+ original_exception=AttributeError(
1063
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1064
+ "to_lightgbm()",
1065
+ "to_sklearn()"
1066
+ )
1067
+ ),
1068
+ )
1069
+
1070
+ def _get_dependencies(self) -> List[str]:
1071
+ return self._deps
1072
+
1073
+
1074
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
970
1075
  self._model_signature_dict = dict()
971
1076
 
972
1077
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
973
1078
 
974
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1079
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
975
1080
  outputs: List[BaseFeatureSpec] = []
976
1081
  if hasattr(self, "predict"):
977
1082
  # keep mypy happy
978
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1083
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
979
1084
  # For classifier, the type of predict is the same as the type of label
980
- if self._sklearn_object._estimator_type == 'classifier':
981
- # label columns is the desired type for output
1085
+ if self._sklearn_object._estimator_type == "classifier":
1086
+ # label columns is the desired type for output
982
1087
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
983
1088
  # rename the output columns
984
1089
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
985
- self._model_signature_dict["predict"] = ModelSignature(inputs,
986
- ([] if self._drop_input_cols else inputs)
987
- + outputs)
1090
+ self._model_signature_dict["predict"] = ModelSignature(
1091
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1092
+ )
988
1093
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
989
1094
  # For outlier models, returns -1 for outliers and 1 for inliers.
990
- # Clusterer returns int64 cluster labels.
1095
+ # Clusterer returns int64 cluster labels.
991
1096
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
992
1097
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
993
- self._model_signature_dict["predict"] = ModelSignature(inputs,
994
- ([] if self._drop_input_cols else inputs)
995
- + outputs)
996
-
1098
+ self._model_signature_dict["predict"] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
1101
+
997
1102
  # For regressor, the type of predict is float64
998
- elif self._sklearn_object._estimator_type == 'regressor':
1103
+ elif self._sklearn_object._estimator_type == "regressor":
999
1104
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1000
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1001
- ([] if self._drop_input_cols else inputs)
1002
- + outputs)
1003
-
1105
+ self._model_signature_dict["predict"] = ModelSignature(
1106
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1107
+ )
1108
+
1004
1109
  for prob_func in PROB_FUNCTIONS:
1005
1110
  if hasattr(self, prob_func):
1006
1111
  output_cols_prefix: str = f"{prob_func}_"
1007
1112
  output_column_names = self._get_output_column_names(output_cols_prefix)
1008
1113
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1009
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1010
- ([] if self._drop_input_cols else inputs)
1011
- + outputs)
1114
+ self._model_signature_dict[prob_func] = ModelSignature(
1115
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1116
+ )
1012
1117
 
1013
1118
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1014
1119
  items = list(self._model_signature_dict.items())
@@ -1021,10 +1126,10 @@ class SpectralEmbedding(BaseTransformer):
1021
1126
  """Returns model signature of current class.
1022
1127
 
1023
1128
  Raises:
1024
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1129
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1025
1130
 
1026
1131
  Returns:
1027
- Dict[str, ModelSignature]: each method and its input output signature
1132
+ Dict with each method and its input output signature
1028
1133
  """
1029
1134
  if self._model_signature_dict is None:
1030
1135
  raise exceptions.SnowflakeMLException(
@@ -1032,35 +1137,3 @@ class SpectralEmbedding(BaseTransformer):
1032
1137
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1033
1138
  )
1034
1139
  return self._model_signature_dict
1035
-
1036
- def to_sklearn(self) -> Any:
1037
- """Get sklearn.manifold.SpectralEmbedding object.
1038
- """
1039
- if self._sklearn_object is None:
1040
- self._sklearn_object = self._create_sklearn_object()
1041
- return self._sklearn_object
1042
-
1043
- def to_xgboost(self) -> Any:
1044
- raise exceptions.SnowflakeMLException(
1045
- error_code=error_codes.METHOD_NOT_ALLOWED,
1046
- original_exception=AttributeError(
1047
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1048
- "to_xgboost()",
1049
- "to_sklearn()"
1050
- )
1051
- ),
1052
- )
1053
-
1054
- def to_lightgbm(self) -> Any:
1055
- raise exceptions.SnowflakeMLException(
1056
- error_code=error_codes.METHOD_NOT_ALLOWED,
1057
- original_exception=AttributeError(
1058
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1059
- "to_lightgbm()",
1060
- "to_sklearn()"
1061
- )
1062
- ),
1063
- )
1064
-
1065
- def _get_dependencies(self) -> List[str]:
1066
- return self._deps