snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.discriminant_analysis".r
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class LinearDiscriminantAnalysis(BaseTransformer):
|
71
64
|
r"""Linear Discriminant Analysis
|
72
65
|
For more details on this class, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis]
|
@@ -257,12 +250,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
257
250
|
)
|
258
251
|
return selected_cols
|
259
252
|
|
260
|
-
|
261
|
-
project=_PROJECT,
|
262
|
-
subproject=_SUBPROJECT,
|
263
|
-
custom_tags=dict([("autogen", True)]),
|
264
|
-
)
|
265
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearDiscriminantAnalysis":
|
253
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearDiscriminantAnalysis":
|
266
254
|
"""Fit the Linear Discriminant Analysis model
|
267
255
|
For more details on this function, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit]
|
268
256
|
(https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit)
|
@@ -289,12 +277,14 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
289
277
|
|
290
278
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
291
279
|
|
292
|
-
|
280
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
293
281
|
if SNOWML_SPROC_ENV in os.environ:
|
294
282
|
statement_params = telemetry.get_function_usage_statement_params(
|
295
283
|
project=_PROJECT,
|
296
284
|
subproject=_SUBPROJECT,
|
297
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
285
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
286
|
+
inspect.currentframe(), LinearDiscriminantAnalysis.__class__.__name__
|
287
|
+
),
|
298
288
|
api_calls=[Session.call],
|
299
289
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
300
290
|
)
|
@@ -315,27 +305,24 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
315
305
|
)
|
316
306
|
self._sklearn_object = model_trainer.train()
|
317
307
|
self._is_fitted = True
|
318
|
-
self.
|
308
|
+
self._generate_model_signatures(dataset)
|
319
309
|
return self
|
320
310
|
|
321
311
|
def _batch_inference_validate_snowpark(
|
322
312
|
self,
|
323
313
|
dataset: DataFrame,
|
324
314
|
inference_method: str,
|
325
|
-
) ->
|
326
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
327
|
-
return the available package that exists in the snowflake anaconda channel
|
315
|
+
) -> None:
|
316
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
328
317
|
|
329
318
|
Args:
|
330
319
|
dataset: snowpark dataframe
|
331
320
|
inference_method: the inference method such as predict, score...
|
332
|
-
|
321
|
+
|
333
322
|
Raises:
|
334
323
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
335
324
|
SnowflakeMLException: If the session is None, raise error
|
336
325
|
|
337
|
-
Returns:
|
338
|
-
A list of available package that exists in the snowflake anaconda channel
|
339
326
|
"""
|
340
327
|
if not self._is_fitted:
|
341
328
|
raise exceptions.SnowflakeMLException(
|
@@ -353,9 +340,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
353
340
|
"Session must not specified for snowpark dataset."
|
354
341
|
),
|
355
342
|
)
|
356
|
-
|
357
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
358
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
343
|
+
|
359
344
|
|
360
345
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
361
346
|
@telemetry.send_api_usage_telemetry(
|
@@ -391,7 +376,9 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
391
376
|
# when it is classifier, infer the datatype from label columns
|
392
377
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
393
378
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
394
|
-
label_cols_signatures = [
|
379
|
+
label_cols_signatures = [
|
380
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
381
|
+
]
|
395
382
|
if len(label_cols_signatures) == 0:
|
396
383
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
397
384
|
raise exceptions.SnowflakeMLException(
|
@@ -399,25 +386,23 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
399
386
|
original_exception=ValueError(error_str),
|
400
387
|
)
|
401
388
|
|
402
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
403
|
-
label_cols_signatures[0].as_snowpark_type()
|
404
|
-
)
|
389
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
405
390
|
|
406
|
-
self.
|
407
|
-
|
391
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
392
|
+
self._deps = self._get_dependencies()
|
393
|
+
assert isinstance(
|
394
|
+
dataset._session, Session
|
395
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
408
396
|
|
409
397
|
transform_kwargs = dict(
|
410
|
-
session
|
411
|
-
dependencies
|
412
|
-
drop_input_cols
|
413
|
-
expected_output_cols_type
|
398
|
+
session=dataset._session,
|
399
|
+
dependencies=self._deps,
|
400
|
+
drop_input_cols=self._drop_input_cols,
|
401
|
+
expected_output_cols_type=expected_type_inferred,
|
414
402
|
)
|
415
403
|
|
416
404
|
elif isinstance(dataset, pd.DataFrame):
|
417
|
-
transform_kwargs = dict(
|
418
|
-
snowpark_input_cols = self._snowpark_cols,
|
419
|
-
drop_input_cols = self._drop_input_cols
|
420
|
-
)
|
405
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
421
406
|
|
422
407
|
transform_handlers = ModelTransformerBuilder.build(
|
423
408
|
dataset=dataset,
|
@@ -459,7 +444,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
459
444
|
Transformed dataset.
|
460
445
|
"""
|
461
446
|
super()._check_dataset_type(dataset)
|
462
|
-
inference_method="transform"
|
447
|
+
inference_method = "transform"
|
463
448
|
|
464
449
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
465
450
|
# are specific to the type of dataset used.
|
@@ -489,24 +474,19 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
489
474
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
490
475
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
491
476
|
|
492
|
-
self.
|
493
|
-
|
494
|
-
inference_method=inference_method,
|
495
|
-
)
|
477
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
478
|
+
self._deps = self._get_dependencies()
|
496
479
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
497
480
|
|
498
481
|
transform_kwargs = dict(
|
499
|
-
session
|
500
|
-
dependencies
|
501
|
-
drop_input_cols
|
502
|
-
expected_output_cols_type
|
482
|
+
session=dataset._session,
|
483
|
+
dependencies=self._deps,
|
484
|
+
drop_input_cols=self._drop_input_cols,
|
485
|
+
expected_output_cols_type=expected_dtype,
|
503
486
|
)
|
504
487
|
|
505
488
|
elif isinstance(dataset, pd.DataFrame):
|
506
|
-
transform_kwargs = dict(
|
507
|
-
snowpark_input_cols = self._snowpark_cols,
|
508
|
-
drop_input_cols = self._drop_input_cols
|
509
|
-
)
|
489
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
510
490
|
|
511
491
|
transform_handlers = ModelTransformerBuilder.build(
|
512
492
|
dataset=dataset,
|
@@ -525,7 +505,11 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
525
505
|
return output_df
|
526
506
|
|
527
507
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
528
|
-
def fit_predict(
|
508
|
+
def fit_predict(
|
509
|
+
self,
|
510
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
511
|
+
output_cols_prefix: str = "fit_predict_",
|
512
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
529
513
|
""" Method not supported for this class.
|
530
514
|
|
531
515
|
|
@@ -550,22 +534,106 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
550
534
|
)
|
551
535
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
552
536
|
drop_input_cols=self._drop_input_cols,
|
553
|
-
expected_output_cols_list=
|
537
|
+
expected_output_cols_list=(
|
538
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
539
|
+
),
|
554
540
|
)
|
555
541
|
self._sklearn_object = fitted_estimator
|
556
542
|
self._is_fitted = True
|
557
543
|
return output_result
|
558
544
|
|
545
|
+
|
546
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
547
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
548
|
+
""" Fit to data, then transform it
|
549
|
+
For more details on this function, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit_transform]
|
550
|
+
(https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit_transform)
|
551
|
+
|
552
|
+
|
553
|
+
Raises:
|
554
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
559
555
|
|
560
|
-
|
561
|
-
|
562
|
-
|
556
|
+
Args:
|
557
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
558
|
+
Snowpark or Pandas DataFrame.
|
559
|
+
output_cols_prefix: Prefix for the response columns
|
563
560
|
Returns:
|
564
561
|
Transformed dataset.
|
565
562
|
"""
|
566
|
-
self.
|
567
|
-
|
568
|
-
|
563
|
+
self._infer_input_output_cols(dataset)
|
564
|
+
super()._check_dataset_type(dataset)
|
565
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
566
|
+
estimator=self._sklearn_object,
|
567
|
+
dataset=dataset,
|
568
|
+
input_cols=self.input_cols,
|
569
|
+
label_cols=self.label_cols,
|
570
|
+
sample_weight_col=self.sample_weight_col,
|
571
|
+
autogenerated=self._autogenerated,
|
572
|
+
subproject=_SUBPROJECT,
|
573
|
+
)
|
574
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
575
|
+
drop_input_cols=self._drop_input_cols,
|
576
|
+
expected_output_cols_list=self.output_cols,
|
577
|
+
)
|
578
|
+
self._sklearn_object = fitted_estimator
|
579
|
+
self._is_fitted = True
|
580
|
+
return output_result
|
581
|
+
|
582
|
+
|
583
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
584
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
585
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
586
|
+
"""
|
587
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
588
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
589
|
+
if output_cols:
|
590
|
+
output_cols = [
|
591
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
592
|
+
for c in output_cols
|
593
|
+
]
|
594
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
595
|
+
output_cols = [output_cols_prefix]
|
596
|
+
elif self._sklearn_object is not None:
|
597
|
+
classes = self._sklearn_object.classes_
|
598
|
+
if isinstance(classes, numpy.ndarray):
|
599
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
600
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
601
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
602
|
+
output_cols = []
|
603
|
+
for i, cl in enumerate(classes):
|
604
|
+
# For binary classification, there is only one output column for each class
|
605
|
+
# ndarray as the two classes are complementary.
|
606
|
+
if len(cl) == 2:
|
607
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
608
|
+
else:
|
609
|
+
output_cols.extend([
|
610
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
611
|
+
])
|
612
|
+
else:
|
613
|
+
output_cols = []
|
614
|
+
|
615
|
+
# Make sure column names are valid snowflake identifiers.
|
616
|
+
assert output_cols is not None # Make MyPy happy
|
617
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
618
|
+
|
619
|
+
return rv
|
620
|
+
|
621
|
+
def _align_expected_output_names(
|
622
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
623
|
+
) -> List[str]:
|
624
|
+
# in case the inferred output column names dimension is different
|
625
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
626
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
627
|
+
output_df_columns = list(output_df_pd.columns)
|
628
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
629
|
+
if self.sample_weight_col:
|
630
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
631
|
+
# if the dimension of inferred output column names is correct; use it
|
632
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
633
|
+
return expected_output_cols_list
|
634
|
+
# otherwise, use the sklearn estimator's output
|
635
|
+
else:
|
636
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
569
637
|
|
570
638
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
571
639
|
@telemetry.send_api_usage_telemetry(
|
@@ -599,24 +667,26 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
599
667
|
# are specific to the type of dataset used.
|
600
668
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
601
669
|
|
670
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
671
|
+
|
602
672
|
if isinstance(dataset, DataFrame):
|
603
|
-
self.
|
604
|
-
|
605
|
-
|
606
|
-
|
607
|
-
|
673
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
674
|
+
self._deps = self._get_dependencies()
|
675
|
+
assert isinstance(
|
676
|
+
dataset._session, Session
|
677
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
608
678
|
transform_kwargs = dict(
|
609
679
|
session=dataset._session,
|
610
680
|
dependencies=self._deps,
|
611
|
-
drop_input_cols
|
681
|
+
drop_input_cols=self._drop_input_cols,
|
612
682
|
expected_output_cols_type="float",
|
613
683
|
)
|
684
|
+
expected_output_cols = self._align_expected_output_names(
|
685
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
686
|
+
)
|
614
687
|
|
615
688
|
elif isinstance(dataset, pd.DataFrame):
|
616
|
-
transform_kwargs = dict(
|
617
|
-
snowpark_input_cols = self._snowpark_cols,
|
618
|
-
drop_input_cols = self._drop_input_cols
|
619
|
-
)
|
689
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
620
690
|
|
621
691
|
transform_handlers = ModelTransformerBuilder.build(
|
622
692
|
dataset=dataset,
|
@@ -628,7 +698,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
628
698
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
629
699
|
inference_method=inference_method,
|
630
700
|
input_cols=self.input_cols,
|
631
|
-
expected_output_cols=
|
701
|
+
expected_output_cols=expected_output_cols,
|
632
702
|
**transform_kwargs
|
633
703
|
)
|
634
704
|
return output_df
|
@@ -660,29 +730,30 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
660
730
|
Output dataset with log probability of the sample for each class in the model.
|
661
731
|
"""
|
662
732
|
super()._check_dataset_type(dataset)
|
663
|
-
inference_method="predict_log_proba"
|
733
|
+
inference_method = "predict_log_proba"
|
734
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
664
735
|
|
665
736
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
666
737
|
# are specific to the type of dataset used.
|
667
738
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
668
739
|
|
669
740
|
if isinstance(dataset, DataFrame):
|
670
|
-
self.
|
671
|
-
|
672
|
-
|
673
|
-
|
674
|
-
|
741
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
742
|
+
self._deps = self._get_dependencies()
|
743
|
+
assert isinstance(
|
744
|
+
dataset._session, Session
|
745
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
675
746
|
transform_kwargs = dict(
|
676
747
|
session=dataset._session,
|
677
748
|
dependencies=self._deps,
|
678
|
-
drop_input_cols
|
749
|
+
drop_input_cols=self._drop_input_cols,
|
679
750
|
expected_output_cols_type="float",
|
680
751
|
)
|
752
|
+
expected_output_cols = self._align_expected_output_names(
|
753
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
754
|
+
)
|
681
755
|
elif isinstance(dataset, pd.DataFrame):
|
682
|
-
transform_kwargs = dict(
|
683
|
-
snowpark_input_cols = self._snowpark_cols,
|
684
|
-
drop_input_cols = self._drop_input_cols
|
685
|
-
)
|
756
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
686
757
|
|
687
758
|
transform_handlers = ModelTransformerBuilder.build(
|
688
759
|
dataset=dataset,
|
@@ -695,7 +766,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
695
766
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
696
767
|
inference_method=inference_method,
|
697
768
|
input_cols=self.input_cols,
|
698
|
-
expected_output_cols=
|
769
|
+
expected_output_cols=expected_output_cols,
|
699
770
|
**transform_kwargs
|
700
771
|
)
|
701
772
|
return output_df
|
@@ -723,30 +794,32 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
723
794
|
Output dataset with results of the decision function for the samples in input dataset.
|
724
795
|
"""
|
725
796
|
super()._check_dataset_type(dataset)
|
726
|
-
inference_method="decision_function"
|
797
|
+
inference_method = "decision_function"
|
727
798
|
|
728
799
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
729
800
|
# are specific to the type of dataset used.
|
730
801
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
731
802
|
|
803
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
804
|
+
|
732
805
|
if isinstance(dataset, DataFrame):
|
733
|
-
self.
|
734
|
-
|
735
|
-
|
736
|
-
|
737
|
-
|
806
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
807
|
+
self._deps = self._get_dependencies()
|
808
|
+
assert isinstance(
|
809
|
+
dataset._session, Session
|
810
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
738
811
|
transform_kwargs = dict(
|
739
812
|
session=dataset._session,
|
740
813
|
dependencies=self._deps,
|
741
|
-
drop_input_cols
|
814
|
+
drop_input_cols=self._drop_input_cols,
|
742
815
|
expected_output_cols_type="float",
|
743
816
|
)
|
817
|
+
expected_output_cols = self._align_expected_output_names(
|
818
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
819
|
+
)
|
744
820
|
|
745
821
|
elif isinstance(dataset, pd.DataFrame):
|
746
|
-
transform_kwargs = dict(
|
747
|
-
snowpark_input_cols = self._snowpark_cols,
|
748
|
-
drop_input_cols = self._drop_input_cols
|
749
|
-
)
|
822
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
750
823
|
|
751
824
|
transform_handlers = ModelTransformerBuilder.build(
|
752
825
|
dataset=dataset,
|
@@ -759,7 +832,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
759
832
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
760
833
|
inference_method=inference_method,
|
761
834
|
input_cols=self.input_cols,
|
762
|
-
expected_output_cols=
|
835
|
+
expected_output_cols=expected_output_cols,
|
763
836
|
**transform_kwargs
|
764
837
|
)
|
765
838
|
return output_df
|
@@ -788,17 +861,17 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
788
861
|
Output dataset with probability of the sample for each class in the model.
|
789
862
|
"""
|
790
863
|
super()._check_dataset_type(dataset)
|
791
|
-
inference_method="score_samples"
|
864
|
+
inference_method = "score_samples"
|
792
865
|
|
793
866
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
794
867
|
# are specific to the type of dataset used.
|
795
868
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
796
869
|
|
870
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
871
|
+
|
797
872
|
if isinstance(dataset, DataFrame):
|
798
|
-
self.
|
799
|
-
|
800
|
-
inference_method=inference_method,
|
801
|
-
)
|
873
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
874
|
+
self._deps = self._get_dependencies()
|
802
875
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
803
876
|
transform_kwargs = dict(
|
804
877
|
session=dataset._session,
|
@@ -806,6 +879,9 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
806
879
|
drop_input_cols = self._drop_input_cols,
|
807
880
|
expected_output_cols_type="float",
|
808
881
|
)
|
882
|
+
expected_output_cols = self._align_expected_output_names(
|
883
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
884
|
+
)
|
809
885
|
|
810
886
|
elif isinstance(dataset, pd.DataFrame):
|
811
887
|
transform_kwargs = dict(
|
@@ -824,7 +900,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
824
900
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
825
901
|
inference_method=inference_method,
|
826
902
|
input_cols=self.input_cols,
|
827
|
-
expected_output_cols=
|
903
|
+
expected_output_cols=expected_output_cols,
|
828
904
|
**transform_kwargs
|
829
905
|
)
|
830
906
|
return output_df
|
@@ -859,17 +935,15 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
859
935
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
860
936
|
|
861
937
|
if isinstance(dataset, DataFrame):
|
862
|
-
self.
|
863
|
-
|
864
|
-
inference_method="score",
|
865
|
-
)
|
938
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
939
|
+
self._deps = self._get_dependencies()
|
866
940
|
selected_cols = self._get_active_columns()
|
867
941
|
if len(selected_cols) > 0:
|
868
942
|
dataset = dataset.select(selected_cols)
|
869
943
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
870
944
|
transform_kwargs = dict(
|
871
945
|
session=dataset._session,
|
872
|
-
dependencies=
|
946
|
+
dependencies=self._deps,
|
873
947
|
score_sproc_imports=['sklearn'],
|
874
948
|
)
|
875
949
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -934,11 +1008,8 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
934
1008
|
|
935
1009
|
if isinstance(dataset, DataFrame):
|
936
1010
|
|
937
|
-
self.
|
938
|
-
|
939
|
-
inference_method=inference_method,
|
940
|
-
|
941
|
-
)
|
1011
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1012
|
+
self._deps = self._get_dependencies()
|
942
1013
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
943
1014
|
transform_kwargs = dict(
|
944
1015
|
session = dataset._session,
|
@@ -971,50 +1042,84 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
971
1042
|
)
|
972
1043
|
return output_df
|
973
1044
|
|
1045
|
+
|
1046
|
+
|
1047
|
+
def to_sklearn(self) -> Any:
|
1048
|
+
"""Get sklearn.discriminant_analysis.LinearDiscriminantAnalysis object.
|
1049
|
+
"""
|
1050
|
+
if self._sklearn_object is None:
|
1051
|
+
self._sklearn_object = self._create_sklearn_object()
|
1052
|
+
return self._sklearn_object
|
1053
|
+
|
1054
|
+
def to_xgboost(self) -> Any:
|
1055
|
+
raise exceptions.SnowflakeMLException(
|
1056
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1057
|
+
original_exception=AttributeError(
|
1058
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1059
|
+
"to_xgboost()",
|
1060
|
+
"to_sklearn()"
|
1061
|
+
)
|
1062
|
+
),
|
1063
|
+
)
|
974
1064
|
|
975
|
-
def
|
1065
|
+
def to_lightgbm(self) -> Any:
|
1066
|
+
raise exceptions.SnowflakeMLException(
|
1067
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1068
|
+
original_exception=AttributeError(
|
1069
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1070
|
+
"to_lightgbm()",
|
1071
|
+
"to_sklearn()"
|
1072
|
+
)
|
1073
|
+
),
|
1074
|
+
)
|
1075
|
+
|
1076
|
+
def _get_dependencies(self) -> List[str]:
|
1077
|
+
return self._deps
|
1078
|
+
|
1079
|
+
|
1080
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
976
1081
|
self._model_signature_dict = dict()
|
977
1082
|
|
978
1083
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
979
1084
|
|
980
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1085
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
981
1086
|
outputs: List[BaseFeatureSpec] = []
|
982
1087
|
if hasattr(self, "predict"):
|
983
1088
|
# keep mypy happy
|
984
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1089
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
985
1090
|
# For classifier, the type of predict is the same as the type of label
|
986
|
-
if self._sklearn_object._estimator_type ==
|
987
|
-
|
1091
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1092
|
+
# label columns is the desired type for output
|
988
1093
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
989
1094
|
# rename the output columns
|
990
1095
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
991
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
992
|
-
|
993
|
-
|
1096
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1097
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1098
|
+
)
|
994
1099
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
995
1100
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
996
|
-
# Clusterer returns int64 cluster labels.
|
1101
|
+
# Clusterer returns int64 cluster labels.
|
997
1102
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
998
1103
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
999
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1000
|
-
|
1001
|
-
|
1002
|
-
|
1104
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1105
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1106
|
+
)
|
1107
|
+
|
1003
1108
|
# For regressor, the type of predict is float64
|
1004
|
-
elif self._sklearn_object._estimator_type ==
|
1109
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1005
1110
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1006
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1007
|
-
|
1008
|
-
|
1009
|
-
|
1111
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1112
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1113
|
+
)
|
1114
|
+
|
1010
1115
|
for prob_func in PROB_FUNCTIONS:
|
1011
1116
|
if hasattr(self, prob_func):
|
1012
1117
|
output_cols_prefix: str = f"{prob_func}_"
|
1013
1118
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1014
1119
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1015
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1016
|
-
|
1017
|
-
|
1120
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1121
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1122
|
+
)
|
1018
1123
|
|
1019
1124
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1020
1125
|
items = list(self._model_signature_dict.items())
|
@@ -1027,10 +1132,10 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
1027
1132
|
"""Returns model signature of current class.
|
1028
1133
|
|
1029
1134
|
Raises:
|
1030
|
-
|
1135
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1031
1136
|
|
1032
1137
|
Returns:
|
1033
|
-
Dict
|
1138
|
+
Dict with each method and its input output signature
|
1034
1139
|
"""
|
1035
1140
|
if self._model_signature_dict is None:
|
1036
1141
|
raise exceptions.SnowflakeMLException(
|
@@ -1038,35 +1143,3 @@ class LinearDiscriminantAnalysis(BaseTransformer):
|
|
1038
1143
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1039
1144
|
)
|
1040
1145
|
return self._model_signature_dict
|
1041
|
-
|
1042
|
-
def to_sklearn(self) -> Any:
|
1043
|
-
"""Get sklearn.discriminant_analysis.LinearDiscriminantAnalysis object.
|
1044
|
-
"""
|
1045
|
-
if self._sklearn_object is None:
|
1046
|
-
self._sklearn_object = self._create_sklearn_object()
|
1047
|
-
return self._sklearn_object
|
1048
|
-
|
1049
|
-
def to_xgboost(self) -> Any:
|
1050
|
-
raise exceptions.SnowflakeMLException(
|
1051
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1052
|
-
original_exception=AttributeError(
|
1053
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1054
|
-
"to_xgboost()",
|
1055
|
-
"to_sklearn()"
|
1056
|
-
)
|
1057
|
-
),
|
1058
|
-
)
|
1059
|
-
|
1060
|
-
def to_lightgbm(self) -> Any:
|
1061
|
-
raise exceptions.SnowflakeMLException(
|
1062
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1063
|
-
original_exception=AttributeError(
|
1064
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1065
|
-
"to_lightgbm()",
|
1066
|
-
"to_sklearn()"
|
1067
|
-
)
|
1068
|
-
),
|
1069
|
-
)
|
1070
|
-
|
1071
|
-
def _get_dependencies(self) -> List[str]:
|
1072
|
-
return self._deps
|