snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.discriminant_analysis".r
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LinearDiscriminantAnalysis(BaseTransformer):
71
64
  r"""Linear Discriminant Analysis
72
65
  For more details on this class, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis]
@@ -257,12 +250,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
257
250
  )
258
251
  return selected_cols
259
252
 
260
- @telemetry.send_api_usage_telemetry(
261
- project=_PROJECT,
262
- subproject=_SUBPROJECT,
263
- custom_tags=dict([("autogen", True)]),
264
- )
265
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearDiscriminantAnalysis":
253
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearDiscriminantAnalysis":
266
254
  """Fit the Linear Discriminant Analysis model
267
255
  For more details on this function, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit]
268
256
  (https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit)
@@ -289,12 +277,14 @@ class LinearDiscriminantAnalysis(BaseTransformer):
289
277
 
290
278
  self._snowpark_cols = dataset.select(self.input_cols).columns
291
279
 
292
- # If we are already in a stored procedure, no need to kick off another one.
280
+ # If we are already in a stored procedure, no need to kick off another one.
293
281
  if SNOWML_SPROC_ENV in os.environ:
294
282
  statement_params = telemetry.get_function_usage_statement_params(
295
283
  project=_PROJECT,
296
284
  subproject=_SUBPROJECT,
297
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearDiscriminantAnalysis.__class__.__name__),
285
+ function_name=telemetry.get_statement_params_full_func_name(
286
+ inspect.currentframe(), LinearDiscriminantAnalysis.__class__.__name__
287
+ ),
298
288
  api_calls=[Session.call],
299
289
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
300
290
  )
@@ -315,27 +305,24 @@ class LinearDiscriminantAnalysis(BaseTransformer):
315
305
  )
316
306
  self._sklearn_object = model_trainer.train()
317
307
  self._is_fitted = True
318
- self._get_model_signatures(dataset)
308
+ self._generate_model_signatures(dataset)
319
309
  return self
320
310
 
321
311
  def _batch_inference_validate_snowpark(
322
312
  self,
323
313
  dataset: DataFrame,
324
314
  inference_method: str,
325
- ) -> List[str]:
326
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
327
- return the available package that exists in the snowflake anaconda channel
315
+ ) -> None:
316
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
328
317
 
329
318
  Args:
330
319
  dataset: snowpark dataframe
331
320
  inference_method: the inference method such as predict, score...
332
-
321
+
333
322
  Raises:
334
323
  SnowflakeMLException: If the estimator is not fitted, raise error
335
324
  SnowflakeMLException: If the session is None, raise error
336
325
 
337
- Returns:
338
- A list of available package that exists in the snowflake anaconda channel
339
326
  """
340
327
  if not self._is_fitted:
341
328
  raise exceptions.SnowflakeMLException(
@@ -353,9 +340,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
353
340
  "Session must not specified for snowpark dataset."
354
341
  ),
355
342
  )
356
- # Validate that key package version in user workspace are supported in snowflake conda channel
357
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
358
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
343
+
359
344
 
360
345
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
361
346
  @telemetry.send_api_usage_telemetry(
@@ -391,7 +376,9 @@ class LinearDiscriminantAnalysis(BaseTransformer):
391
376
  # when it is classifier, infer the datatype from label columns
392
377
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
393
378
  # Batch inference takes a single expected output column type. Use the first columns type for now.
394
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
379
+ label_cols_signatures = [
380
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
381
+ ]
395
382
  if len(label_cols_signatures) == 0:
396
383
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
397
384
  raise exceptions.SnowflakeMLException(
@@ -399,25 +386,23 @@ class LinearDiscriminantAnalysis(BaseTransformer):
399
386
  original_exception=ValueError(error_str),
400
387
  )
401
388
 
402
- expected_type_inferred = convert_sp_to_sf_type(
403
- label_cols_signatures[0].as_snowpark_type()
404
- )
389
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
405
390
 
406
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
407
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
391
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
392
+ self._deps = self._get_dependencies()
393
+ assert isinstance(
394
+ dataset._session, Session
395
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
408
396
 
409
397
  transform_kwargs = dict(
410
- session = dataset._session,
411
- dependencies = self._deps,
412
- drop_input_cols = self._drop_input_cols,
413
- expected_output_cols_type = expected_type_inferred,
398
+ session=dataset._session,
399
+ dependencies=self._deps,
400
+ drop_input_cols=self._drop_input_cols,
401
+ expected_output_cols_type=expected_type_inferred,
414
402
  )
415
403
 
416
404
  elif isinstance(dataset, pd.DataFrame):
417
- transform_kwargs = dict(
418
- snowpark_input_cols = self._snowpark_cols,
419
- drop_input_cols = self._drop_input_cols
420
- )
405
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
421
406
 
422
407
  transform_handlers = ModelTransformerBuilder.build(
423
408
  dataset=dataset,
@@ -459,7 +444,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
459
444
  Transformed dataset.
460
445
  """
461
446
  super()._check_dataset_type(dataset)
462
- inference_method="transform"
447
+ inference_method = "transform"
463
448
 
464
449
  # This dictionary contains optional kwargs for batch inference. These kwargs
465
450
  # are specific to the type of dataset used.
@@ -489,24 +474,19 @@ class LinearDiscriminantAnalysis(BaseTransformer):
489
474
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
490
475
  expected_dtype = convert_sp_to_sf_type(output_types[0])
491
476
 
492
- self._deps = self._batch_inference_validate_snowpark(
493
- dataset=dataset,
494
- inference_method=inference_method,
495
- )
477
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
478
+ self._deps = self._get_dependencies()
496
479
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
497
480
 
498
481
  transform_kwargs = dict(
499
- session = dataset._session,
500
- dependencies = self._deps,
501
- drop_input_cols = self._drop_input_cols,
502
- expected_output_cols_type = expected_dtype,
482
+ session=dataset._session,
483
+ dependencies=self._deps,
484
+ drop_input_cols=self._drop_input_cols,
485
+ expected_output_cols_type=expected_dtype,
503
486
  )
504
487
 
505
488
  elif isinstance(dataset, pd.DataFrame):
506
- transform_kwargs = dict(
507
- snowpark_input_cols = self._snowpark_cols,
508
- drop_input_cols = self._drop_input_cols
509
- )
489
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
510
490
 
511
491
  transform_handlers = ModelTransformerBuilder.build(
512
492
  dataset=dataset,
@@ -525,7 +505,11 @@ class LinearDiscriminantAnalysis(BaseTransformer):
525
505
  return output_df
526
506
 
527
507
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
528
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
508
+ def fit_predict(
509
+ self,
510
+ dataset: Union[DataFrame, pd.DataFrame],
511
+ output_cols_prefix: str = "fit_predict_",
512
+ ) -> Union[DataFrame, pd.DataFrame]:
529
513
  """ Method not supported for this class.
530
514
 
531
515
 
@@ -550,22 +534,106 @@ class LinearDiscriminantAnalysis(BaseTransformer):
550
534
  )
551
535
  output_result, fitted_estimator = model_trainer.train_fit_predict(
552
536
  drop_input_cols=self._drop_input_cols,
553
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
537
+ expected_output_cols_list=(
538
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
539
+ ),
554
540
  )
555
541
  self._sklearn_object = fitted_estimator
556
542
  self._is_fitted = True
557
543
  return output_result
558
544
 
545
+
546
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
547
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
548
+ """ Fit to data, then transform it
549
+ For more details on this function, see [sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit_transform]
550
+ (https://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html#sklearn.discriminant_analysis.LinearDiscriminantAnalysis.fit_transform)
551
+
552
+
553
+ Raises:
554
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
559
555
 
560
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
561
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
562
- """
556
+ Args:
557
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
558
+ Snowpark or Pandas DataFrame.
559
+ output_cols_prefix: Prefix for the response columns
563
560
  Returns:
564
561
  Transformed dataset.
565
562
  """
566
- self.fit(dataset)
567
- assert self._sklearn_object is not None
568
- return self._sklearn_object.embedding_
563
+ self._infer_input_output_cols(dataset)
564
+ super()._check_dataset_type(dataset)
565
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
566
+ estimator=self._sklearn_object,
567
+ dataset=dataset,
568
+ input_cols=self.input_cols,
569
+ label_cols=self.label_cols,
570
+ sample_weight_col=self.sample_weight_col,
571
+ autogenerated=self._autogenerated,
572
+ subproject=_SUBPROJECT,
573
+ )
574
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
575
+ drop_input_cols=self._drop_input_cols,
576
+ expected_output_cols_list=self.output_cols,
577
+ )
578
+ self._sklearn_object = fitted_estimator
579
+ self._is_fitted = True
580
+ return output_result
581
+
582
+
583
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
584
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
585
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
586
+ """
587
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
588
+ # The following condition is introduced for kneighbors methods, and not used in other methods
589
+ if output_cols:
590
+ output_cols = [
591
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
592
+ for c in output_cols
593
+ ]
594
+ elif getattr(self._sklearn_object, "classes_", None) is None:
595
+ output_cols = [output_cols_prefix]
596
+ elif self._sklearn_object is not None:
597
+ classes = self._sklearn_object.classes_
598
+ if isinstance(classes, numpy.ndarray):
599
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
600
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
601
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
602
+ output_cols = []
603
+ for i, cl in enumerate(classes):
604
+ # For binary classification, there is only one output column for each class
605
+ # ndarray as the two classes are complementary.
606
+ if len(cl) == 2:
607
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
608
+ else:
609
+ output_cols.extend([
610
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
611
+ ])
612
+ else:
613
+ output_cols = []
614
+
615
+ # Make sure column names are valid snowflake identifiers.
616
+ assert output_cols is not None # Make MyPy happy
617
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
618
+
619
+ return rv
620
+
621
+ def _align_expected_output_names(
622
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
623
+ ) -> List[str]:
624
+ # in case the inferred output column names dimension is different
625
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
626
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
627
+ output_df_columns = list(output_df_pd.columns)
628
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
629
+ if self.sample_weight_col:
630
+ output_df_columns_set -= set(self.sample_weight_col)
631
+ # if the dimension of inferred output column names is correct; use it
632
+ if len(expected_output_cols_list) == len(output_df_columns_set):
633
+ return expected_output_cols_list
634
+ # otherwise, use the sklearn estimator's output
635
+ else:
636
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
569
637
 
570
638
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
571
639
  @telemetry.send_api_usage_telemetry(
@@ -599,24 +667,26 @@ class LinearDiscriminantAnalysis(BaseTransformer):
599
667
  # are specific to the type of dataset used.
600
668
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
601
669
 
670
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
671
+
602
672
  if isinstance(dataset, DataFrame):
603
- self._deps = self._batch_inference_validate_snowpark(
604
- dataset=dataset,
605
- inference_method=inference_method,
606
- )
607
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
673
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
674
+ self._deps = self._get_dependencies()
675
+ assert isinstance(
676
+ dataset._session, Session
677
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
608
678
  transform_kwargs = dict(
609
679
  session=dataset._session,
610
680
  dependencies=self._deps,
611
- drop_input_cols = self._drop_input_cols,
681
+ drop_input_cols=self._drop_input_cols,
612
682
  expected_output_cols_type="float",
613
683
  )
684
+ expected_output_cols = self._align_expected_output_names(
685
+ inference_method, dataset, expected_output_cols, output_cols_prefix
686
+ )
614
687
 
615
688
  elif isinstance(dataset, pd.DataFrame):
616
- transform_kwargs = dict(
617
- snowpark_input_cols = self._snowpark_cols,
618
- drop_input_cols = self._drop_input_cols
619
- )
689
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
620
690
 
621
691
  transform_handlers = ModelTransformerBuilder.build(
622
692
  dataset=dataset,
@@ -628,7 +698,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
628
698
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
629
699
  inference_method=inference_method,
630
700
  input_cols=self.input_cols,
631
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
701
+ expected_output_cols=expected_output_cols,
632
702
  **transform_kwargs
633
703
  )
634
704
  return output_df
@@ -660,29 +730,30 @@ class LinearDiscriminantAnalysis(BaseTransformer):
660
730
  Output dataset with log probability of the sample for each class in the model.
661
731
  """
662
732
  super()._check_dataset_type(dataset)
663
- inference_method="predict_log_proba"
733
+ inference_method = "predict_log_proba"
734
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
664
735
 
665
736
  # This dictionary contains optional kwargs for batch inference. These kwargs
666
737
  # are specific to the type of dataset used.
667
738
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
668
739
 
669
740
  if isinstance(dataset, DataFrame):
670
- self._deps = self._batch_inference_validate_snowpark(
671
- dataset=dataset,
672
- inference_method=inference_method,
673
- )
674
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
741
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
742
+ self._deps = self._get_dependencies()
743
+ assert isinstance(
744
+ dataset._session, Session
745
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
675
746
  transform_kwargs = dict(
676
747
  session=dataset._session,
677
748
  dependencies=self._deps,
678
- drop_input_cols = self._drop_input_cols,
749
+ drop_input_cols=self._drop_input_cols,
679
750
  expected_output_cols_type="float",
680
751
  )
752
+ expected_output_cols = self._align_expected_output_names(
753
+ inference_method, dataset, expected_output_cols, output_cols_prefix
754
+ )
681
755
  elif isinstance(dataset, pd.DataFrame):
682
- transform_kwargs = dict(
683
- snowpark_input_cols = self._snowpark_cols,
684
- drop_input_cols = self._drop_input_cols
685
- )
756
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
686
757
 
687
758
  transform_handlers = ModelTransformerBuilder.build(
688
759
  dataset=dataset,
@@ -695,7 +766,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
695
766
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
696
767
  inference_method=inference_method,
697
768
  input_cols=self.input_cols,
698
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
769
+ expected_output_cols=expected_output_cols,
699
770
  **transform_kwargs
700
771
  )
701
772
  return output_df
@@ -723,30 +794,32 @@ class LinearDiscriminantAnalysis(BaseTransformer):
723
794
  Output dataset with results of the decision function for the samples in input dataset.
724
795
  """
725
796
  super()._check_dataset_type(dataset)
726
- inference_method="decision_function"
797
+ inference_method = "decision_function"
727
798
 
728
799
  # This dictionary contains optional kwargs for batch inference. These kwargs
729
800
  # are specific to the type of dataset used.
730
801
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
731
802
 
803
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
804
+
732
805
  if isinstance(dataset, DataFrame):
733
- self._deps = self._batch_inference_validate_snowpark(
734
- dataset=dataset,
735
- inference_method=inference_method,
736
- )
737
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
806
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
807
+ self._deps = self._get_dependencies()
808
+ assert isinstance(
809
+ dataset._session, Session
810
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
738
811
  transform_kwargs = dict(
739
812
  session=dataset._session,
740
813
  dependencies=self._deps,
741
- drop_input_cols = self._drop_input_cols,
814
+ drop_input_cols=self._drop_input_cols,
742
815
  expected_output_cols_type="float",
743
816
  )
817
+ expected_output_cols = self._align_expected_output_names(
818
+ inference_method, dataset, expected_output_cols, output_cols_prefix
819
+ )
744
820
 
745
821
  elif isinstance(dataset, pd.DataFrame):
746
- transform_kwargs = dict(
747
- snowpark_input_cols = self._snowpark_cols,
748
- drop_input_cols = self._drop_input_cols
749
- )
822
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
750
823
 
751
824
  transform_handlers = ModelTransformerBuilder.build(
752
825
  dataset=dataset,
@@ -759,7 +832,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
759
832
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
760
833
  inference_method=inference_method,
761
834
  input_cols=self.input_cols,
762
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
835
+ expected_output_cols=expected_output_cols,
763
836
  **transform_kwargs
764
837
  )
765
838
  return output_df
@@ -788,17 +861,17 @@ class LinearDiscriminantAnalysis(BaseTransformer):
788
861
  Output dataset with probability of the sample for each class in the model.
789
862
  """
790
863
  super()._check_dataset_type(dataset)
791
- inference_method="score_samples"
864
+ inference_method = "score_samples"
792
865
 
793
866
  # This dictionary contains optional kwargs for batch inference. These kwargs
794
867
  # are specific to the type of dataset used.
795
868
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
796
869
 
870
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
871
+
797
872
  if isinstance(dataset, DataFrame):
798
- self._deps = self._batch_inference_validate_snowpark(
799
- dataset=dataset,
800
- inference_method=inference_method,
801
- )
873
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
874
+ self._deps = self._get_dependencies()
802
875
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
803
876
  transform_kwargs = dict(
804
877
  session=dataset._session,
@@ -806,6 +879,9 @@ class LinearDiscriminantAnalysis(BaseTransformer):
806
879
  drop_input_cols = self._drop_input_cols,
807
880
  expected_output_cols_type="float",
808
881
  )
882
+ expected_output_cols = self._align_expected_output_names(
883
+ inference_method, dataset, expected_output_cols, output_cols_prefix
884
+ )
809
885
 
810
886
  elif isinstance(dataset, pd.DataFrame):
811
887
  transform_kwargs = dict(
@@ -824,7 +900,7 @@ class LinearDiscriminantAnalysis(BaseTransformer):
824
900
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
825
901
  inference_method=inference_method,
826
902
  input_cols=self.input_cols,
827
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
903
+ expected_output_cols=expected_output_cols,
828
904
  **transform_kwargs
829
905
  )
830
906
  return output_df
@@ -859,17 +935,15 @@ class LinearDiscriminantAnalysis(BaseTransformer):
859
935
  transform_kwargs: ScoreKwargsTypedDict = dict()
860
936
 
861
937
  if isinstance(dataset, DataFrame):
862
- self._deps = self._batch_inference_validate_snowpark(
863
- dataset=dataset,
864
- inference_method="score",
865
- )
938
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
939
+ self._deps = self._get_dependencies()
866
940
  selected_cols = self._get_active_columns()
867
941
  if len(selected_cols) > 0:
868
942
  dataset = dataset.select(selected_cols)
869
943
  assert isinstance(dataset._session, Session) # keep mypy happy
870
944
  transform_kwargs = dict(
871
945
  session=dataset._session,
872
- dependencies=["snowflake-snowpark-python"] + self._deps,
946
+ dependencies=self._deps,
873
947
  score_sproc_imports=['sklearn'],
874
948
  )
875
949
  elif isinstance(dataset, pd.DataFrame):
@@ -934,11 +1008,8 @@ class LinearDiscriminantAnalysis(BaseTransformer):
934
1008
 
935
1009
  if isinstance(dataset, DataFrame):
936
1010
 
937
- self._deps = self._batch_inference_validate_snowpark(
938
- dataset=dataset,
939
- inference_method=inference_method,
940
-
941
- )
1011
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1012
+ self._deps = self._get_dependencies()
942
1013
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
943
1014
  transform_kwargs = dict(
944
1015
  session = dataset._session,
@@ -971,50 +1042,84 @@ class LinearDiscriminantAnalysis(BaseTransformer):
971
1042
  )
972
1043
  return output_df
973
1044
 
1045
+
1046
+
1047
+ def to_sklearn(self) -> Any:
1048
+ """Get sklearn.discriminant_analysis.LinearDiscriminantAnalysis object.
1049
+ """
1050
+ if self._sklearn_object is None:
1051
+ self._sklearn_object = self._create_sklearn_object()
1052
+ return self._sklearn_object
1053
+
1054
+ def to_xgboost(self) -> Any:
1055
+ raise exceptions.SnowflakeMLException(
1056
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1057
+ original_exception=AttributeError(
1058
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1059
+ "to_xgboost()",
1060
+ "to_sklearn()"
1061
+ )
1062
+ ),
1063
+ )
974
1064
 
975
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1065
+ def to_lightgbm(self) -> Any:
1066
+ raise exceptions.SnowflakeMLException(
1067
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1068
+ original_exception=AttributeError(
1069
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1070
+ "to_lightgbm()",
1071
+ "to_sklearn()"
1072
+ )
1073
+ ),
1074
+ )
1075
+
1076
+ def _get_dependencies(self) -> List[str]:
1077
+ return self._deps
1078
+
1079
+
1080
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
976
1081
  self._model_signature_dict = dict()
977
1082
 
978
1083
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
979
1084
 
980
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1085
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
981
1086
  outputs: List[BaseFeatureSpec] = []
982
1087
  if hasattr(self, "predict"):
983
1088
  # keep mypy happy
984
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1089
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
985
1090
  # For classifier, the type of predict is the same as the type of label
986
- if self._sklearn_object._estimator_type == 'classifier':
987
- # label columns is the desired type for output
1091
+ if self._sklearn_object._estimator_type == "classifier":
1092
+ # label columns is the desired type for output
988
1093
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
989
1094
  # rename the output columns
990
1095
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
1096
+ self._model_signature_dict["predict"] = ModelSignature(
1097
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1098
+ )
994
1099
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
995
1100
  # For outlier models, returns -1 for outliers and 1 for inliers.
996
- # Clusterer returns int64 cluster labels.
1101
+ # Clusterer returns int64 cluster labels.
997
1102
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
998
1103
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
999
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1000
- ([] if self._drop_input_cols else inputs)
1001
- + outputs)
1002
-
1104
+ self._model_signature_dict["predict"] = ModelSignature(
1105
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1106
+ )
1107
+
1003
1108
  # For regressor, the type of predict is float64
1004
- elif self._sklearn_object._estimator_type == 'regressor':
1109
+ elif self._sklearn_object._estimator_type == "regressor":
1005
1110
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1006
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1007
- ([] if self._drop_input_cols else inputs)
1008
- + outputs)
1009
-
1111
+ self._model_signature_dict["predict"] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1114
+
1010
1115
  for prob_func in PROB_FUNCTIONS:
1011
1116
  if hasattr(self, prob_func):
1012
1117
  output_cols_prefix: str = f"{prob_func}_"
1013
1118
  output_column_names = self._get_output_column_names(output_cols_prefix)
1014
1119
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1015
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1016
- ([] if self._drop_input_cols else inputs)
1017
- + outputs)
1120
+ self._model_signature_dict[prob_func] = ModelSignature(
1121
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1122
+ )
1018
1123
 
1019
1124
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1020
1125
  items = list(self._model_signature_dict.items())
@@ -1027,10 +1132,10 @@ class LinearDiscriminantAnalysis(BaseTransformer):
1027
1132
  """Returns model signature of current class.
1028
1133
 
1029
1134
  Raises:
1030
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1135
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1031
1136
 
1032
1137
  Returns:
1033
- Dict[str, ModelSignature]: each method and its input output signature
1138
+ Dict with each method and its input output signature
1034
1139
  """
1035
1140
  if self._model_signature_dict is None:
1036
1141
  raise exceptions.SnowflakeMLException(
@@ -1038,35 +1143,3 @@ class LinearDiscriminantAnalysis(BaseTransformer):
1038
1143
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1039
1144
  )
1040
1145
  return self._model_signature_dict
1041
-
1042
- def to_sklearn(self) -> Any:
1043
- """Get sklearn.discriminant_analysis.LinearDiscriminantAnalysis object.
1044
- """
1045
- if self._sklearn_object is None:
1046
- self._sklearn_object = self._create_sklearn_object()
1047
- return self._sklearn_object
1048
-
1049
- def to_xgboost(self) -> Any:
1050
- raise exceptions.SnowflakeMLException(
1051
- error_code=error_codes.METHOD_NOT_ALLOWED,
1052
- original_exception=AttributeError(
1053
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1054
- "to_xgboost()",
1055
- "to_sklearn()"
1056
- )
1057
- ),
1058
- )
1059
-
1060
- def to_lightgbm(self) -> Any:
1061
- raise exceptions.SnowflakeMLException(
1062
- error_code=error_codes.METHOD_NOT_ALLOWED,
1063
- original_exception=AttributeError(
1064
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
- "to_lightgbm()",
1066
- "to_sklearn()"
1067
- )
1068
- ),
1069
- )
1070
-
1071
- def _get_dependencies(self) -> List[str]:
1072
- return self._deps