snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class GradientBoostingRegressor(BaseTransformer):
71
64
  r"""Gradient Boosting for regression
72
65
  For more details on this class, see [sklearn.ensemble.GradientBoostingRegressor]
@@ -400,12 +393,7 @@ class GradientBoostingRegressor(BaseTransformer):
400
393
  )
401
394
  return selected_cols
402
395
 
403
- @telemetry.send_api_usage_telemetry(
404
- project=_PROJECT,
405
- subproject=_SUBPROJECT,
406
- custom_tags=dict([("autogen", True)]),
407
- )
408
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GradientBoostingRegressor":
396
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GradientBoostingRegressor":
409
397
  """Fit the gradient boosting model
410
398
  For more details on this function, see [sklearn.ensemble.GradientBoostingRegressor.fit]
411
399
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor.fit)
@@ -432,12 +420,14 @@ class GradientBoostingRegressor(BaseTransformer):
432
420
 
433
421
  self._snowpark_cols = dataset.select(self.input_cols).columns
434
422
 
435
- # If we are already in a stored procedure, no need to kick off another one.
423
+ # If we are already in a stored procedure, no need to kick off another one.
436
424
  if SNOWML_SPROC_ENV in os.environ:
437
425
  statement_params = telemetry.get_function_usage_statement_params(
438
426
  project=_PROJECT,
439
427
  subproject=_SUBPROJECT,
440
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GradientBoostingRegressor.__class__.__name__),
428
+ function_name=telemetry.get_statement_params_full_func_name(
429
+ inspect.currentframe(), GradientBoostingRegressor.__class__.__name__
430
+ ),
441
431
  api_calls=[Session.call],
442
432
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
443
433
  )
@@ -458,27 +448,24 @@ class GradientBoostingRegressor(BaseTransformer):
458
448
  )
459
449
  self._sklearn_object = model_trainer.train()
460
450
  self._is_fitted = True
461
- self._get_model_signatures(dataset)
451
+ self._generate_model_signatures(dataset)
462
452
  return self
463
453
 
464
454
  def _batch_inference_validate_snowpark(
465
455
  self,
466
456
  dataset: DataFrame,
467
457
  inference_method: str,
468
- ) -> List[str]:
469
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
470
- return the available package that exists in the snowflake anaconda channel
458
+ ) -> None:
459
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
471
460
 
472
461
  Args:
473
462
  dataset: snowpark dataframe
474
463
  inference_method: the inference method such as predict, score...
475
-
464
+
476
465
  Raises:
477
466
  SnowflakeMLException: If the estimator is not fitted, raise error
478
467
  SnowflakeMLException: If the session is None, raise error
479
468
 
480
- Returns:
481
- A list of available package that exists in the snowflake anaconda channel
482
469
  """
483
470
  if not self._is_fitted:
484
471
  raise exceptions.SnowflakeMLException(
@@ -496,9 +483,7 @@ class GradientBoostingRegressor(BaseTransformer):
496
483
  "Session must not specified for snowpark dataset."
497
484
  ),
498
485
  )
499
- # Validate that key package version in user workspace are supported in snowflake conda channel
500
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
501
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
486
+
502
487
 
503
488
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
504
489
  @telemetry.send_api_usage_telemetry(
@@ -534,7 +519,9 @@ class GradientBoostingRegressor(BaseTransformer):
534
519
  # when it is classifier, infer the datatype from label columns
535
520
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
536
521
  # Batch inference takes a single expected output column type. Use the first columns type for now.
537
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
522
+ label_cols_signatures = [
523
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
524
+ ]
538
525
  if len(label_cols_signatures) == 0:
539
526
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
540
527
  raise exceptions.SnowflakeMLException(
@@ -542,25 +529,23 @@ class GradientBoostingRegressor(BaseTransformer):
542
529
  original_exception=ValueError(error_str),
543
530
  )
544
531
 
545
- expected_type_inferred = convert_sp_to_sf_type(
546
- label_cols_signatures[0].as_snowpark_type()
547
- )
532
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
548
533
 
549
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
550
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
534
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
535
+ self._deps = self._get_dependencies()
536
+ assert isinstance(
537
+ dataset._session, Session
538
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
551
539
 
552
540
  transform_kwargs = dict(
553
- session = dataset._session,
554
- dependencies = self._deps,
555
- drop_input_cols = self._drop_input_cols,
556
- expected_output_cols_type = expected_type_inferred,
541
+ session=dataset._session,
542
+ dependencies=self._deps,
543
+ drop_input_cols=self._drop_input_cols,
544
+ expected_output_cols_type=expected_type_inferred,
557
545
  )
558
546
 
559
547
  elif isinstance(dataset, pd.DataFrame):
560
- transform_kwargs = dict(
561
- snowpark_input_cols = self._snowpark_cols,
562
- drop_input_cols = self._drop_input_cols
563
- )
548
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
564
549
 
565
550
  transform_handlers = ModelTransformerBuilder.build(
566
551
  dataset=dataset,
@@ -600,7 +585,7 @@ class GradientBoostingRegressor(BaseTransformer):
600
585
  Transformed dataset.
601
586
  """
602
587
  super()._check_dataset_type(dataset)
603
- inference_method="transform"
588
+ inference_method = "transform"
604
589
 
605
590
  # This dictionary contains optional kwargs for batch inference. These kwargs
606
591
  # are specific to the type of dataset used.
@@ -630,24 +615,19 @@ class GradientBoostingRegressor(BaseTransformer):
630
615
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
631
616
  expected_dtype = convert_sp_to_sf_type(output_types[0])
632
617
 
633
- self._deps = self._batch_inference_validate_snowpark(
634
- dataset=dataset,
635
- inference_method=inference_method,
636
- )
618
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
619
+ self._deps = self._get_dependencies()
637
620
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
638
621
 
639
622
  transform_kwargs = dict(
640
- session = dataset._session,
641
- dependencies = self._deps,
642
- drop_input_cols = self._drop_input_cols,
643
- expected_output_cols_type = expected_dtype,
623
+ session=dataset._session,
624
+ dependencies=self._deps,
625
+ drop_input_cols=self._drop_input_cols,
626
+ expected_output_cols_type=expected_dtype,
644
627
  )
645
628
 
646
629
  elif isinstance(dataset, pd.DataFrame):
647
- transform_kwargs = dict(
648
- snowpark_input_cols = self._snowpark_cols,
649
- drop_input_cols = self._drop_input_cols
650
- )
630
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
651
631
 
652
632
  transform_handlers = ModelTransformerBuilder.build(
653
633
  dataset=dataset,
@@ -666,7 +646,11 @@ class GradientBoostingRegressor(BaseTransformer):
666
646
  return output_df
667
647
 
668
648
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
669
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
649
+ def fit_predict(
650
+ self,
651
+ dataset: Union[DataFrame, pd.DataFrame],
652
+ output_cols_prefix: str = "fit_predict_",
653
+ ) -> Union[DataFrame, pd.DataFrame]:
670
654
  """ Method not supported for this class.
671
655
 
672
656
 
@@ -691,22 +675,104 @@ class GradientBoostingRegressor(BaseTransformer):
691
675
  )
692
676
  output_result, fitted_estimator = model_trainer.train_fit_predict(
693
677
  drop_input_cols=self._drop_input_cols,
694
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
678
+ expected_output_cols_list=(
679
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
680
+ ),
695
681
  )
696
682
  self._sklearn_object = fitted_estimator
697
683
  self._is_fitted = True
698
684
  return output_result
699
685
 
686
+
687
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
688
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
689
+ """ Method not supported for this class.
690
+
700
691
 
701
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
702
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
703
- """
692
+ Raises:
693
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
694
+
695
+ Args:
696
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
697
+ Snowpark or Pandas DataFrame.
698
+ output_cols_prefix: Prefix for the response columns
704
699
  Returns:
705
700
  Transformed dataset.
706
701
  """
707
- self.fit(dataset)
708
- assert self._sklearn_object is not None
709
- return self._sklearn_object.embedding_
702
+ self._infer_input_output_cols(dataset)
703
+ super()._check_dataset_type(dataset)
704
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
705
+ estimator=self._sklearn_object,
706
+ dataset=dataset,
707
+ input_cols=self.input_cols,
708
+ label_cols=self.label_cols,
709
+ sample_weight_col=self.sample_weight_col,
710
+ autogenerated=self._autogenerated,
711
+ subproject=_SUBPROJECT,
712
+ )
713
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
714
+ drop_input_cols=self._drop_input_cols,
715
+ expected_output_cols_list=self.output_cols,
716
+ )
717
+ self._sklearn_object = fitted_estimator
718
+ self._is_fitted = True
719
+ return output_result
720
+
721
+
722
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
723
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
724
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
725
+ """
726
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
727
+ # The following condition is introduced for kneighbors methods, and not used in other methods
728
+ if output_cols:
729
+ output_cols = [
730
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
731
+ for c in output_cols
732
+ ]
733
+ elif getattr(self._sklearn_object, "classes_", None) is None:
734
+ output_cols = [output_cols_prefix]
735
+ elif self._sklearn_object is not None:
736
+ classes = self._sklearn_object.classes_
737
+ if isinstance(classes, numpy.ndarray):
738
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
739
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
740
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
741
+ output_cols = []
742
+ for i, cl in enumerate(classes):
743
+ # For binary classification, there is only one output column for each class
744
+ # ndarray as the two classes are complementary.
745
+ if len(cl) == 2:
746
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
747
+ else:
748
+ output_cols.extend([
749
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
750
+ ])
751
+ else:
752
+ output_cols = []
753
+
754
+ # Make sure column names are valid snowflake identifiers.
755
+ assert output_cols is not None # Make MyPy happy
756
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
757
+
758
+ return rv
759
+
760
+ def _align_expected_output_names(
761
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
762
+ ) -> List[str]:
763
+ # in case the inferred output column names dimension is different
764
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
765
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
766
+ output_df_columns = list(output_df_pd.columns)
767
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
768
+ if self.sample_weight_col:
769
+ output_df_columns_set -= set(self.sample_weight_col)
770
+ # if the dimension of inferred output column names is correct; use it
771
+ if len(expected_output_cols_list) == len(output_df_columns_set):
772
+ return expected_output_cols_list
773
+ # otherwise, use the sklearn estimator's output
774
+ else:
775
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
710
776
 
711
777
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
712
778
  @telemetry.send_api_usage_telemetry(
@@ -738,24 +804,26 @@ class GradientBoostingRegressor(BaseTransformer):
738
804
  # are specific to the type of dataset used.
739
805
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
740
806
 
807
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
808
+
741
809
  if isinstance(dataset, DataFrame):
742
- self._deps = self._batch_inference_validate_snowpark(
743
- dataset=dataset,
744
- inference_method=inference_method,
745
- )
746
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
810
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
811
+ self._deps = self._get_dependencies()
812
+ assert isinstance(
813
+ dataset._session, Session
814
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
747
815
  transform_kwargs = dict(
748
816
  session=dataset._session,
749
817
  dependencies=self._deps,
750
- drop_input_cols = self._drop_input_cols,
818
+ drop_input_cols=self._drop_input_cols,
751
819
  expected_output_cols_type="float",
752
820
  )
821
+ expected_output_cols = self._align_expected_output_names(
822
+ inference_method, dataset, expected_output_cols, output_cols_prefix
823
+ )
753
824
 
754
825
  elif isinstance(dataset, pd.DataFrame):
755
- transform_kwargs = dict(
756
- snowpark_input_cols = self._snowpark_cols,
757
- drop_input_cols = self._drop_input_cols
758
- )
826
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
759
827
 
760
828
  transform_handlers = ModelTransformerBuilder.build(
761
829
  dataset=dataset,
@@ -767,7 +835,7 @@ class GradientBoostingRegressor(BaseTransformer):
767
835
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
768
836
  inference_method=inference_method,
769
837
  input_cols=self.input_cols,
770
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
838
+ expected_output_cols=expected_output_cols,
771
839
  **transform_kwargs
772
840
  )
773
841
  return output_df
@@ -797,29 +865,30 @@ class GradientBoostingRegressor(BaseTransformer):
797
865
  Output dataset with log probability of the sample for each class in the model.
798
866
  """
799
867
  super()._check_dataset_type(dataset)
800
- inference_method="predict_log_proba"
868
+ inference_method = "predict_log_proba"
869
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
801
870
 
802
871
  # This dictionary contains optional kwargs for batch inference. These kwargs
803
872
  # are specific to the type of dataset used.
804
873
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
805
874
 
806
875
  if isinstance(dataset, DataFrame):
807
- self._deps = self._batch_inference_validate_snowpark(
808
- dataset=dataset,
809
- inference_method=inference_method,
810
- )
811
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
876
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
877
+ self._deps = self._get_dependencies()
878
+ assert isinstance(
879
+ dataset._session, Session
880
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
812
881
  transform_kwargs = dict(
813
882
  session=dataset._session,
814
883
  dependencies=self._deps,
815
- drop_input_cols = self._drop_input_cols,
884
+ drop_input_cols=self._drop_input_cols,
816
885
  expected_output_cols_type="float",
817
886
  )
887
+ expected_output_cols = self._align_expected_output_names(
888
+ inference_method, dataset, expected_output_cols, output_cols_prefix
889
+ )
818
890
  elif isinstance(dataset, pd.DataFrame):
819
- transform_kwargs = dict(
820
- snowpark_input_cols = self._snowpark_cols,
821
- drop_input_cols = self._drop_input_cols
822
- )
891
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
823
892
 
824
893
  transform_handlers = ModelTransformerBuilder.build(
825
894
  dataset=dataset,
@@ -832,7 +901,7 @@ class GradientBoostingRegressor(BaseTransformer):
832
901
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
833
902
  inference_method=inference_method,
834
903
  input_cols=self.input_cols,
835
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
904
+ expected_output_cols=expected_output_cols,
836
905
  **transform_kwargs
837
906
  )
838
907
  return output_df
@@ -858,30 +927,32 @@ class GradientBoostingRegressor(BaseTransformer):
858
927
  Output dataset with results of the decision function for the samples in input dataset.
859
928
  """
860
929
  super()._check_dataset_type(dataset)
861
- inference_method="decision_function"
930
+ inference_method = "decision_function"
862
931
 
863
932
  # This dictionary contains optional kwargs for batch inference. These kwargs
864
933
  # are specific to the type of dataset used.
865
934
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
866
935
 
936
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
937
+
867
938
  if isinstance(dataset, DataFrame):
868
- self._deps = self._batch_inference_validate_snowpark(
869
- dataset=dataset,
870
- inference_method=inference_method,
871
- )
872
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
939
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
940
+ self._deps = self._get_dependencies()
941
+ assert isinstance(
942
+ dataset._session, Session
943
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
873
944
  transform_kwargs = dict(
874
945
  session=dataset._session,
875
946
  dependencies=self._deps,
876
- drop_input_cols = self._drop_input_cols,
947
+ drop_input_cols=self._drop_input_cols,
877
948
  expected_output_cols_type="float",
878
949
  )
950
+ expected_output_cols = self._align_expected_output_names(
951
+ inference_method, dataset, expected_output_cols, output_cols_prefix
952
+ )
879
953
 
880
954
  elif isinstance(dataset, pd.DataFrame):
881
- transform_kwargs = dict(
882
- snowpark_input_cols = self._snowpark_cols,
883
- drop_input_cols = self._drop_input_cols
884
- )
955
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
885
956
 
886
957
  transform_handlers = ModelTransformerBuilder.build(
887
958
  dataset=dataset,
@@ -894,7 +965,7 @@ class GradientBoostingRegressor(BaseTransformer):
894
965
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
895
966
  inference_method=inference_method,
896
967
  input_cols=self.input_cols,
897
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
968
+ expected_output_cols=expected_output_cols,
898
969
  **transform_kwargs
899
970
  )
900
971
  return output_df
@@ -923,17 +994,17 @@ class GradientBoostingRegressor(BaseTransformer):
923
994
  Output dataset with probability of the sample for each class in the model.
924
995
  """
925
996
  super()._check_dataset_type(dataset)
926
- inference_method="score_samples"
997
+ inference_method = "score_samples"
927
998
 
928
999
  # This dictionary contains optional kwargs for batch inference. These kwargs
929
1000
  # are specific to the type of dataset used.
930
1001
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
931
1002
 
1003
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
1004
+
932
1005
  if isinstance(dataset, DataFrame):
933
- self._deps = self._batch_inference_validate_snowpark(
934
- dataset=dataset,
935
- inference_method=inference_method,
936
- )
1006
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1007
+ self._deps = self._get_dependencies()
937
1008
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
938
1009
  transform_kwargs = dict(
939
1010
  session=dataset._session,
@@ -941,6 +1012,9 @@ class GradientBoostingRegressor(BaseTransformer):
941
1012
  drop_input_cols = self._drop_input_cols,
942
1013
  expected_output_cols_type="float",
943
1014
  )
1015
+ expected_output_cols = self._align_expected_output_names(
1016
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1017
+ )
944
1018
 
945
1019
  elif isinstance(dataset, pd.DataFrame):
946
1020
  transform_kwargs = dict(
@@ -959,7 +1033,7 @@ class GradientBoostingRegressor(BaseTransformer):
959
1033
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
960
1034
  inference_method=inference_method,
961
1035
  input_cols=self.input_cols,
962
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1036
+ expected_output_cols=expected_output_cols,
963
1037
  **transform_kwargs
964
1038
  )
965
1039
  return output_df
@@ -994,17 +1068,15 @@ class GradientBoostingRegressor(BaseTransformer):
994
1068
  transform_kwargs: ScoreKwargsTypedDict = dict()
995
1069
 
996
1070
  if isinstance(dataset, DataFrame):
997
- self._deps = self._batch_inference_validate_snowpark(
998
- dataset=dataset,
999
- inference_method="score",
1000
- )
1071
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1072
+ self._deps = self._get_dependencies()
1001
1073
  selected_cols = self._get_active_columns()
1002
1074
  if len(selected_cols) > 0:
1003
1075
  dataset = dataset.select(selected_cols)
1004
1076
  assert isinstance(dataset._session, Session) # keep mypy happy
1005
1077
  transform_kwargs = dict(
1006
1078
  session=dataset._session,
1007
- dependencies=["snowflake-snowpark-python"] + self._deps,
1079
+ dependencies=self._deps,
1008
1080
  score_sproc_imports=['sklearn'],
1009
1081
  )
1010
1082
  elif isinstance(dataset, pd.DataFrame):
@@ -1069,11 +1141,8 @@ class GradientBoostingRegressor(BaseTransformer):
1069
1141
 
1070
1142
  if isinstance(dataset, DataFrame):
1071
1143
 
1072
- self._deps = self._batch_inference_validate_snowpark(
1073
- dataset=dataset,
1074
- inference_method=inference_method,
1075
-
1076
- )
1144
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1145
+ self._deps = self._get_dependencies()
1077
1146
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1078
1147
  transform_kwargs = dict(
1079
1148
  session = dataset._session,
@@ -1106,50 +1175,84 @@ class GradientBoostingRegressor(BaseTransformer):
1106
1175
  )
1107
1176
  return output_df
1108
1177
 
1178
+
1179
+
1180
+ def to_sklearn(self) -> Any:
1181
+ """Get sklearn.ensemble.GradientBoostingRegressor object.
1182
+ """
1183
+ if self._sklearn_object is None:
1184
+ self._sklearn_object = self._create_sklearn_object()
1185
+ return self._sklearn_object
1186
+
1187
+ def to_xgboost(self) -> Any:
1188
+ raise exceptions.SnowflakeMLException(
1189
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1190
+ original_exception=AttributeError(
1191
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1192
+ "to_xgboost()",
1193
+ "to_sklearn()"
1194
+ )
1195
+ ),
1196
+ )
1197
+
1198
+ def to_lightgbm(self) -> Any:
1199
+ raise exceptions.SnowflakeMLException(
1200
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1201
+ original_exception=AttributeError(
1202
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1203
+ "to_lightgbm()",
1204
+ "to_sklearn()"
1205
+ )
1206
+ ),
1207
+ )
1208
+
1209
+ def _get_dependencies(self) -> List[str]:
1210
+ return self._deps
1211
+
1109
1212
 
1110
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1213
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1111
1214
  self._model_signature_dict = dict()
1112
1215
 
1113
1216
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1114
1217
 
1115
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1218
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1116
1219
  outputs: List[BaseFeatureSpec] = []
1117
1220
  if hasattr(self, "predict"):
1118
1221
  # keep mypy happy
1119
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1222
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1120
1223
  # For classifier, the type of predict is the same as the type of label
1121
- if self._sklearn_object._estimator_type == 'classifier':
1122
- # label columns is the desired type for output
1224
+ if self._sklearn_object._estimator_type == "classifier":
1225
+ # label columns is the desired type for output
1123
1226
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1124
1227
  # rename the output columns
1125
1228
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1126
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1127
- ([] if self._drop_input_cols else inputs)
1128
- + outputs)
1229
+ self._model_signature_dict["predict"] = ModelSignature(
1230
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1231
+ )
1129
1232
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1130
1233
  # For outlier models, returns -1 for outliers and 1 for inliers.
1131
- # Clusterer returns int64 cluster labels.
1234
+ # Clusterer returns int64 cluster labels.
1132
1235
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1133
1236
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1134
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1135
- ([] if self._drop_input_cols else inputs)
1136
- + outputs)
1137
-
1237
+ self._model_signature_dict["predict"] = ModelSignature(
1238
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1239
+ )
1240
+
1138
1241
  # For regressor, the type of predict is float64
1139
- elif self._sklearn_object._estimator_type == 'regressor':
1242
+ elif self._sklearn_object._estimator_type == "regressor":
1140
1243
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1141
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1142
- ([] if self._drop_input_cols else inputs)
1143
- + outputs)
1144
-
1244
+ self._model_signature_dict["predict"] = ModelSignature(
1245
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1246
+ )
1247
+
1145
1248
  for prob_func in PROB_FUNCTIONS:
1146
1249
  if hasattr(self, prob_func):
1147
1250
  output_cols_prefix: str = f"{prob_func}_"
1148
1251
  output_column_names = self._get_output_column_names(output_cols_prefix)
1149
1252
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1150
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1151
- ([] if self._drop_input_cols else inputs)
1152
- + outputs)
1253
+ self._model_signature_dict[prob_func] = ModelSignature(
1254
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1255
+ )
1153
1256
 
1154
1257
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1155
1258
  items = list(self._model_signature_dict.items())
@@ -1162,10 +1265,10 @@ class GradientBoostingRegressor(BaseTransformer):
1162
1265
  """Returns model signature of current class.
1163
1266
 
1164
1267
  Raises:
1165
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1268
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1166
1269
 
1167
1270
  Returns:
1168
- Dict[str, ModelSignature]: each method and its input output signature
1271
+ Dict with each method and its input output signature
1169
1272
  """
1170
1273
  if self._model_signature_dict is None:
1171
1274
  raise exceptions.SnowflakeMLException(
@@ -1173,35 +1276,3 @@ class GradientBoostingRegressor(BaseTransformer):
1173
1276
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1174
1277
  )
1175
1278
  return self._model_signature_dict
1176
-
1177
- def to_sklearn(self) -> Any:
1178
- """Get sklearn.ensemble.GradientBoostingRegressor object.
1179
- """
1180
- if self._sklearn_object is None:
1181
- self._sklearn_object = self._create_sklearn_object()
1182
- return self._sklearn_object
1183
-
1184
- def to_xgboost(self) -> Any:
1185
- raise exceptions.SnowflakeMLException(
1186
- error_code=error_codes.METHOD_NOT_ALLOWED,
1187
- original_exception=AttributeError(
1188
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1189
- "to_xgboost()",
1190
- "to_sklearn()"
1191
- )
1192
- ),
1193
- )
1194
-
1195
- def to_lightgbm(self) -> Any:
1196
- raise exceptions.SnowflakeMLException(
1197
- error_code=error_codes.METHOD_NOT_ALLOWED,
1198
- original_exception=AttributeError(
1199
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1200
- "to_lightgbm()",
1201
- "to_sklearn()"
1202
- )
1203
- ),
1204
- )
1205
-
1206
- def _get_dependencies(self) -> List[str]:
1207
- return self._deps