snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class EllipticEnvelope(BaseTransformer):
71
64
  r"""An object for detecting outliers in a Gaussian distributed dataset
72
65
  For more details on this class, see [sklearn.covariance.EllipticEnvelope]
@@ -226,12 +219,7 @@ class EllipticEnvelope(BaseTransformer):
226
219
  )
227
220
  return selected_cols
228
221
 
229
- @telemetry.send_api_usage_telemetry(
230
- project=_PROJECT,
231
- subproject=_SUBPROJECT,
232
- custom_tags=dict([("autogen", True)]),
233
- )
234
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EllipticEnvelope":
222
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EllipticEnvelope":
235
223
  """Fit the EllipticEnvelope model
236
224
  For more details on this function, see [sklearn.covariance.EllipticEnvelope.fit]
237
225
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope.fit)
@@ -258,12 +246,14 @@ class EllipticEnvelope(BaseTransformer):
258
246
 
259
247
  self._snowpark_cols = dataset.select(self.input_cols).columns
260
248
 
261
- # If we are already in a stored procedure, no need to kick off another one.
249
+ # If we are already in a stored procedure, no need to kick off another one.
262
250
  if SNOWML_SPROC_ENV in os.environ:
263
251
  statement_params = telemetry.get_function_usage_statement_params(
264
252
  project=_PROJECT,
265
253
  subproject=_SUBPROJECT,
266
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), EllipticEnvelope.__class__.__name__),
254
+ function_name=telemetry.get_statement_params_full_func_name(
255
+ inspect.currentframe(), EllipticEnvelope.__class__.__name__
256
+ ),
267
257
  api_calls=[Session.call],
268
258
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
269
259
  )
@@ -284,27 +274,24 @@ class EllipticEnvelope(BaseTransformer):
284
274
  )
285
275
  self._sklearn_object = model_trainer.train()
286
276
  self._is_fitted = True
287
- self._get_model_signatures(dataset)
277
+ self._generate_model_signatures(dataset)
288
278
  return self
289
279
 
290
280
  def _batch_inference_validate_snowpark(
291
281
  self,
292
282
  dataset: DataFrame,
293
283
  inference_method: str,
294
- ) -> List[str]:
295
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
296
- return the available package that exists in the snowflake anaconda channel
284
+ ) -> None:
285
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
297
286
 
298
287
  Args:
299
288
  dataset: snowpark dataframe
300
289
  inference_method: the inference method such as predict, score...
301
-
290
+
302
291
  Raises:
303
292
  SnowflakeMLException: If the estimator is not fitted, raise error
304
293
  SnowflakeMLException: If the session is None, raise error
305
294
 
306
- Returns:
307
- A list of available package that exists in the snowflake anaconda channel
308
295
  """
309
296
  if not self._is_fitted:
310
297
  raise exceptions.SnowflakeMLException(
@@ -322,9 +309,7 @@ class EllipticEnvelope(BaseTransformer):
322
309
  "Session must not specified for snowpark dataset."
323
310
  ),
324
311
  )
325
- # Validate that key package version in user workspace are supported in snowflake conda channel
326
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
327
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
312
+
328
313
 
329
314
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
330
315
  @telemetry.send_api_usage_telemetry(
@@ -360,7 +345,9 @@ class EllipticEnvelope(BaseTransformer):
360
345
  # when it is classifier, infer the datatype from label columns
361
346
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
362
347
  # Batch inference takes a single expected output column type. Use the first columns type for now.
363
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
348
+ label_cols_signatures = [
349
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
350
+ ]
364
351
  if len(label_cols_signatures) == 0:
365
352
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
366
353
  raise exceptions.SnowflakeMLException(
@@ -368,25 +355,23 @@ class EllipticEnvelope(BaseTransformer):
368
355
  original_exception=ValueError(error_str),
369
356
  )
370
357
 
371
- expected_type_inferred = convert_sp_to_sf_type(
372
- label_cols_signatures[0].as_snowpark_type()
373
- )
358
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
374
359
 
375
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
376
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
360
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
361
+ self._deps = self._get_dependencies()
362
+ assert isinstance(
363
+ dataset._session, Session
364
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
377
365
 
378
366
  transform_kwargs = dict(
379
- session = dataset._session,
380
- dependencies = self._deps,
381
- drop_input_cols = self._drop_input_cols,
382
- expected_output_cols_type = expected_type_inferred,
367
+ session=dataset._session,
368
+ dependencies=self._deps,
369
+ drop_input_cols=self._drop_input_cols,
370
+ expected_output_cols_type=expected_type_inferred,
383
371
  )
384
372
 
385
373
  elif isinstance(dataset, pd.DataFrame):
386
- transform_kwargs = dict(
387
- snowpark_input_cols = self._snowpark_cols,
388
- drop_input_cols = self._drop_input_cols
389
- )
374
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
390
375
 
391
376
  transform_handlers = ModelTransformerBuilder.build(
392
377
  dataset=dataset,
@@ -426,7 +411,7 @@ class EllipticEnvelope(BaseTransformer):
426
411
  Transformed dataset.
427
412
  """
428
413
  super()._check_dataset_type(dataset)
429
- inference_method="transform"
414
+ inference_method = "transform"
430
415
 
431
416
  # This dictionary contains optional kwargs for batch inference. These kwargs
432
417
  # are specific to the type of dataset used.
@@ -456,24 +441,19 @@ class EllipticEnvelope(BaseTransformer):
456
441
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
457
442
  expected_dtype = convert_sp_to_sf_type(output_types[0])
458
443
 
459
- self._deps = self._batch_inference_validate_snowpark(
460
- dataset=dataset,
461
- inference_method=inference_method,
462
- )
444
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
445
+ self._deps = self._get_dependencies()
463
446
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
464
447
 
465
448
  transform_kwargs = dict(
466
- session = dataset._session,
467
- dependencies = self._deps,
468
- drop_input_cols = self._drop_input_cols,
469
- expected_output_cols_type = expected_dtype,
449
+ session=dataset._session,
450
+ dependencies=self._deps,
451
+ drop_input_cols=self._drop_input_cols,
452
+ expected_output_cols_type=expected_dtype,
470
453
  )
471
454
 
472
455
  elif isinstance(dataset, pd.DataFrame):
473
- transform_kwargs = dict(
474
- snowpark_input_cols = self._snowpark_cols,
475
- drop_input_cols = self._drop_input_cols
476
- )
456
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
477
457
 
478
458
  transform_handlers = ModelTransformerBuilder.build(
479
459
  dataset=dataset,
@@ -492,7 +472,11 @@ class EllipticEnvelope(BaseTransformer):
492
472
  return output_df
493
473
 
494
474
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
495
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
475
+ def fit_predict(
476
+ self,
477
+ dataset: Union[DataFrame, pd.DataFrame],
478
+ output_cols_prefix: str = "fit_predict_",
479
+ ) -> Union[DataFrame, pd.DataFrame]:
496
480
  """ Perform fit on X and returns labels for X
497
481
  For more details on this function, see [sklearn.covariance.EllipticEnvelope.fit_predict]
498
482
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope.fit_predict)
@@ -519,22 +503,104 @@ class EllipticEnvelope(BaseTransformer):
519
503
  )
520
504
  output_result, fitted_estimator = model_trainer.train_fit_predict(
521
505
  drop_input_cols=self._drop_input_cols,
522
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
506
+ expected_output_cols_list=(
507
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
508
+ ),
523
509
  )
524
510
  self._sklearn_object = fitted_estimator
525
511
  self._is_fitted = True
526
512
  return output_result
527
513
 
514
+
515
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
516
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
517
+ """ Method not supported for this class.
518
+
519
+
520
+ Raises:
521
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
528
522
 
529
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
530
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
531
- """
523
+ Args:
524
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
525
+ Snowpark or Pandas DataFrame.
526
+ output_cols_prefix: Prefix for the response columns
532
527
  Returns:
533
528
  Transformed dataset.
534
529
  """
535
- self.fit(dataset)
536
- assert self._sklearn_object is not None
537
- return self._sklearn_object.embedding_
530
+ self._infer_input_output_cols(dataset)
531
+ super()._check_dataset_type(dataset)
532
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
533
+ estimator=self._sklearn_object,
534
+ dataset=dataset,
535
+ input_cols=self.input_cols,
536
+ label_cols=self.label_cols,
537
+ sample_weight_col=self.sample_weight_col,
538
+ autogenerated=self._autogenerated,
539
+ subproject=_SUBPROJECT,
540
+ )
541
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
542
+ drop_input_cols=self._drop_input_cols,
543
+ expected_output_cols_list=self.output_cols,
544
+ )
545
+ self._sklearn_object = fitted_estimator
546
+ self._is_fitted = True
547
+ return output_result
548
+
549
+
550
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
551
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
552
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
553
+ """
554
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
555
+ # The following condition is introduced for kneighbors methods, and not used in other methods
556
+ if output_cols:
557
+ output_cols = [
558
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
559
+ for c in output_cols
560
+ ]
561
+ elif getattr(self._sklearn_object, "classes_", None) is None:
562
+ output_cols = [output_cols_prefix]
563
+ elif self._sklearn_object is not None:
564
+ classes = self._sklearn_object.classes_
565
+ if isinstance(classes, numpy.ndarray):
566
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
567
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
568
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
569
+ output_cols = []
570
+ for i, cl in enumerate(classes):
571
+ # For binary classification, there is only one output column for each class
572
+ # ndarray as the two classes are complementary.
573
+ if len(cl) == 2:
574
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
575
+ else:
576
+ output_cols.extend([
577
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
578
+ ])
579
+ else:
580
+ output_cols = []
581
+
582
+ # Make sure column names are valid snowflake identifiers.
583
+ assert output_cols is not None # Make MyPy happy
584
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
585
+
586
+ return rv
587
+
588
+ def _align_expected_output_names(
589
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
590
+ ) -> List[str]:
591
+ # in case the inferred output column names dimension is different
592
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
593
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
594
+ output_df_columns = list(output_df_pd.columns)
595
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
596
+ if self.sample_weight_col:
597
+ output_df_columns_set -= set(self.sample_weight_col)
598
+ # if the dimension of inferred output column names is correct; use it
599
+ if len(expected_output_cols_list) == len(output_df_columns_set):
600
+ return expected_output_cols_list
601
+ # otherwise, use the sklearn estimator's output
602
+ else:
603
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
538
604
 
539
605
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
540
606
  @telemetry.send_api_usage_telemetry(
@@ -566,24 +632,26 @@ class EllipticEnvelope(BaseTransformer):
566
632
  # are specific to the type of dataset used.
567
633
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
568
634
 
635
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
636
+
569
637
  if isinstance(dataset, DataFrame):
570
- self._deps = self._batch_inference_validate_snowpark(
571
- dataset=dataset,
572
- inference_method=inference_method,
573
- )
574
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
638
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
639
+ self._deps = self._get_dependencies()
640
+ assert isinstance(
641
+ dataset._session, Session
642
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
575
643
  transform_kwargs = dict(
576
644
  session=dataset._session,
577
645
  dependencies=self._deps,
578
- drop_input_cols = self._drop_input_cols,
646
+ drop_input_cols=self._drop_input_cols,
579
647
  expected_output_cols_type="float",
580
648
  )
649
+ expected_output_cols = self._align_expected_output_names(
650
+ inference_method, dataset, expected_output_cols, output_cols_prefix
651
+ )
581
652
 
582
653
  elif isinstance(dataset, pd.DataFrame):
583
- transform_kwargs = dict(
584
- snowpark_input_cols = self._snowpark_cols,
585
- drop_input_cols = self._drop_input_cols
586
- )
654
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
587
655
 
588
656
  transform_handlers = ModelTransformerBuilder.build(
589
657
  dataset=dataset,
@@ -595,7 +663,7 @@ class EllipticEnvelope(BaseTransformer):
595
663
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
596
664
  inference_method=inference_method,
597
665
  input_cols=self.input_cols,
598
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
666
+ expected_output_cols=expected_output_cols,
599
667
  **transform_kwargs
600
668
  )
601
669
  return output_df
@@ -625,29 +693,30 @@ class EllipticEnvelope(BaseTransformer):
625
693
  Output dataset with log probability of the sample for each class in the model.
626
694
  """
627
695
  super()._check_dataset_type(dataset)
628
- inference_method="predict_log_proba"
696
+ inference_method = "predict_log_proba"
697
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
629
698
 
630
699
  # This dictionary contains optional kwargs for batch inference. These kwargs
631
700
  # are specific to the type of dataset used.
632
701
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
633
702
 
634
703
  if isinstance(dataset, DataFrame):
635
- self._deps = self._batch_inference_validate_snowpark(
636
- dataset=dataset,
637
- inference_method=inference_method,
638
- )
639
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
704
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
705
+ self._deps = self._get_dependencies()
706
+ assert isinstance(
707
+ dataset._session, Session
708
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
640
709
  transform_kwargs = dict(
641
710
  session=dataset._session,
642
711
  dependencies=self._deps,
643
- drop_input_cols = self._drop_input_cols,
712
+ drop_input_cols=self._drop_input_cols,
644
713
  expected_output_cols_type="float",
645
714
  )
715
+ expected_output_cols = self._align_expected_output_names(
716
+ inference_method, dataset, expected_output_cols, output_cols_prefix
717
+ )
646
718
  elif isinstance(dataset, pd.DataFrame):
647
- transform_kwargs = dict(
648
- snowpark_input_cols = self._snowpark_cols,
649
- drop_input_cols = self._drop_input_cols
650
- )
719
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
651
720
 
652
721
  transform_handlers = ModelTransformerBuilder.build(
653
722
  dataset=dataset,
@@ -660,7 +729,7 @@ class EllipticEnvelope(BaseTransformer):
660
729
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
661
730
  inference_method=inference_method,
662
731
  input_cols=self.input_cols,
663
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
732
+ expected_output_cols=expected_output_cols,
664
733
  **transform_kwargs
665
734
  )
666
735
  return output_df
@@ -688,30 +757,32 @@ class EllipticEnvelope(BaseTransformer):
688
757
  Output dataset with results of the decision function for the samples in input dataset.
689
758
  """
690
759
  super()._check_dataset_type(dataset)
691
- inference_method="decision_function"
760
+ inference_method = "decision_function"
692
761
 
693
762
  # This dictionary contains optional kwargs for batch inference. These kwargs
694
763
  # are specific to the type of dataset used.
695
764
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
696
765
 
766
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
767
+
697
768
  if isinstance(dataset, DataFrame):
698
- self._deps = self._batch_inference_validate_snowpark(
699
- dataset=dataset,
700
- inference_method=inference_method,
701
- )
702
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
769
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
770
+ self._deps = self._get_dependencies()
771
+ assert isinstance(
772
+ dataset._session, Session
773
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
703
774
  transform_kwargs = dict(
704
775
  session=dataset._session,
705
776
  dependencies=self._deps,
706
- drop_input_cols = self._drop_input_cols,
777
+ drop_input_cols=self._drop_input_cols,
707
778
  expected_output_cols_type="float",
708
779
  )
780
+ expected_output_cols = self._align_expected_output_names(
781
+ inference_method, dataset, expected_output_cols, output_cols_prefix
782
+ )
709
783
 
710
784
  elif isinstance(dataset, pd.DataFrame):
711
- transform_kwargs = dict(
712
- snowpark_input_cols = self._snowpark_cols,
713
- drop_input_cols = self._drop_input_cols
714
- )
785
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
715
786
 
716
787
  transform_handlers = ModelTransformerBuilder.build(
717
788
  dataset=dataset,
@@ -724,7 +795,7 @@ class EllipticEnvelope(BaseTransformer):
724
795
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
725
796
  inference_method=inference_method,
726
797
  input_cols=self.input_cols,
727
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
798
+ expected_output_cols=expected_output_cols,
728
799
  **transform_kwargs
729
800
  )
730
801
  return output_df
@@ -755,17 +826,17 @@ class EllipticEnvelope(BaseTransformer):
755
826
  Output dataset with probability of the sample for each class in the model.
756
827
  """
757
828
  super()._check_dataset_type(dataset)
758
- inference_method="score_samples"
829
+ inference_method = "score_samples"
759
830
 
760
831
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
832
  # are specific to the type of dataset used.
762
833
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
763
834
 
835
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
836
+
764
837
  if isinstance(dataset, DataFrame):
765
- self._deps = self._batch_inference_validate_snowpark(
766
- dataset=dataset,
767
- inference_method=inference_method,
768
- )
838
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
839
+ self._deps = self._get_dependencies()
769
840
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
770
841
  transform_kwargs = dict(
771
842
  session=dataset._session,
@@ -773,6 +844,9 @@ class EllipticEnvelope(BaseTransformer):
773
844
  drop_input_cols = self._drop_input_cols,
774
845
  expected_output_cols_type="float",
775
846
  )
847
+ expected_output_cols = self._align_expected_output_names(
848
+ inference_method, dataset, expected_output_cols, output_cols_prefix
849
+ )
776
850
 
777
851
  elif isinstance(dataset, pd.DataFrame):
778
852
  transform_kwargs = dict(
@@ -791,7 +865,7 @@ class EllipticEnvelope(BaseTransformer):
791
865
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
792
866
  inference_method=inference_method,
793
867
  input_cols=self.input_cols,
794
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
868
+ expected_output_cols=expected_output_cols,
795
869
  **transform_kwargs
796
870
  )
797
871
  return output_df
@@ -826,17 +900,15 @@ class EllipticEnvelope(BaseTransformer):
826
900
  transform_kwargs: ScoreKwargsTypedDict = dict()
827
901
 
828
902
  if isinstance(dataset, DataFrame):
829
- self._deps = self._batch_inference_validate_snowpark(
830
- dataset=dataset,
831
- inference_method="score",
832
- )
903
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
904
+ self._deps = self._get_dependencies()
833
905
  selected_cols = self._get_active_columns()
834
906
  if len(selected_cols) > 0:
835
907
  dataset = dataset.select(selected_cols)
836
908
  assert isinstance(dataset._session, Session) # keep mypy happy
837
909
  transform_kwargs = dict(
838
910
  session=dataset._session,
839
- dependencies=["snowflake-snowpark-python"] + self._deps,
911
+ dependencies=self._deps,
840
912
  score_sproc_imports=['sklearn'],
841
913
  )
842
914
  elif isinstance(dataset, pd.DataFrame):
@@ -901,11 +973,8 @@ class EllipticEnvelope(BaseTransformer):
901
973
 
902
974
  if isinstance(dataset, DataFrame):
903
975
 
904
- self._deps = self._batch_inference_validate_snowpark(
905
- dataset=dataset,
906
- inference_method=inference_method,
907
-
908
- )
976
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
977
+ self._deps = self._get_dependencies()
909
978
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
910
979
  transform_kwargs = dict(
911
980
  session = dataset._session,
@@ -938,50 +1007,84 @@ class EllipticEnvelope(BaseTransformer):
938
1007
  )
939
1008
  return output_df
940
1009
 
1010
+
1011
+
1012
+ def to_sklearn(self) -> Any:
1013
+ """Get sklearn.covariance.EllipticEnvelope object.
1014
+ """
1015
+ if self._sklearn_object is None:
1016
+ self._sklearn_object = self._create_sklearn_object()
1017
+ return self._sklearn_object
1018
+
1019
+ def to_xgboost(self) -> Any:
1020
+ raise exceptions.SnowflakeMLException(
1021
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1022
+ original_exception=AttributeError(
1023
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1024
+ "to_xgboost()",
1025
+ "to_sklearn()"
1026
+ )
1027
+ ),
1028
+ )
941
1029
 
942
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1030
+ def to_lightgbm(self) -> Any:
1031
+ raise exceptions.SnowflakeMLException(
1032
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1033
+ original_exception=AttributeError(
1034
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1035
+ "to_lightgbm()",
1036
+ "to_sklearn()"
1037
+ )
1038
+ ),
1039
+ )
1040
+
1041
+ def _get_dependencies(self) -> List[str]:
1042
+ return self._deps
1043
+
1044
+
1045
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
943
1046
  self._model_signature_dict = dict()
944
1047
 
945
1048
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
946
1049
 
947
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1050
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
948
1051
  outputs: List[BaseFeatureSpec] = []
949
1052
  if hasattr(self, "predict"):
950
1053
  # keep mypy happy
951
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1054
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
952
1055
  # For classifier, the type of predict is the same as the type of label
953
- if self._sklearn_object._estimator_type == 'classifier':
954
- # label columns is the desired type for output
1056
+ if self._sklearn_object._estimator_type == "classifier":
1057
+ # label columns is the desired type for output
955
1058
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
956
1059
  # rename the output columns
957
1060
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
958
- self._model_signature_dict["predict"] = ModelSignature(inputs,
959
- ([] if self._drop_input_cols else inputs)
960
- + outputs)
1061
+ self._model_signature_dict["predict"] = ModelSignature(
1062
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1063
+ )
961
1064
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
962
1065
  # For outlier models, returns -1 for outliers and 1 for inliers.
963
- # Clusterer returns int64 cluster labels.
1066
+ # Clusterer returns int64 cluster labels.
964
1067
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
965
1068
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
966
- self._model_signature_dict["predict"] = ModelSignature(inputs,
967
- ([] if self._drop_input_cols else inputs)
968
- + outputs)
969
-
1069
+ self._model_signature_dict["predict"] = ModelSignature(
1070
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1071
+ )
1072
+
970
1073
  # For regressor, the type of predict is float64
971
- elif self._sklearn_object._estimator_type == 'regressor':
1074
+ elif self._sklearn_object._estimator_type == "regressor":
972
1075
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
973
- self._model_signature_dict["predict"] = ModelSignature(inputs,
974
- ([] if self._drop_input_cols else inputs)
975
- + outputs)
976
-
1076
+ self._model_signature_dict["predict"] = ModelSignature(
1077
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1078
+ )
1079
+
977
1080
  for prob_func in PROB_FUNCTIONS:
978
1081
  if hasattr(self, prob_func):
979
1082
  output_cols_prefix: str = f"{prob_func}_"
980
1083
  output_column_names = self._get_output_column_names(output_cols_prefix)
981
1084
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
982
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
1085
+ self._model_signature_dict[prob_func] = ModelSignature(
1086
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1087
+ )
985
1088
 
986
1089
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
987
1090
  items = list(self._model_signature_dict.items())
@@ -994,10 +1097,10 @@ class EllipticEnvelope(BaseTransformer):
994
1097
  """Returns model signature of current class.
995
1098
 
996
1099
  Raises:
997
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1100
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
998
1101
 
999
1102
  Returns:
1000
- Dict[str, ModelSignature]: each method and its input output signature
1103
+ Dict with each method and its input output signature
1001
1104
  """
1002
1105
  if self._model_signature_dict is None:
1003
1106
  raise exceptions.SnowflakeMLException(
@@ -1005,35 +1108,3 @@ class EllipticEnvelope(BaseTransformer):
1005
1108
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1006
1109
  )
1007
1110
  return self._model_signature_dict
1008
-
1009
- def to_sklearn(self) -> Any:
1010
- """Get sklearn.covariance.EllipticEnvelope object.
1011
- """
1012
- if self._sklearn_object is None:
1013
- self._sklearn_object = self._create_sklearn_object()
1014
- return self._sklearn_object
1015
-
1016
- def to_xgboost(self) -> Any:
1017
- raise exceptions.SnowflakeMLException(
1018
- error_code=error_codes.METHOD_NOT_ALLOWED,
1019
- original_exception=AttributeError(
1020
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1021
- "to_xgboost()",
1022
- "to_sklearn()"
1023
- )
1024
- ),
1025
- )
1026
-
1027
- def to_lightgbm(self) -> Any:
1028
- raise exceptions.SnowflakeMLException(
1029
- error_code=error_codes.METHOD_NOT_ALLOWED,
1030
- original_exception=AttributeError(
1031
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1032
- "to_lightgbm()",
1033
- "to_sklearn()"
1034
- )
1035
- ),
1036
- )
1037
-
1038
- def _get_dependencies(self) -> List[str]:
1039
- return self._deps