snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class EllipticEnvelope(BaseTransformer):
|
71
64
|
r"""An object for detecting outliers in a Gaussian distributed dataset
|
72
65
|
For more details on this class, see [sklearn.covariance.EllipticEnvelope]
|
@@ -226,12 +219,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
226
219
|
)
|
227
220
|
return selected_cols
|
228
221
|
|
229
|
-
|
230
|
-
project=_PROJECT,
|
231
|
-
subproject=_SUBPROJECT,
|
232
|
-
custom_tags=dict([("autogen", True)]),
|
233
|
-
)
|
234
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EllipticEnvelope":
|
222
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "EllipticEnvelope":
|
235
223
|
"""Fit the EllipticEnvelope model
|
236
224
|
For more details on this function, see [sklearn.covariance.EllipticEnvelope.fit]
|
237
225
|
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope.fit)
|
@@ -258,12 +246,14 @@ class EllipticEnvelope(BaseTransformer):
|
|
258
246
|
|
259
247
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
260
248
|
|
261
|
-
|
249
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
262
250
|
if SNOWML_SPROC_ENV in os.environ:
|
263
251
|
statement_params = telemetry.get_function_usage_statement_params(
|
264
252
|
project=_PROJECT,
|
265
253
|
subproject=_SUBPROJECT,
|
266
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
254
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
255
|
+
inspect.currentframe(), EllipticEnvelope.__class__.__name__
|
256
|
+
),
|
267
257
|
api_calls=[Session.call],
|
268
258
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
269
259
|
)
|
@@ -284,27 +274,24 @@ class EllipticEnvelope(BaseTransformer):
|
|
284
274
|
)
|
285
275
|
self._sklearn_object = model_trainer.train()
|
286
276
|
self._is_fitted = True
|
287
|
-
self.
|
277
|
+
self._generate_model_signatures(dataset)
|
288
278
|
return self
|
289
279
|
|
290
280
|
def _batch_inference_validate_snowpark(
|
291
281
|
self,
|
292
282
|
dataset: DataFrame,
|
293
283
|
inference_method: str,
|
294
|
-
) ->
|
295
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
296
|
-
return the available package that exists in the snowflake anaconda channel
|
284
|
+
) -> None:
|
285
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
297
286
|
|
298
287
|
Args:
|
299
288
|
dataset: snowpark dataframe
|
300
289
|
inference_method: the inference method such as predict, score...
|
301
|
-
|
290
|
+
|
302
291
|
Raises:
|
303
292
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
304
293
|
SnowflakeMLException: If the session is None, raise error
|
305
294
|
|
306
|
-
Returns:
|
307
|
-
A list of available package that exists in the snowflake anaconda channel
|
308
295
|
"""
|
309
296
|
if not self._is_fitted:
|
310
297
|
raise exceptions.SnowflakeMLException(
|
@@ -322,9 +309,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
322
309
|
"Session must not specified for snowpark dataset."
|
323
310
|
),
|
324
311
|
)
|
325
|
-
|
326
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
327
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
312
|
+
|
328
313
|
|
329
314
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
330
315
|
@telemetry.send_api_usage_telemetry(
|
@@ -360,7 +345,9 @@ class EllipticEnvelope(BaseTransformer):
|
|
360
345
|
# when it is classifier, infer the datatype from label columns
|
361
346
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
362
347
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
363
|
-
label_cols_signatures = [
|
348
|
+
label_cols_signatures = [
|
349
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
350
|
+
]
|
364
351
|
if len(label_cols_signatures) == 0:
|
365
352
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
366
353
|
raise exceptions.SnowflakeMLException(
|
@@ -368,25 +355,23 @@ class EllipticEnvelope(BaseTransformer):
|
|
368
355
|
original_exception=ValueError(error_str),
|
369
356
|
)
|
370
357
|
|
371
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
372
|
-
label_cols_signatures[0].as_snowpark_type()
|
373
|
-
)
|
358
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
374
359
|
|
375
|
-
self.
|
376
|
-
|
360
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
361
|
+
self._deps = self._get_dependencies()
|
362
|
+
assert isinstance(
|
363
|
+
dataset._session, Session
|
364
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
377
365
|
|
378
366
|
transform_kwargs = dict(
|
379
|
-
session
|
380
|
-
dependencies
|
381
|
-
drop_input_cols
|
382
|
-
expected_output_cols_type
|
367
|
+
session=dataset._session,
|
368
|
+
dependencies=self._deps,
|
369
|
+
drop_input_cols=self._drop_input_cols,
|
370
|
+
expected_output_cols_type=expected_type_inferred,
|
383
371
|
)
|
384
372
|
|
385
373
|
elif isinstance(dataset, pd.DataFrame):
|
386
|
-
transform_kwargs = dict(
|
387
|
-
snowpark_input_cols = self._snowpark_cols,
|
388
|
-
drop_input_cols = self._drop_input_cols
|
389
|
-
)
|
374
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
390
375
|
|
391
376
|
transform_handlers = ModelTransformerBuilder.build(
|
392
377
|
dataset=dataset,
|
@@ -426,7 +411,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
426
411
|
Transformed dataset.
|
427
412
|
"""
|
428
413
|
super()._check_dataset_type(dataset)
|
429
|
-
inference_method="transform"
|
414
|
+
inference_method = "transform"
|
430
415
|
|
431
416
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
432
417
|
# are specific to the type of dataset used.
|
@@ -456,24 +441,19 @@ class EllipticEnvelope(BaseTransformer):
|
|
456
441
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
457
442
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
458
443
|
|
459
|
-
self.
|
460
|
-
|
461
|
-
inference_method=inference_method,
|
462
|
-
)
|
444
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
445
|
+
self._deps = self._get_dependencies()
|
463
446
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
464
447
|
|
465
448
|
transform_kwargs = dict(
|
466
|
-
session
|
467
|
-
dependencies
|
468
|
-
drop_input_cols
|
469
|
-
expected_output_cols_type
|
449
|
+
session=dataset._session,
|
450
|
+
dependencies=self._deps,
|
451
|
+
drop_input_cols=self._drop_input_cols,
|
452
|
+
expected_output_cols_type=expected_dtype,
|
470
453
|
)
|
471
454
|
|
472
455
|
elif isinstance(dataset, pd.DataFrame):
|
473
|
-
transform_kwargs = dict(
|
474
|
-
snowpark_input_cols = self._snowpark_cols,
|
475
|
-
drop_input_cols = self._drop_input_cols
|
476
|
-
)
|
456
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
477
457
|
|
478
458
|
transform_handlers = ModelTransformerBuilder.build(
|
479
459
|
dataset=dataset,
|
@@ -492,7 +472,11 @@ class EllipticEnvelope(BaseTransformer):
|
|
492
472
|
return output_df
|
493
473
|
|
494
474
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
495
|
-
def fit_predict(
|
475
|
+
def fit_predict(
|
476
|
+
self,
|
477
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
478
|
+
output_cols_prefix: str = "fit_predict_",
|
479
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
496
480
|
""" Perform fit on X and returns labels for X
|
497
481
|
For more details on this function, see [sklearn.covariance.EllipticEnvelope.fit_predict]
|
498
482
|
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance.EllipticEnvelope.html#sklearn.covariance.EllipticEnvelope.fit_predict)
|
@@ -519,22 +503,104 @@ class EllipticEnvelope(BaseTransformer):
|
|
519
503
|
)
|
520
504
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
521
505
|
drop_input_cols=self._drop_input_cols,
|
522
|
-
expected_output_cols_list=
|
506
|
+
expected_output_cols_list=(
|
507
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
508
|
+
),
|
523
509
|
)
|
524
510
|
self._sklearn_object = fitted_estimator
|
525
511
|
self._is_fitted = True
|
526
512
|
return output_result
|
527
513
|
|
514
|
+
|
515
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
516
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
517
|
+
""" Method not supported for this class.
|
518
|
+
|
519
|
+
|
520
|
+
Raises:
|
521
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
528
522
|
|
529
|
-
|
530
|
-
|
531
|
-
|
523
|
+
Args:
|
524
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
525
|
+
Snowpark or Pandas DataFrame.
|
526
|
+
output_cols_prefix: Prefix for the response columns
|
532
527
|
Returns:
|
533
528
|
Transformed dataset.
|
534
529
|
"""
|
535
|
-
self.
|
536
|
-
|
537
|
-
|
530
|
+
self._infer_input_output_cols(dataset)
|
531
|
+
super()._check_dataset_type(dataset)
|
532
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
533
|
+
estimator=self._sklearn_object,
|
534
|
+
dataset=dataset,
|
535
|
+
input_cols=self.input_cols,
|
536
|
+
label_cols=self.label_cols,
|
537
|
+
sample_weight_col=self.sample_weight_col,
|
538
|
+
autogenerated=self._autogenerated,
|
539
|
+
subproject=_SUBPROJECT,
|
540
|
+
)
|
541
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
542
|
+
drop_input_cols=self._drop_input_cols,
|
543
|
+
expected_output_cols_list=self.output_cols,
|
544
|
+
)
|
545
|
+
self._sklearn_object = fitted_estimator
|
546
|
+
self._is_fitted = True
|
547
|
+
return output_result
|
548
|
+
|
549
|
+
|
550
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
551
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
552
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
553
|
+
"""
|
554
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
555
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
556
|
+
if output_cols:
|
557
|
+
output_cols = [
|
558
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
559
|
+
for c in output_cols
|
560
|
+
]
|
561
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
562
|
+
output_cols = [output_cols_prefix]
|
563
|
+
elif self._sklearn_object is not None:
|
564
|
+
classes = self._sklearn_object.classes_
|
565
|
+
if isinstance(classes, numpy.ndarray):
|
566
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
567
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
568
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
569
|
+
output_cols = []
|
570
|
+
for i, cl in enumerate(classes):
|
571
|
+
# For binary classification, there is only one output column for each class
|
572
|
+
# ndarray as the two classes are complementary.
|
573
|
+
if len(cl) == 2:
|
574
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
575
|
+
else:
|
576
|
+
output_cols.extend([
|
577
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
578
|
+
])
|
579
|
+
else:
|
580
|
+
output_cols = []
|
581
|
+
|
582
|
+
# Make sure column names are valid snowflake identifiers.
|
583
|
+
assert output_cols is not None # Make MyPy happy
|
584
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
585
|
+
|
586
|
+
return rv
|
587
|
+
|
588
|
+
def _align_expected_output_names(
|
589
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
590
|
+
) -> List[str]:
|
591
|
+
# in case the inferred output column names dimension is different
|
592
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
593
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
594
|
+
output_df_columns = list(output_df_pd.columns)
|
595
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
596
|
+
if self.sample_weight_col:
|
597
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
598
|
+
# if the dimension of inferred output column names is correct; use it
|
599
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
600
|
+
return expected_output_cols_list
|
601
|
+
# otherwise, use the sklearn estimator's output
|
602
|
+
else:
|
603
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
538
604
|
|
539
605
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
540
606
|
@telemetry.send_api_usage_telemetry(
|
@@ -566,24 +632,26 @@ class EllipticEnvelope(BaseTransformer):
|
|
566
632
|
# are specific to the type of dataset used.
|
567
633
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
568
634
|
|
635
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
636
|
+
|
569
637
|
if isinstance(dataset, DataFrame):
|
570
|
-
self.
|
571
|
-
|
572
|
-
|
573
|
-
|
574
|
-
|
638
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
639
|
+
self._deps = self._get_dependencies()
|
640
|
+
assert isinstance(
|
641
|
+
dataset._session, Session
|
642
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
575
643
|
transform_kwargs = dict(
|
576
644
|
session=dataset._session,
|
577
645
|
dependencies=self._deps,
|
578
|
-
drop_input_cols
|
646
|
+
drop_input_cols=self._drop_input_cols,
|
579
647
|
expected_output_cols_type="float",
|
580
648
|
)
|
649
|
+
expected_output_cols = self._align_expected_output_names(
|
650
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
651
|
+
)
|
581
652
|
|
582
653
|
elif isinstance(dataset, pd.DataFrame):
|
583
|
-
transform_kwargs = dict(
|
584
|
-
snowpark_input_cols = self._snowpark_cols,
|
585
|
-
drop_input_cols = self._drop_input_cols
|
586
|
-
)
|
654
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
587
655
|
|
588
656
|
transform_handlers = ModelTransformerBuilder.build(
|
589
657
|
dataset=dataset,
|
@@ -595,7 +663,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
595
663
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
596
664
|
inference_method=inference_method,
|
597
665
|
input_cols=self.input_cols,
|
598
|
-
expected_output_cols=
|
666
|
+
expected_output_cols=expected_output_cols,
|
599
667
|
**transform_kwargs
|
600
668
|
)
|
601
669
|
return output_df
|
@@ -625,29 +693,30 @@ class EllipticEnvelope(BaseTransformer):
|
|
625
693
|
Output dataset with log probability of the sample for each class in the model.
|
626
694
|
"""
|
627
695
|
super()._check_dataset_type(dataset)
|
628
|
-
inference_method="predict_log_proba"
|
696
|
+
inference_method = "predict_log_proba"
|
697
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
629
698
|
|
630
699
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
631
700
|
# are specific to the type of dataset used.
|
632
701
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
633
702
|
|
634
703
|
if isinstance(dataset, DataFrame):
|
635
|
-
self.
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
|
704
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
705
|
+
self._deps = self._get_dependencies()
|
706
|
+
assert isinstance(
|
707
|
+
dataset._session, Session
|
708
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
640
709
|
transform_kwargs = dict(
|
641
710
|
session=dataset._session,
|
642
711
|
dependencies=self._deps,
|
643
|
-
drop_input_cols
|
712
|
+
drop_input_cols=self._drop_input_cols,
|
644
713
|
expected_output_cols_type="float",
|
645
714
|
)
|
715
|
+
expected_output_cols = self._align_expected_output_names(
|
716
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
717
|
+
)
|
646
718
|
elif isinstance(dataset, pd.DataFrame):
|
647
|
-
transform_kwargs = dict(
|
648
|
-
snowpark_input_cols = self._snowpark_cols,
|
649
|
-
drop_input_cols = self._drop_input_cols
|
650
|
-
)
|
719
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
651
720
|
|
652
721
|
transform_handlers = ModelTransformerBuilder.build(
|
653
722
|
dataset=dataset,
|
@@ -660,7 +729,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
660
729
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
661
730
|
inference_method=inference_method,
|
662
731
|
input_cols=self.input_cols,
|
663
|
-
expected_output_cols=
|
732
|
+
expected_output_cols=expected_output_cols,
|
664
733
|
**transform_kwargs
|
665
734
|
)
|
666
735
|
return output_df
|
@@ -688,30 +757,32 @@ class EllipticEnvelope(BaseTransformer):
|
|
688
757
|
Output dataset with results of the decision function for the samples in input dataset.
|
689
758
|
"""
|
690
759
|
super()._check_dataset_type(dataset)
|
691
|
-
inference_method="decision_function"
|
760
|
+
inference_method = "decision_function"
|
692
761
|
|
693
762
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
694
763
|
# are specific to the type of dataset used.
|
695
764
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
696
765
|
|
766
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
767
|
+
|
697
768
|
if isinstance(dataset, DataFrame):
|
698
|
-
self.
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
|
769
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
770
|
+
self._deps = self._get_dependencies()
|
771
|
+
assert isinstance(
|
772
|
+
dataset._session, Session
|
773
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
703
774
|
transform_kwargs = dict(
|
704
775
|
session=dataset._session,
|
705
776
|
dependencies=self._deps,
|
706
|
-
drop_input_cols
|
777
|
+
drop_input_cols=self._drop_input_cols,
|
707
778
|
expected_output_cols_type="float",
|
708
779
|
)
|
780
|
+
expected_output_cols = self._align_expected_output_names(
|
781
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
782
|
+
)
|
709
783
|
|
710
784
|
elif isinstance(dataset, pd.DataFrame):
|
711
|
-
transform_kwargs = dict(
|
712
|
-
snowpark_input_cols = self._snowpark_cols,
|
713
|
-
drop_input_cols = self._drop_input_cols
|
714
|
-
)
|
785
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
715
786
|
|
716
787
|
transform_handlers = ModelTransformerBuilder.build(
|
717
788
|
dataset=dataset,
|
@@ -724,7 +795,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
724
795
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
725
796
|
inference_method=inference_method,
|
726
797
|
input_cols=self.input_cols,
|
727
|
-
expected_output_cols=
|
798
|
+
expected_output_cols=expected_output_cols,
|
728
799
|
**transform_kwargs
|
729
800
|
)
|
730
801
|
return output_df
|
@@ -755,17 +826,17 @@ class EllipticEnvelope(BaseTransformer):
|
|
755
826
|
Output dataset with probability of the sample for each class in the model.
|
756
827
|
"""
|
757
828
|
super()._check_dataset_type(dataset)
|
758
|
-
inference_method="score_samples"
|
829
|
+
inference_method = "score_samples"
|
759
830
|
|
760
831
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
761
832
|
# are specific to the type of dataset used.
|
762
833
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
763
834
|
|
835
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
836
|
+
|
764
837
|
if isinstance(dataset, DataFrame):
|
765
|
-
self.
|
766
|
-
|
767
|
-
inference_method=inference_method,
|
768
|
-
)
|
838
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
839
|
+
self._deps = self._get_dependencies()
|
769
840
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
770
841
|
transform_kwargs = dict(
|
771
842
|
session=dataset._session,
|
@@ -773,6 +844,9 @@ class EllipticEnvelope(BaseTransformer):
|
|
773
844
|
drop_input_cols = self._drop_input_cols,
|
774
845
|
expected_output_cols_type="float",
|
775
846
|
)
|
847
|
+
expected_output_cols = self._align_expected_output_names(
|
848
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
849
|
+
)
|
776
850
|
|
777
851
|
elif isinstance(dataset, pd.DataFrame):
|
778
852
|
transform_kwargs = dict(
|
@@ -791,7 +865,7 @@ class EllipticEnvelope(BaseTransformer):
|
|
791
865
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
792
866
|
inference_method=inference_method,
|
793
867
|
input_cols=self.input_cols,
|
794
|
-
expected_output_cols=
|
868
|
+
expected_output_cols=expected_output_cols,
|
795
869
|
**transform_kwargs
|
796
870
|
)
|
797
871
|
return output_df
|
@@ -826,17 +900,15 @@ class EllipticEnvelope(BaseTransformer):
|
|
826
900
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
827
901
|
|
828
902
|
if isinstance(dataset, DataFrame):
|
829
|
-
self.
|
830
|
-
|
831
|
-
inference_method="score",
|
832
|
-
)
|
903
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
904
|
+
self._deps = self._get_dependencies()
|
833
905
|
selected_cols = self._get_active_columns()
|
834
906
|
if len(selected_cols) > 0:
|
835
907
|
dataset = dataset.select(selected_cols)
|
836
908
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
837
909
|
transform_kwargs = dict(
|
838
910
|
session=dataset._session,
|
839
|
-
dependencies=
|
911
|
+
dependencies=self._deps,
|
840
912
|
score_sproc_imports=['sklearn'],
|
841
913
|
)
|
842
914
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -901,11 +973,8 @@ class EllipticEnvelope(BaseTransformer):
|
|
901
973
|
|
902
974
|
if isinstance(dataset, DataFrame):
|
903
975
|
|
904
|
-
self.
|
905
|
-
|
906
|
-
inference_method=inference_method,
|
907
|
-
|
908
|
-
)
|
976
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
977
|
+
self._deps = self._get_dependencies()
|
909
978
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
910
979
|
transform_kwargs = dict(
|
911
980
|
session = dataset._session,
|
@@ -938,50 +1007,84 @@ class EllipticEnvelope(BaseTransformer):
|
|
938
1007
|
)
|
939
1008
|
return output_df
|
940
1009
|
|
1010
|
+
|
1011
|
+
|
1012
|
+
def to_sklearn(self) -> Any:
|
1013
|
+
"""Get sklearn.covariance.EllipticEnvelope object.
|
1014
|
+
"""
|
1015
|
+
if self._sklearn_object is None:
|
1016
|
+
self._sklearn_object = self._create_sklearn_object()
|
1017
|
+
return self._sklearn_object
|
1018
|
+
|
1019
|
+
def to_xgboost(self) -> Any:
|
1020
|
+
raise exceptions.SnowflakeMLException(
|
1021
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1022
|
+
original_exception=AttributeError(
|
1023
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1024
|
+
"to_xgboost()",
|
1025
|
+
"to_sklearn()"
|
1026
|
+
)
|
1027
|
+
),
|
1028
|
+
)
|
941
1029
|
|
942
|
-
def
|
1030
|
+
def to_lightgbm(self) -> Any:
|
1031
|
+
raise exceptions.SnowflakeMLException(
|
1032
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1033
|
+
original_exception=AttributeError(
|
1034
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1035
|
+
"to_lightgbm()",
|
1036
|
+
"to_sklearn()"
|
1037
|
+
)
|
1038
|
+
),
|
1039
|
+
)
|
1040
|
+
|
1041
|
+
def _get_dependencies(self) -> List[str]:
|
1042
|
+
return self._deps
|
1043
|
+
|
1044
|
+
|
1045
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
943
1046
|
self._model_signature_dict = dict()
|
944
1047
|
|
945
1048
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
946
1049
|
|
947
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1050
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
948
1051
|
outputs: List[BaseFeatureSpec] = []
|
949
1052
|
if hasattr(self, "predict"):
|
950
1053
|
# keep mypy happy
|
951
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1054
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
952
1055
|
# For classifier, the type of predict is the same as the type of label
|
953
|
-
if self._sklearn_object._estimator_type ==
|
954
|
-
|
1056
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1057
|
+
# label columns is the desired type for output
|
955
1058
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
956
1059
|
# rename the output columns
|
957
1060
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
958
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
959
|
-
|
960
|
-
|
1061
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1062
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1063
|
+
)
|
961
1064
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
962
1065
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
963
|
-
# Clusterer returns int64 cluster labels.
|
1066
|
+
# Clusterer returns int64 cluster labels.
|
964
1067
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
965
1068
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
966
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
967
|
-
|
968
|
-
|
969
|
-
|
1069
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1070
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1071
|
+
)
|
1072
|
+
|
970
1073
|
# For regressor, the type of predict is float64
|
971
|
-
elif self._sklearn_object._estimator_type ==
|
1074
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
972
1075
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
973
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
974
|
-
|
975
|
-
|
976
|
-
|
1076
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1077
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1078
|
+
)
|
1079
|
+
|
977
1080
|
for prob_func in PROB_FUNCTIONS:
|
978
1081
|
if hasattr(self, prob_func):
|
979
1082
|
output_cols_prefix: str = f"{prob_func}_"
|
980
1083
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
981
1084
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
982
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
983
|
-
|
984
|
-
|
1085
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1086
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1087
|
+
)
|
985
1088
|
|
986
1089
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
987
1090
|
items = list(self._model_signature_dict.items())
|
@@ -994,10 +1097,10 @@ class EllipticEnvelope(BaseTransformer):
|
|
994
1097
|
"""Returns model signature of current class.
|
995
1098
|
|
996
1099
|
Raises:
|
997
|
-
|
1100
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
998
1101
|
|
999
1102
|
Returns:
|
1000
|
-
Dict
|
1103
|
+
Dict with each method and its input output signature
|
1001
1104
|
"""
|
1002
1105
|
if self._model_signature_dict is None:
|
1003
1106
|
raise exceptions.SnowflakeMLException(
|
@@ -1005,35 +1108,3 @@ class EllipticEnvelope(BaseTransformer):
|
|
1005
1108
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1006
1109
|
)
|
1007
1110
|
return self._model_signature_dict
|
1008
|
-
|
1009
|
-
def to_sklearn(self) -> Any:
|
1010
|
-
"""Get sklearn.covariance.EllipticEnvelope object.
|
1011
|
-
"""
|
1012
|
-
if self._sklearn_object is None:
|
1013
|
-
self._sklearn_object = self._create_sklearn_object()
|
1014
|
-
return self._sklearn_object
|
1015
|
-
|
1016
|
-
def to_xgboost(self) -> Any:
|
1017
|
-
raise exceptions.SnowflakeMLException(
|
1018
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1019
|
-
original_exception=AttributeError(
|
1020
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1021
|
-
"to_xgboost()",
|
1022
|
-
"to_sklearn()"
|
1023
|
-
)
|
1024
|
-
),
|
1025
|
-
)
|
1026
|
-
|
1027
|
-
def to_lightgbm(self) -> Any:
|
1028
|
-
raise exceptions.SnowflakeMLException(
|
1029
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1030
|
-
original_exception=AttributeError(
|
1031
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1032
|
-
"to_lightgbm()",
|
1033
|
-
"to_sklearn()"
|
1034
|
-
)
|
1035
|
-
),
|
1036
|
-
)
|
1037
|
-
|
1038
|
-
def _get_dependencies(self) -> List[str]:
|
1039
|
-
return self._deps
|