snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
34
34
|
BatchInferenceKwargsTypedDict,
|
35
35
|
ScoreKwargsTypedDict
|
36
36
|
)
|
37
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
38
|
+
from snowflake.ml.model.model_signature import (
|
39
|
+
BaseFeatureSpec,
|
40
|
+
DataType,
|
41
|
+
FeatureSpec,
|
42
|
+
ModelSignature,
|
43
|
+
_infer_signature,
|
44
|
+
_rename_signature_with_snowflake_identifiers,
|
45
|
+
)
|
37
46
|
|
38
47
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
39
48
|
|
@@ -44,16 +53,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
44
53
|
validate_sklearn_args,
|
45
54
|
)
|
46
55
|
|
47
|
-
from snowflake.ml.model.model_signature import (
|
48
|
-
DataType,
|
49
|
-
FeatureSpec,
|
50
|
-
ModelSignature,
|
51
|
-
_infer_signature,
|
52
|
-
_rename_signature_with_snowflake_identifiers,
|
53
|
-
BaseFeatureSpec,
|
54
|
-
)
|
55
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
56
|
-
|
57
56
|
_PROJECT = "ModelDevelopment"
|
58
57
|
# Derive subproject from module name by removing "sklearn"
|
59
58
|
# and converting module name from underscore to CamelCase
|
@@ -62,12 +61,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
62
61
|
|
63
62
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
64
63
|
|
65
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
66
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
67
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
68
|
-
return check
|
69
|
-
|
70
|
-
|
71
64
|
class GenericUnivariateSelect(BaseTransformer):
|
72
65
|
r"""Univariate feature selector with configurable strategy
|
73
66
|
For more details on this class, see [sklearn.feature_selection.GenericUnivariateSelect]
|
@@ -209,12 +202,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
209
202
|
)
|
210
203
|
return selected_cols
|
211
204
|
|
212
|
-
|
213
|
-
project=_PROJECT,
|
214
|
-
subproject=_SUBPROJECT,
|
215
|
-
custom_tags=dict([("autogen", True)]),
|
216
|
-
)
|
217
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GenericUnivariateSelect":
|
205
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GenericUnivariateSelect":
|
218
206
|
"""Run score function on (X, y) and get the appropriate features
|
219
207
|
For more details on this function, see [sklearn.feature_selection.GenericUnivariateSelect.fit]
|
220
208
|
(https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html#sklearn.feature_selection.GenericUnivariateSelect.fit)
|
@@ -241,12 +229,14 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
241
229
|
|
242
230
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
243
231
|
|
244
|
-
|
232
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
245
233
|
if SNOWML_SPROC_ENV in os.environ:
|
246
234
|
statement_params = telemetry.get_function_usage_statement_params(
|
247
235
|
project=_PROJECT,
|
248
236
|
subproject=_SUBPROJECT,
|
249
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
237
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
238
|
+
inspect.currentframe(), GenericUnivariateSelect.__class__.__name__
|
239
|
+
),
|
250
240
|
api_calls=[Session.call],
|
251
241
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
252
242
|
)
|
@@ -267,27 +257,24 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
267
257
|
)
|
268
258
|
self._sklearn_object = model_trainer.train()
|
269
259
|
self._is_fitted = True
|
270
|
-
self.
|
260
|
+
self._generate_model_signatures(dataset)
|
271
261
|
return self
|
272
262
|
|
273
263
|
def _batch_inference_validate_snowpark(
|
274
264
|
self,
|
275
265
|
dataset: DataFrame,
|
276
266
|
inference_method: str,
|
277
|
-
) ->
|
278
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
279
|
-
return the available package that exists in the snowflake anaconda channel
|
267
|
+
) -> None:
|
268
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
280
269
|
|
281
270
|
Args:
|
282
271
|
dataset: snowpark dataframe
|
283
272
|
inference_method: the inference method such as predict, score...
|
284
|
-
|
273
|
+
|
285
274
|
Raises:
|
286
275
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
287
276
|
SnowflakeMLException: If the session is None, raise error
|
288
277
|
|
289
|
-
Returns:
|
290
|
-
A list of available package that exists in the snowflake anaconda channel
|
291
278
|
"""
|
292
279
|
if not self._is_fitted:
|
293
280
|
raise exceptions.SnowflakeMLException(
|
@@ -305,9 +292,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
305
292
|
"Session must not specified for snowpark dataset."
|
306
293
|
),
|
307
294
|
)
|
308
|
-
|
309
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
310
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
295
|
+
|
311
296
|
|
312
297
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
313
298
|
@telemetry.send_api_usage_telemetry(
|
@@ -341,7 +326,9 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
341
326
|
# when it is classifier, infer the datatype from label columns
|
342
327
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
343
328
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
344
|
-
label_cols_signatures = [
|
329
|
+
label_cols_signatures = [
|
330
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
331
|
+
]
|
345
332
|
if len(label_cols_signatures) == 0:
|
346
333
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
347
334
|
raise exceptions.SnowflakeMLException(
|
@@ -349,25 +336,23 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
349
336
|
original_exception=ValueError(error_str),
|
350
337
|
)
|
351
338
|
|
352
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
353
|
-
label_cols_signatures[0].as_snowpark_type()
|
354
|
-
)
|
339
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
355
340
|
|
356
|
-
self.
|
357
|
-
|
341
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
342
|
+
self._deps = self._get_dependencies()
|
343
|
+
assert isinstance(
|
344
|
+
dataset._session, Session
|
345
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
358
346
|
|
359
347
|
transform_kwargs = dict(
|
360
|
-
session
|
361
|
-
dependencies
|
362
|
-
drop_input_cols
|
363
|
-
expected_output_cols_type
|
348
|
+
session=dataset._session,
|
349
|
+
dependencies=self._deps,
|
350
|
+
drop_input_cols=self._drop_input_cols,
|
351
|
+
expected_output_cols_type=expected_type_inferred,
|
364
352
|
)
|
365
353
|
|
366
354
|
elif isinstance(dataset, pd.DataFrame):
|
367
|
-
transform_kwargs = dict(
|
368
|
-
snowpark_input_cols = self._snowpark_cols,
|
369
|
-
drop_input_cols = self._drop_input_cols
|
370
|
-
)
|
355
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
371
356
|
|
372
357
|
transform_handlers = ModelTransformerBuilder.build(
|
373
358
|
dataset=dataset,
|
@@ -409,7 +394,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
409
394
|
Transformed dataset.
|
410
395
|
"""
|
411
396
|
super()._check_dataset_type(dataset)
|
412
|
-
inference_method="transform"
|
397
|
+
inference_method = "transform"
|
413
398
|
|
414
399
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
415
400
|
# are specific to the type of dataset used.
|
@@ -439,24 +424,19 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
439
424
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
440
425
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
441
426
|
|
442
|
-
self.
|
443
|
-
|
444
|
-
inference_method=inference_method,
|
445
|
-
)
|
427
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
428
|
+
self._deps = self._get_dependencies()
|
446
429
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
447
430
|
|
448
431
|
transform_kwargs = dict(
|
449
|
-
session
|
450
|
-
dependencies
|
451
|
-
drop_input_cols
|
452
|
-
expected_output_cols_type
|
432
|
+
session=dataset._session,
|
433
|
+
dependencies=self._deps,
|
434
|
+
drop_input_cols=self._drop_input_cols,
|
435
|
+
expected_output_cols_type=expected_dtype,
|
453
436
|
)
|
454
437
|
|
455
438
|
elif isinstance(dataset, pd.DataFrame):
|
456
|
-
transform_kwargs = dict(
|
457
|
-
snowpark_input_cols = self._snowpark_cols,
|
458
|
-
drop_input_cols = self._drop_input_cols
|
459
|
-
)
|
439
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
460
440
|
|
461
441
|
transform_handlers = ModelTransformerBuilder.build(
|
462
442
|
dataset=dataset,
|
@@ -475,7 +455,11 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
475
455
|
return output_df
|
476
456
|
|
477
457
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
478
|
-
def fit_predict(
|
458
|
+
def fit_predict(
|
459
|
+
self,
|
460
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
461
|
+
output_cols_prefix: str = "fit_predict_",
|
462
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
479
463
|
""" Method not supported for this class.
|
480
464
|
|
481
465
|
|
@@ -500,22 +484,106 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
500
484
|
)
|
501
485
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
502
486
|
drop_input_cols=self._drop_input_cols,
|
503
|
-
expected_output_cols_list=
|
487
|
+
expected_output_cols_list=(
|
488
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
489
|
+
),
|
504
490
|
)
|
505
491
|
self._sklearn_object = fitted_estimator
|
506
492
|
self._is_fitted = True
|
507
493
|
return output_result
|
508
494
|
|
495
|
+
|
496
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
497
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
498
|
+
""" Fit to data, then transform it
|
499
|
+
For more details on this function, see [sklearn.feature_selection.GenericUnivariateSelect.fit_transform]
|
500
|
+
(https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.GenericUnivariateSelect.html#sklearn.feature_selection.GenericUnivariateSelect.fit_transform)
|
501
|
+
|
502
|
+
|
503
|
+
Raises:
|
504
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
509
505
|
|
510
|
-
|
511
|
-
|
512
|
-
|
506
|
+
Args:
|
507
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
508
|
+
Snowpark or Pandas DataFrame.
|
509
|
+
output_cols_prefix: Prefix for the response columns
|
513
510
|
Returns:
|
514
511
|
Transformed dataset.
|
515
512
|
"""
|
516
|
-
self.
|
517
|
-
|
518
|
-
|
513
|
+
self._infer_input_output_cols(dataset)
|
514
|
+
super()._check_dataset_type(dataset)
|
515
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
516
|
+
estimator=self._sklearn_object,
|
517
|
+
dataset=dataset,
|
518
|
+
input_cols=self.input_cols,
|
519
|
+
label_cols=self.label_cols,
|
520
|
+
sample_weight_col=self.sample_weight_col,
|
521
|
+
autogenerated=self._autogenerated,
|
522
|
+
subproject=_SUBPROJECT,
|
523
|
+
)
|
524
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
525
|
+
drop_input_cols=self._drop_input_cols,
|
526
|
+
expected_output_cols_list=self.output_cols,
|
527
|
+
)
|
528
|
+
self._sklearn_object = fitted_estimator
|
529
|
+
self._is_fitted = True
|
530
|
+
return output_result
|
531
|
+
|
532
|
+
|
533
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
534
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
535
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
536
|
+
"""
|
537
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
538
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
539
|
+
if output_cols:
|
540
|
+
output_cols = [
|
541
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
542
|
+
for c in output_cols
|
543
|
+
]
|
544
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
545
|
+
output_cols = [output_cols_prefix]
|
546
|
+
elif self._sklearn_object is not None:
|
547
|
+
classes = self._sklearn_object.classes_
|
548
|
+
if isinstance(classes, numpy.ndarray):
|
549
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
550
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
551
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
552
|
+
output_cols = []
|
553
|
+
for i, cl in enumerate(classes):
|
554
|
+
# For binary classification, there is only one output column for each class
|
555
|
+
# ndarray as the two classes are complementary.
|
556
|
+
if len(cl) == 2:
|
557
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
558
|
+
else:
|
559
|
+
output_cols.extend([
|
560
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
561
|
+
])
|
562
|
+
else:
|
563
|
+
output_cols = []
|
564
|
+
|
565
|
+
# Make sure column names are valid snowflake identifiers.
|
566
|
+
assert output_cols is not None # Make MyPy happy
|
567
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
568
|
+
|
569
|
+
return rv
|
570
|
+
|
571
|
+
def _align_expected_output_names(
|
572
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
573
|
+
) -> List[str]:
|
574
|
+
# in case the inferred output column names dimension is different
|
575
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
576
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
577
|
+
output_df_columns = list(output_df_pd.columns)
|
578
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
579
|
+
if self.sample_weight_col:
|
580
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
581
|
+
# if the dimension of inferred output column names is correct; use it
|
582
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
583
|
+
return expected_output_cols_list
|
584
|
+
# otherwise, use the sklearn estimator's output
|
585
|
+
else:
|
586
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
519
587
|
|
520
588
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
521
589
|
@telemetry.send_api_usage_telemetry(
|
@@ -547,24 +615,26 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
547
615
|
# are specific to the type of dataset used.
|
548
616
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
549
617
|
|
618
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
619
|
+
|
550
620
|
if isinstance(dataset, DataFrame):
|
551
|
-
self.
|
552
|
-
|
553
|
-
|
554
|
-
|
555
|
-
|
621
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
622
|
+
self._deps = self._get_dependencies()
|
623
|
+
assert isinstance(
|
624
|
+
dataset._session, Session
|
625
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
556
626
|
transform_kwargs = dict(
|
557
627
|
session=dataset._session,
|
558
628
|
dependencies=self._deps,
|
559
|
-
drop_input_cols
|
629
|
+
drop_input_cols=self._drop_input_cols,
|
560
630
|
expected_output_cols_type="float",
|
561
631
|
)
|
632
|
+
expected_output_cols = self._align_expected_output_names(
|
633
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
634
|
+
)
|
562
635
|
|
563
636
|
elif isinstance(dataset, pd.DataFrame):
|
564
|
-
transform_kwargs = dict(
|
565
|
-
snowpark_input_cols = self._snowpark_cols,
|
566
|
-
drop_input_cols = self._drop_input_cols
|
567
|
-
)
|
637
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
568
638
|
|
569
639
|
transform_handlers = ModelTransformerBuilder.build(
|
570
640
|
dataset=dataset,
|
@@ -576,7 +646,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
576
646
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
577
647
|
inference_method=inference_method,
|
578
648
|
input_cols=self.input_cols,
|
579
|
-
expected_output_cols=
|
649
|
+
expected_output_cols=expected_output_cols,
|
580
650
|
**transform_kwargs
|
581
651
|
)
|
582
652
|
return output_df
|
@@ -606,29 +676,30 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
606
676
|
Output dataset with log probability of the sample for each class in the model.
|
607
677
|
"""
|
608
678
|
super()._check_dataset_type(dataset)
|
609
|
-
inference_method="predict_log_proba"
|
679
|
+
inference_method = "predict_log_proba"
|
680
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
610
681
|
|
611
682
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
612
683
|
# are specific to the type of dataset used.
|
613
684
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
614
685
|
|
615
686
|
if isinstance(dataset, DataFrame):
|
616
|
-
self.
|
617
|
-
|
618
|
-
|
619
|
-
|
620
|
-
|
687
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
688
|
+
self._deps = self._get_dependencies()
|
689
|
+
assert isinstance(
|
690
|
+
dataset._session, Session
|
691
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
621
692
|
transform_kwargs = dict(
|
622
693
|
session=dataset._session,
|
623
694
|
dependencies=self._deps,
|
624
|
-
drop_input_cols
|
695
|
+
drop_input_cols=self._drop_input_cols,
|
625
696
|
expected_output_cols_type="float",
|
626
697
|
)
|
698
|
+
expected_output_cols = self._align_expected_output_names(
|
699
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
700
|
+
)
|
627
701
|
elif isinstance(dataset, pd.DataFrame):
|
628
|
-
transform_kwargs = dict(
|
629
|
-
snowpark_input_cols = self._snowpark_cols,
|
630
|
-
drop_input_cols = self._drop_input_cols
|
631
|
-
)
|
702
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
632
703
|
|
633
704
|
transform_handlers = ModelTransformerBuilder.build(
|
634
705
|
dataset=dataset,
|
@@ -641,7 +712,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
641
712
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
642
713
|
inference_method=inference_method,
|
643
714
|
input_cols=self.input_cols,
|
644
|
-
expected_output_cols=
|
715
|
+
expected_output_cols=expected_output_cols,
|
645
716
|
**transform_kwargs
|
646
717
|
)
|
647
718
|
return output_df
|
@@ -667,30 +738,32 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
667
738
|
Output dataset with results of the decision function for the samples in input dataset.
|
668
739
|
"""
|
669
740
|
super()._check_dataset_type(dataset)
|
670
|
-
inference_method="decision_function"
|
741
|
+
inference_method = "decision_function"
|
671
742
|
|
672
743
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
673
744
|
# are specific to the type of dataset used.
|
674
745
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
675
746
|
|
747
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
748
|
+
|
676
749
|
if isinstance(dataset, DataFrame):
|
677
|
-
self.
|
678
|
-
|
679
|
-
|
680
|
-
|
681
|
-
|
750
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
751
|
+
self._deps = self._get_dependencies()
|
752
|
+
assert isinstance(
|
753
|
+
dataset._session, Session
|
754
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
682
755
|
transform_kwargs = dict(
|
683
756
|
session=dataset._session,
|
684
757
|
dependencies=self._deps,
|
685
|
-
drop_input_cols
|
758
|
+
drop_input_cols=self._drop_input_cols,
|
686
759
|
expected_output_cols_type="float",
|
687
760
|
)
|
761
|
+
expected_output_cols = self._align_expected_output_names(
|
762
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
763
|
+
)
|
688
764
|
|
689
765
|
elif isinstance(dataset, pd.DataFrame):
|
690
|
-
transform_kwargs = dict(
|
691
|
-
snowpark_input_cols = self._snowpark_cols,
|
692
|
-
drop_input_cols = self._drop_input_cols
|
693
|
-
)
|
766
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
694
767
|
|
695
768
|
transform_handlers = ModelTransformerBuilder.build(
|
696
769
|
dataset=dataset,
|
@@ -703,7 +776,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
703
776
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
704
777
|
inference_method=inference_method,
|
705
778
|
input_cols=self.input_cols,
|
706
|
-
expected_output_cols=
|
779
|
+
expected_output_cols=expected_output_cols,
|
707
780
|
**transform_kwargs
|
708
781
|
)
|
709
782
|
return output_df
|
@@ -732,17 +805,17 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
732
805
|
Output dataset with probability of the sample for each class in the model.
|
733
806
|
"""
|
734
807
|
super()._check_dataset_type(dataset)
|
735
|
-
inference_method="score_samples"
|
808
|
+
inference_method = "score_samples"
|
736
809
|
|
737
810
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
738
811
|
# are specific to the type of dataset used.
|
739
812
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
740
813
|
|
814
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
815
|
+
|
741
816
|
if isinstance(dataset, DataFrame):
|
742
|
-
self.
|
743
|
-
|
744
|
-
inference_method=inference_method,
|
745
|
-
)
|
817
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
818
|
+
self._deps = self._get_dependencies()
|
746
819
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
747
820
|
transform_kwargs = dict(
|
748
821
|
session=dataset._session,
|
@@ -750,6 +823,9 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
750
823
|
drop_input_cols = self._drop_input_cols,
|
751
824
|
expected_output_cols_type="float",
|
752
825
|
)
|
826
|
+
expected_output_cols = self._align_expected_output_names(
|
827
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
828
|
+
)
|
753
829
|
|
754
830
|
elif isinstance(dataset, pd.DataFrame):
|
755
831
|
transform_kwargs = dict(
|
@@ -768,7 +844,7 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
768
844
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
769
845
|
inference_method=inference_method,
|
770
846
|
input_cols=self.input_cols,
|
771
|
-
expected_output_cols=
|
847
|
+
expected_output_cols=expected_output_cols,
|
772
848
|
**transform_kwargs
|
773
849
|
)
|
774
850
|
return output_df
|
@@ -801,17 +877,15 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
801
877
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
802
878
|
|
803
879
|
if isinstance(dataset, DataFrame):
|
804
|
-
self.
|
805
|
-
|
806
|
-
inference_method="score",
|
807
|
-
)
|
880
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
881
|
+
self._deps = self._get_dependencies()
|
808
882
|
selected_cols = self._get_active_columns()
|
809
883
|
if len(selected_cols) > 0:
|
810
884
|
dataset = dataset.select(selected_cols)
|
811
885
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
812
886
|
transform_kwargs = dict(
|
813
887
|
session=dataset._session,
|
814
|
-
dependencies=
|
888
|
+
dependencies=self._deps,
|
815
889
|
score_sproc_imports=['sklearn'],
|
816
890
|
)
|
817
891
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -876,11 +950,8 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
876
950
|
|
877
951
|
if isinstance(dataset, DataFrame):
|
878
952
|
|
879
|
-
self.
|
880
|
-
|
881
|
-
inference_method=inference_method,
|
882
|
-
|
883
|
-
)
|
953
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
954
|
+
self._deps = self._get_dependencies()
|
884
955
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
885
956
|
transform_kwargs = dict(
|
886
957
|
session = dataset._session,
|
@@ -913,50 +984,84 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
913
984
|
)
|
914
985
|
return output_df
|
915
986
|
|
987
|
+
|
988
|
+
|
989
|
+
def to_sklearn(self) -> Any:
|
990
|
+
"""Get sklearn.feature_selection.GenericUnivariateSelect object.
|
991
|
+
"""
|
992
|
+
if self._sklearn_object is None:
|
993
|
+
self._sklearn_object = self._create_sklearn_object()
|
994
|
+
return self._sklearn_object
|
995
|
+
|
996
|
+
def to_xgboost(self) -> Any:
|
997
|
+
raise exceptions.SnowflakeMLException(
|
998
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
999
|
+
original_exception=AttributeError(
|
1000
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1001
|
+
"to_xgboost()",
|
1002
|
+
"to_sklearn()"
|
1003
|
+
)
|
1004
|
+
),
|
1005
|
+
)
|
916
1006
|
|
917
|
-
def
|
1007
|
+
def to_lightgbm(self) -> Any:
|
1008
|
+
raise exceptions.SnowflakeMLException(
|
1009
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1010
|
+
original_exception=AttributeError(
|
1011
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1012
|
+
"to_lightgbm()",
|
1013
|
+
"to_sklearn()"
|
1014
|
+
)
|
1015
|
+
),
|
1016
|
+
)
|
1017
|
+
|
1018
|
+
def _get_dependencies(self) -> List[str]:
|
1019
|
+
return self._deps
|
1020
|
+
|
1021
|
+
|
1022
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
918
1023
|
self._model_signature_dict = dict()
|
919
1024
|
|
920
1025
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
921
1026
|
|
922
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1027
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
923
1028
|
outputs: List[BaseFeatureSpec] = []
|
924
1029
|
if hasattr(self, "predict"):
|
925
1030
|
# keep mypy happy
|
926
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1031
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
927
1032
|
# For classifier, the type of predict is the same as the type of label
|
928
|
-
if self._sklearn_object._estimator_type ==
|
929
|
-
|
1033
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1034
|
+
# label columns is the desired type for output
|
930
1035
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
931
1036
|
# rename the output columns
|
932
1037
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
933
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
934
|
-
|
935
|
-
|
1038
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1039
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1040
|
+
)
|
936
1041
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
937
1042
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
938
|
-
# Clusterer returns int64 cluster labels.
|
1043
|
+
# Clusterer returns int64 cluster labels.
|
939
1044
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
940
1045
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
941
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
942
|
-
|
943
|
-
|
944
|
-
|
1046
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1047
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1048
|
+
)
|
1049
|
+
|
945
1050
|
# For regressor, the type of predict is float64
|
946
|
-
elif self._sklearn_object._estimator_type ==
|
1051
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
947
1052
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
948
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
949
|
-
|
950
|
-
|
951
|
-
|
1053
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1054
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1055
|
+
)
|
1056
|
+
|
952
1057
|
for prob_func in PROB_FUNCTIONS:
|
953
1058
|
if hasattr(self, prob_func):
|
954
1059
|
output_cols_prefix: str = f"{prob_func}_"
|
955
1060
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
956
1061
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
957
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
958
|
-
|
959
|
-
|
1062
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1063
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1064
|
+
)
|
960
1065
|
|
961
1066
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
962
1067
|
items = list(self._model_signature_dict.items())
|
@@ -969,10 +1074,10 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
969
1074
|
"""Returns model signature of current class.
|
970
1075
|
|
971
1076
|
Raises:
|
972
|
-
|
1077
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
973
1078
|
|
974
1079
|
Returns:
|
975
|
-
Dict
|
1080
|
+
Dict with each method and its input output signature
|
976
1081
|
"""
|
977
1082
|
if self._model_signature_dict is None:
|
978
1083
|
raise exceptions.SnowflakeMLException(
|
@@ -980,35 +1085,3 @@ class GenericUnivariateSelect(BaseTransformer):
|
|
980
1085
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
981
1086
|
)
|
982
1087
|
return self._model_signature_dict
|
983
|
-
|
984
|
-
def to_sklearn(self) -> Any:
|
985
|
-
"""Get sklearn.feature_selection.GenericUnivariateSelect object.
|
986
|
-
"""
|
987
|
-
if self._sklearn_object is None:
|
988
|
-
self._sklearn_object = self._create_sklearn_object()
|
989
|
-
return self._sklearn_object
|
990
|
-
|
991
|
-
def to_xgboost(self) -> Any:
|
992
|
-
raise exceptions.SnowflakeMLException(
|
993
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
994
|
-
original_exception=AttributeError(
|
995
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
996
|
-
"to_xgboost()",
|
997
|
-
"to_sklearn()"
|
998
|
-
)
|
999
|
-
),
|
1000
|
-
)
|
1001
|
-
|
1002
|
-
def to_lightgbm(self) -> Any:
|
1003
|
-
raise exceptions.SnowflakeMLException(
|
1004
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1005
|
-
original_exception=AttributeError(
|
1006
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1007
|
-
"to_lightgbm()",
|
1008
|
-
"to_sklearn()"
|
1009
|
-
)
|
1010
|
-
),
|
1011
|
-
)
|
1012
|
-
|
1013
|
-
def _get_dependencies(self) -> List[str]:
|
1014
|
-
return self._deps
|