snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LocalOutlierFactor(BaseTransformer):
71
64
  r"""Unsupervised Outlier Detection using the Local Outlier Factor (LOF)
72
65
  For more details on this class, see [sklearn.neighbors.LocalOutlierFactor]
@@ -280,12 +273,7 @@ class LocalOutlierFactor(BaseTransformer):
280
273
  )
281
274
  return selected_cols
282
275
 
283
- @telemetry.send_api_usage_telemetry(
284
- project=_PROJECT,
285
- subproject=_SUBPROJECT,
286
- custom_tags=dict([("autogen", True)]),
287
- )
288
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LocalOutlierFactor":
276
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LocalOutlierFactor":
289
277
  """Fit the local outlier factor detector from the training dataset
290
278
  For more details on this function, see [sklearn.neighbors.LocalOutlierFactor.fit]
291
279
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor.fit)
@@ -312,12 +300,14 @@ class LocalOutlierFactor(BaseTransformer):
312
300
 
313
301
  self._snowpark_cols = dataset.select(self.input_cols).columns
314
302
 
315
- # If we are already in a stored procedure, no need to kick off another one.
303
+ # If we are already in a stored procedure, no need to kick off another one.
316
304
  if SNOWML_SPROC_ENV in os.environ:
317
305
  statement_params = telemetry.get_function_usage_statement_params(
318
306
  project=_PROJECT,
319
307
  subproject=_SUBPROJECT,
320
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LocalOutlierFactor.__class__.__name__),
308
+ function_name=telemetry.get_statement_params_full_func_name(
309
+ inspect.currentframe(), LocalOutlierFactor.__class__.__name__
310
+ ),
321
311
  api_calls=[Session.call],
322
312
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
323
313
  )
@@ -338,27 +328,24 @@ class LocalOutlierFactor(BaseTransformer):
338
328
  )
339
329
  self._sklearn_object = model_trainer.train()
340
330
  self._is_fitted = True
341
- self._get_model_signatures(dataset)
331
+ self._generate_model_signatures(dataset)
342
332
  return self
343
333
 
344
334
  def _batch_inference_validate_snowpark(
345
335
  self,
346
336
  dataset: DataFrame,
347
337
  inference_method: str,
348
- ) -> List[str]:
349
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
350
- return the available package that exists in the snowflake anaconda channel
338
+ ) -> None:
339
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
351
340
 
352
341
  Args:
353
342
  dataset: snowpark dataframe
354
343
  inference_method: the inference method such as predict, score...
355
-
344
+
356
345
  Raises:
357
346
  SnowflakeMLException: If the estimator is not fitted, raise error
358
347
  SnowflakeMLException: If the session is None, raise error
359
348
 
360
- Returns:
361
- A list of available package that exists in the snowflake anaconda channel
362
349
  """
363
350
  if not self._is_fitted:
364
351
  raise exceptions.SnowflakeMLException(
@@ -376,9 +363,7 @@ class LocalOutlierFactor(BaseTransformer):
376
363
  "Session must not specified for snowpark dataset."
377
364
  ),
378
365
  )
379
- # Validate that key package version in user workspace are supported in snowflake conda channel
380
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
381
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
366
+
382
367
 
383
368
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
384
369
  @telemetry.send_api_usage_telemetry(
@@ -414,7 +399,9 @@ class LocalOutlierFactor(BaseTransformer):
414
399
  # when it is classifier, infer the datatype from label columns
415
400
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
416
401
  # Batch inference takes a single expected output column type. Use the first columns type for now.
417
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
402
+ label_cols_signatures = [
403
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
404
+ ]
418
405
  if len(label_cols_signatures) == 0:
419
406
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
420
407
  raise exceptions.SnowflakeMLException(
@@ -422,25 +409,23 @@ class LocalOutlierFactor(BaseTransformer):
422
409
  original_exception=ValueError(error_str),
423
410
  )
424
411
 
425
- expected_type_inferred = convert_sp_to_sf_type(
426
- label_cols_signatures[0].as_snowpark_type()
427
- )
412
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
428
413
 
429
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
430
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
414
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
415
+ self._deps = self._get_dependencies()
416
+ assert isinstance(
417
+ dataset._session, Session
418
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
431
419
 
432
420
  transform_kwargs = dict(
433
- session = dataset._session,
434
- dependencies = self._deps,
435
- drop_input_cols = self._drop_input_cols,
436
- expected_output_cols_type = expected_type_inferred,
421
+ session=dataset._session,
422
+ dependencies=self._deps,
423
+ drop_input_cols=self._drop_input_cols,
424
+ expected_output_cols_type=expected_type_inferred,
437
425
  )
438
426
 
439
427
  elif isinstance(dataset, pd.DataFrame):
440
- transform_kwargs = dict(
441
- snowpark_input_cols = self._snowpark_cols,
442
- drop_input_cols = self._drop_input_cols
443
- )
428
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
444
429
 
445
430
  transform_handlers = ModelTransformerBuilder.build(
446
431
  dataset=dataset,
@@ -480,7 +465,7 @@ class LocalOutlierFactor(BaseTransformer):
480
465
  Transformed dataset.
481
466
  """
482
467
  super()._check_dataset_type(dataset)
483
- inference_method="transform"
468
+ inference_method = "transform"
484
469
 
485
470
  # This dictionary contains optional kwargs for batch inference. These kwargs
486
471
  # are specific to the type of dataset used.
@@ -510,24 +495,19 @@ class LocalOutlierFactor(BaseTransformer):
510
495
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
511
496
  expected_dtype = convert_sp_to_sf_type(output_types[0])
512
497
 
513
- self._deps = self._batch_inference_validate_snowpark(
514
- dataset=dataset,
515
- inference_method=inference_method,
516
- )
498
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
499
+ self._deps = self._get_dependencies()
517
500
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
518
501
 
519
502
  transform_kwargs = dict(
520
- session = dataset._session,
521
- dependencies = self._deps,
522
- drop_input_cols = self._drop_input_cols,
523
- expected_output_cols_type = expected_dtype,
503
+ session=dataset._session,
504
+ dependencies=self._deps,
505
+ drop_input_cols=self._drop_input_cols,
506
+ expected_output_cols_type=expected_dtype,
524
507
  )
525
508
 
526
509
  elif isinstance(dataset, pd.DataFrame):
527
- transform_kwargs = dict(
528
- snowpark_input_cols = self._snowpark_cols,
529
- drop_input_cols = self._drop_input_cols
530
- )
510
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
531
511
 
532
512
  transform_handlers = ModelTransformerBuilder.build(
533
513
  dataset=dataset,
@@ -546,7 +526,11 @@ class LocalOutlierFactor(BaseTransformer):
546
526
  return output_df
547
527
 
548
528
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
549
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
529
+ def fit_predict(
530
+ self,
531
+ dataset: Union[DataFrame, pd.DataFrame],
532
+ output_cols_prefix: str = "fit_predict_",
533
+ ) -> Union[DataFrame, pd.DataFrame]:
550
534
  """ Fit the model to the training set X and return the labels
551
535
  For more details on this function, see [sklearn.neighbors.LocalOutlierFactor.fit_predict]
552
536
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.LocalOutlierFactor.html#sklearn.neighbors.LocalOutlierFactor.fit_predict)
@@ -573,22 +557,104 @@ class LocalOutlierFactor(BaseTransformer):
573
557
  )
574
558
  output_result, fitted_estimator = model_trainer.train_fit_predict(
575
559
  drop_input_cols=self._drop_input_cols,
576
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
560
+ expected_output_cols_list=(
561
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
562
+ ),
577
563
  )
578
564
  self._sklearn_object = fitted_estimator
579
565
  self._is_fitted = True
580
566
  return output_result
581
567
 
568
+
569
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
570
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
571
+ """ Method not supported for this class.
572
+
573
+
574
+ Raises:
575
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
582
576
 
583
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
584
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
585
- """
577
+ Args:
578
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
579
+ Snowpark or Pandas DataFrame.
580
+ output_cols_prefix: Prefix for the response columns
586
581
  Returns:
587
582
  Transformed dataset.
588
583
  """
589
- self.fit(dataset)
590
- assert self._sklearn_object is not None
591
- return self._sklearn_object.embedding_
584
+ self._infer_input_output_cols(dataset)
585
+ super()._check_dataset_type(dataset)
586
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
587
+ estimator=self._sklearn_object,
588
+ dataset=dataset,
589
+ input_cols=self.input_cols,
590
+ label_cols=self.label_cols,
591
+ sample_weight_col=self.sample_weight_col,
592
+ autogenerated=self._autogenerated,
593
+ subproject=_SUBPROJECT,
594
+ )
595
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
596
+ drop_input_cols=self._drop_input_cols,
597
+ expected_output_cols_list=self.output_cols,
598
+ )
599
+ self._sklearn_object = fitted_estimator
600
+ self._is_fitted = True
601
+ return output_result
602
+
603
+
604
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
605
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
606
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
607
+ """
608
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
609
+ # The following condition is introduced for kneighbors methods, and not used in other methods
610
+ if output_cols:
611
+ output_cols = [
612
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
613
+ for c in output_cols
614
+ ]
615
+ elif getattr(self._sklearn_object, "classes_", None) is None:
616
+ output_cols = [output_cols_prefix]
617
+ elif self._sklearn_object is not None:
618
+ classes = self._sklearn_object.classes_
619
+ if isinstance(classes, numpy.ndarray):
620
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
621
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
622
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
623
+ output_cols = []
624
+ for i, cl in enumerate(classes):
625
+ # For binary classification, there is only one output column for each class
626
+ # ndarray as the two classes are complementary.
627
+ if len(cl) == 2:
628
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
629
+ else:
630
+ output_cols.extend([
631
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
632
+ ])
633
+ else:
634
+ output_cols = []
635
+
636
+ # Make sure column names are valid snowflake identifiers.
637
+ assert output_cols is not None # Make MyPy happy
638
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
639
+
640
+ return rv
641
+
642
+ def _align_expected_output_names(
643
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
644
+ ) -> List[str]:
645
+ # in case the inferred output column names dimension is different
646
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
647
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
648
+ output_df_columns = list(output_df_pd.columns)
649
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
650
+ if self.sample_weight_col:
651
+ output_df_columns_set -= set(self.sample_weight_col)
652
+ # if the dimension of inferred output column names is correct; use it
653
+ if len(expected_output_cols_list) == len(output_df_columns_set):
654
+ return expected_output_cols_list
655
+ # otherwise, use the sklearn estimator's output
656
+ else:
657
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
592
658
 
593
659
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
594
660
  @telemetry.send_api_usage_telemetry(
@@ -620,24 +686,26 @@ class LocalOutlierFactor(BaseTransformer):
620
686
  # are specific to the type of dataset used.
621
687
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
622
688
 
689
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
690
+
623
691
  if isinstance(dataset, DataFrame):
624
- self._deps = self._batch_inference_validate_snowpark(
625
- dataset=dataset,
626
- inference_method=inference_method,
627
- )
628
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
692
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
693
+ self._deps = self._get_dependencies()
694
+ assert isinstance(
695
+ dataset._session, Session
696
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
629
697
  transform_kwargs = dict(
630
698
  session=dataset._session,
631
699
  dependencies=self._deps,
632
- drop_input_cols = self._drop_input_cols,
700
+ drop_input_cols=self._drop_input_cols,
633
701
  expected_output_cols_type="float",
634
702
  )
703
+ expected_output_cols = self._align_expected_output_names(
704
+ inference_method, dataset, expected_output_cols, output_cols_prefix
705
+ )
635
706
 
636
707
  elif isinstance(dataset, pd.DataFrame):
637
- transform_kwargs = dict(
638
- snowpark_input_cols = self._snowpark_cols,
639
- drop_input_cols = self._drop_input_cols
640
- )
708
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
641
709
 
642
710
  transform_handlers = ModelTransformerBuilder.build(
643
711
  dataset=dataset,
@@ -649,7 +717,7 @@ class LocalOutlierFactor(BaseTransformer):
649
717
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
650
718
  inference_method=inference_method,
651
719
  input_cols=self.input_cols,
652
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
720
+ expected_output_cols=expected_output_cols,
653
721
  **transform_kwargs
654
722
  )
655
723
  return output_df
@@ -679,29 +747,30 @@ class LocalOutlierFactor(BaseTransformer):
679
747
  Output dataset with log probability of the sample for each class in the model.
680
748
  """
681
749
  super()._check_dataset_type(dataset)
682
- inference_method="predict_log_proba"
750
+ inference_method = "predict_log_proba"
751
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
683
752
 
684
753
  # This dictionary contains optional kwargs for batch inference. These kwargs
685
754
  # are specific to the type of dataset used.
686
755
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
687
756
 
688
757
  if isinstance(dataset, DataFrame):
689
- self._deps = self._batch_inference_validate_snowpark(
690
- dataset=dataset,
691
- inference_method=inference_method,
692
- )
693
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
758
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
759
+ self._deps = self._get_dependencies()
760
+ assert isinstance(
761
+ dataset._session, Session
762
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
694
763
  transform_kwargs = dict(
695
764
  session=dataset._session,
696
765
  dependencies=self._deps,
697
- drop_input_cols = self._drop_input_cols,
766
+ drop_input_cols=self._drop_input_cols,
698
767
  expected_output_cols_type="float",
699
768
  )
769
+ expected_output_cols = self._align_expected_output_names(
770
+ inference_method, dataset, expected_output_cols, output_cols_prefix
771
+ )
700
772
  elif isinstance(dataset, pd.DataFrame):
701
- transform_kwargs = dict(
702
- snowpark_input_cols = self._snowpark_cols,
703
- drop_input_cols = self._drop_input_cols
704
- )
773
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
705
774
 
706
775
  transform_handlers = ModelTransformerBuilder.build(
707
776
  dataset=dataset,
@@ -714,7 +783,7 @@ class LocalOutlierFactor(BaseTransformer):
714
783
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
715
784
  inference_method=inference_method,
716
785
  input_cols=self.input_cols,
717
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
786
+ expected_output_cols=expected_output_cols,
718
787
  **transform_kwargs
719
788
  )
720
789
  return output_df
@@ -742,30 +811,32 @@ class LocalOutlierFactor(BaseTransformer):
742
811
  Output dataset with results of the decision function for the samples in input dataset.
743
812
  """
744
813
  super()._check_dataset_type(dataset)
745
- inference_method="decision_function"
814
+ inference_method = "decision_function"
746
815
 
747
816
  # This dictionary contains optional kwargs for batch inference. These kwargs
748
817
  # are specific to the type of dataset used.
749
818
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
750
819
 
820
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
821
+
751
822
  if isinstance(dataset, DataFrame):
752
- self._deps = self._batch_inference_validate_snowpark(
753
- dataset=dataset,
754
- inference_method=inference_method,
755
- )
756
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
823
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
824
+ self._deps = self._get_dependencies()
825
+ assert isinstance(
826
+ dataset._session, Session
827
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
757
828
  transform_kwargs = dict(
758
829
  session=dataset._session,
759
830
  dependencies=self._deps,
760
- drop_input_cols = self._drop_input_cols,
831
+ drop_input_cols=self._drop_input_cols,
761
832
  expected_output_cols_type="float",
762
833
  )
834
+ expected_output_cols = self._align_expected_output_names(
835
+ inference_method, dataset, expected_output_cols, output_cols_prefix
836
+ )
763
837
 
764
838
  elif isinstance(dataset, pd.DataFrame):
765
- transform_kwargs = dict(
766
- snowpark_input_cols = self._snowpark_cols,
767
- drop_input_cols = self._drop_input_cols
768
- )
839
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
769
840
 
770
841
  transform_handlers = ModelTransformerBuilder.build(
771
842
  dataset=dataset,
@@ -778,7 +849,7 @@ class LocalOutlierFactor(BaseTransformer):
778
849
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
779
850
  inference_method=inference_method,
780
851
  input_cols=self.input_cols,
781
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
852
+ expected_output_cols=expected_output_cols,
782
853
  **transform_kwargs
783
854
  )
784
855
  return output_df
@@ -809,17 +880,17 @@ class LocalOutlierFactor(BaseTransformer):
809
880
  Output dataset with probability of the sample for each class in the model.
810
881
  """
811
882
  super()._check_dataset_type(dataset)
812
- inference_method="score_samples"
883
+ inference_method = "score_samples"
813
884
 
814
885
  # This dictionary contains optional kwargs for batch inference. These kwargs
815
886
  # are specific to the type of dataset used.
816
887
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
817
888
 
889
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
890
+
818
891
  if isinstance(dataset, DataFrame):
819
- self._deps = self._batch_inference_validate_snowpark(
820
- dataset=dataset,
821
- inference_method=inference_method,
822
- )
892
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
893
+ self._deps = self._get_dependencies()
823
894
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
824
895
  transform_kwargs = dict(
825
896
  session=dataset._session,
@@ -827,6 +898,9 @@ class LocalOutlierFactor(BaseTransformer):
827
898
  drop_input_cols = self._drop_input_cols,
828
899
  expected_output_cols_type="float",
829
900
  )
901
+ expected_output_cols = self._align_expected_output_names(
902
+ inference_method, dataset, expected_output_cols, output_cols_prefix
903
+ )
830
904
 
831
905
  elif isinstance(dataset, pd.DataFrame):
832
906
  transform_kwargs = dict(
@@ -845,7 +919,7 @@ class LocalOutlierFactor(BaseTransformer):
845
919
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
846
920
  inference_method=inference_method,
847
921
  input_cols=self.input_cols,
848
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
922
+ expected_output_cols=expected_output_cols,
849
923
  **transform_kwargs
850
924
  )
851
925
  return output_df
@@ -878,17 +952,15 @@ class LocalOutlierFactor(BaseTransformer):
878
952
  transform_kwargs: ScoreKwargsTypedDict = dict()
879
953
 
880
954
  if isinstance(dataset, DataFrame):
881
- self._deps = self._batch_inference_validate_snowpark(
882
- dataset=dataset,
883
- inference_method="score",
884
- )
955
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
956
+ self._deps = self._get_dependencies()
885
957
  selected_cols = self._get_active_columns()
886
958
  if len(selected_cols) > 0:
887
959
  dataset = dataset.select(selected_cols)
888
960
  assert isinstance(dataset._session, Session) # keep mypy happy
889
961
  transform_kwargs = dict(
890
962
  session=dataset._session,
891
- dependencies=["snowflake-snowpark-python"] + self._deps,
963
+ dependencies=self._deps,
892
964
  score_sproc_imports=['sklearn'],
893
965
  )
894
966
  elif isinstance(dataset, pd.DataFrame):
@@ -955,11 +1027,8 @@ class LocalOutlierFactor(BaseTransformer):
955
1027
 
956
1028
  if isinstance(dataset, DataFrame):
957
1029
 
958
- self._deps = self._batch_inference_validate_snowpark(
959
- dataset=dataset,
960
- inference_method=inference_method,
961
-
962
- )
1030
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1031
+ self._deps = self._get_dependencies()
963
1032
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
964
1033
  transform_kwargs = dict(
965
1034
  session = dataset._session,
@@ -992,50 +1061,84 @@ class LocalOutlierFactor(BaseTransformer):
992
1061
  )
993
1062
  return output_df
994
1063
 
1064
+
1065
+
1066
+ def to_sklearn(self) -> Any:
1067
+ """Get sklearn.neighbors.LocalOutlierFactor object.
1068
+ """
1069
+ if self._sklearn_object is None:
1070
+ self._sklearn_object = self._create_sklearn_object()
1071
+ return self._sklearn_object
1072
+
1073
+ def to_xgboost(self) -> Any:
1074
+ raise exceptions.SnowflakeMLException(
1075
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1076
+ original_exception=AttributeError(
1077
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1078
+ "to_xgboost()",
1079
+ "to_sklearn()"
1080
+ )
1081
+ ),
1082
+ )
995
1083
 
996
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1084
+ def to_lightgbm(self) -> Any:
1085
+ raise exceptions.SnowflakeMLException(
1086
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1087
+ original_exception=AttributeError(
1088
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1089
+ "to_lightgbm()",
1090
+ "to_sklearn()"
1091
+ )
1092
+ ),
1093
+ )
1094
+
1095
+ def _get_dependencies(self) -> List[str]:
1096
+ return self._deps
1097
+
1098
+
1099
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
997
1100
  self._model_signature_dict = dict()
998
1101
 
999
1102
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1000
1103
 
1001
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1104
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1002
1105
  outputs: List[BaseFeatureSpec] = []
1003
1106
  if hasattr(self, "predict"):
1004
1107
  # keep mypy happy
1005
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1108
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1006
1109
  # For classifier, the type of predict is the same as the type of label
1007
- if self._sklearn_object._estimator_type == 'classifier':
1008
- # label columns is the desired type for output
1110
+ if self._sklearn_object._estimator_type == "classifier":
1111
+ # label columns is the desired type for output
1009
1112
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1010
1113
  # rename the output columns
1011
1114
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1012
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1013
- ([] if self._drop_input_cols else inputs)
1014
- + outputs)
1115
+ self._model_signature_dict["predict"] = ModelSignature(
1116
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1117
+ )
1015
1118
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1016
1119
  # For outlier models, returns -1 for outliers and 1 for inliers.
1017
- # Clusterer returns int64 cluster labels.
1120
+ # Clusterer returns int64 cluster labels.
1018
1121
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1019
1122
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1020
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1021
- ([] if self._drop_input_cols else inputs)
1022
- + outputs)
1023
-
1123
+ self._model_signature_dict["predict"] = ModelSignature(
1124
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1125
+ )
1126
+
1024
1127
  # For regressor, the type of predict is float64
1025
- elif self._sklearn_object._estimator_type == 'regressor':
1128
+ elif self._sklearn_object._estimator_type == "regressor":
1026
1129
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1027
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1028
- ([] if self._drop_input_cols else inputs)
1029
- + outputs)
1030
-
1130
+ self._model_signature_dict["predict"] = ModelSignature(
1131
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1132
+ )
1133
+
1031
1134
  for prob_func in PROB_FUNCTIONS:
1032
1135
  if hasattr(self, prob_func):
1033
1136
  output_cols_prefix: str = f"{prob_func}_"
1034
1137
  output_column_names = self._get_output_column_names(output_cols_prefix)
1035
1138
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1036
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1037
- ([] if self._drop_input_cols else inputs)
1038
- + outputs)
1139
+ self._model_signature_dict[prob_func] = ModelSignature(
1140
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1141
+ )
1039
1142
 
1040
1143
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1041
1144
  items = list(self._model_signature_dict.items())
@@ -1048,10 +1151,10 @@ class LocalOutlierFactor(BaseTransformer):
1048
1151
  """Returns model signature of current class.
1049
1152
 
1050
1153
  Raises:
1051
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1154
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1052
1155
 
1053
1156
  Returns:
1054
- Dict[str, ModelSignature]: each method and its input output signature
1157
+ Dict with each method and its input output signature
1055
1158
  """
1056
1159
  if self._model_signature_dict is None:
1057
1160
  raise exceptions.SnowflakeMLException(
@@ -1059,35 +1162,3 @@ class LocalOutlierFactor(BaseTransformer):
1059
1162
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1060
1163
  )
1061
1164
  return self._model_signature_dict
1062
-
1063
- def to_sklearn(self) -> Any:
1064
- """Get sklearn.neighbors.LocalOutlierFactor object.
1065
- """
1066
- if self._sklearn_object is None:
1067
- self._sklearn_object = self._create_sklearn_object()
1068
- return self._sklearn_object
1069
-
1070
- def to_xgboost(self) -> Any:
1071
- raise exceptions.SnowflakeMLException(
1072
- error_code=error_codes.METHOD_NOT_ALLOWED,
1073
- original_exception=AttributeError(
1074
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1075
- "to_xgboost()",
1076
- "to_sklearn()"
1077
- )
1078
- ),
1079
- )
1080
-
1081
- def to_lightgbm(self) -> Any:
1082
- raise exceptions.SnowflakeMLException(
1083
- error_code=error_codes.METHOD_NOT_ALLOWED,
1084
- original_exception=AttributeError(
1085
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
- "to_lightgbm()",
1087
- "to_sklearn()"
1088
- )
1089
- ),
1090
- )
1091
-
1092
- def _get_dependencies(self) -> List[str]:
1093
- return self._deps