snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("skl
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class OneVsRestClassifier(BaseTransformer):
71
64
  r"""One-vs-the-rest (OvR) multiclass strategy
72
65
  For more details on this class, see [sklearn.multiclass.OneVsRestClassifier]
@@ -219,12 +212,7 @@ class OneVsRestClassifier(BaseTransformer):
219
212
  )
220
213
  return selected_cols
221
214
 
222
- @telemetry.send_api_usage_telemetry(
223
- project=_PROJECT,
224
- subproject=_SUBPROJECT,
225
- custom_tags=dict([("autogen", True)]),
226
- )
227
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsRestClassifier":
215
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OneVsRestClassifier":
228
216
  """Fit underlying estimators
229
217
  For more details on this function, see [sklearn.multiclass.OneVsRestClassifier.fit]
230
218
  (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html#sklearn.multiclass.OneVsRestClassifier.fit)
@@ -251,12 +239,14 @@ class OneVsRestClassifier(BaseTransformer):
251
239
 
252
240
  self._snowpark_cols = dataset.select(self.input_cols).columns
253
241
 
254
- # If we are already in a stored procedure, no need to kick off another one.
242
+ # If we are already in a stored procedure, no need to kick off another one.
255
243
  if SNOWML_SPROC_ENV in os.environ:
256
244
  statement_params = telemetry.get_function_usage_statement_params(
257
245
  project=_PROJECT,
258
246
  subproject=_SUBPROJECT,
259
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OneVsRestClassifier.__class__.__name__),
247
+ function_name=telemetry.get_statement_params_full_func_name(
248
+ inspect.currentframe(), OneVsRestClassifier.__class__.__name__
249
+ ),
260
250
  api_calls=[Session.call],
261
251
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
262
252
  )
@@ -277,27 +267,24 @@ class OneVsRestClassifier(BaseTransformer):
277
267
  )
278
268
  self._sklearn_object = model_trainer.train()
279
269
  self._is_fitted = True
280
- self._get_model_signatures(dataset)
270
+ self._generate_model_signatures(dataset)
281
271
  return self
282
272
 
283
273
  def _batch_inference_validate_snowpark(
284
274
  self,
285
275
  dataset: DataFrame,
286
276
  inference_method: str,
287
- ) -> List[str]:
288
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
289
- return the available package that exists in the snowflake anaconda channel
277
+ ) -> None:
278
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
290
279
 
291
280
  Args:
292
281
  dataset: snowpark dataframe
293
282
  inference_method: the inference method such as predict, score...
294
-
283
+
295
284
  Raises:
296
285
  SnowflakeMLException: If the estimator is not fitted, raise error
297
286
  SnowflakeMLException: If the session is None, raise error
298
287
 
299
- Returns:
300
- A list of available package that exists in the snowflake anaconda channel
301
288
  """
302
289
  if not self._is_fitted:
303
290
  raise exceptions.SnowflakeMLException(
@@ -315,9 +302,7 @@ class OneVsRestClassifier(BaseTransformer):
315
302
  "Session must not specified for snowpark dataset."
316
303
  ),
317
304
  )
318
- # Validate that key package version in user workspace are supported in snowflake conda channel
319
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
320
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
305
+
321
306
 
322
307
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
323
308
  @telemetry.send_api_usage_telemetry(
@@ -353,7 +338,9 @@ class OneVsRestClassifier(BaseTransformer):
353
338
  # when it is classifier, infer the datatype from label columns
354
339
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
355
340
  # Batch inference takes a single expected output column type. Use the first columns type for now.
356
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
341
+ label_cols_signatures = [
342
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
343
+ ]
357
344
  if len(label_cols_signatures) == 0:
358
345
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
359
346
  raise exceptions.SnowflakeMLException(
@@ -361,25 +348,23 @@ class OneVsRestClassifier(BaseTransformer):
361
348
  original_exception=ValueError(error_str),
362
349
  )
363
350
 
364
- expected_type_inferred = convert_sp_to_sf_type(
365
- label_cols_signatures[0].as_snowpark_type()
366
- )
351
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
367
352
 
368
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
369
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
353
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
354
+ self._deps = self._get_dependencies()
355
+ assert isinstance(
356
+ dataset._session, Session
357
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
370
358
 
371
359
  transform_kwargs = dict(
372
- session = dataset._session,
373
- dependencies = self._deps,
374
- drop_input_cols = self._drop_input_cols,
375
- expected_output_cols_type = expected_type_inferred,
360
+ session=dataset._session,
361
+ dependencies=self._deps,
362
+ drop_input_cols=self._drop_input_cols,
363
+ expected_output_cols_type=expected_type_inferred,
376
364
  )
377
365
 
378
366
  elif isinstance(dataset, pd.DataFrame):
379
- transform_kwargs = dict(
380
- snowpark_input_cols = self._snowpark_cols,
381
- drop_input_cols = self._drop_input_cols
382
- )
367
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
383
368
 
384
369
  transform_handlers = ModelTransformerBuilder.build(
385
370
  dataset=dataset,
@@ -419,7 +404,7 @@ class OneVsRestClassifier(BaseTransformer):
419
404
  Transformed dataset.
420
405
  """
421
406
  super()._check_dataset_type(dataset)
422
- inference_method="transform"
407
+ inference_method = "transform"
423
408
 
424
409
  # This dictionary contains optional kwargs for batch inference. These kwargs
425
410
  # are specific to the type of dataset used.
@@ -449,24 +434,19 @@ class OneVsRestClassifier(BaseTransformer):
449
434
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
450
435
  expected_dtype = convert_sp_to_sf_type(output_types[0])
451
436
 
452
- self._deps = self._batch_inference_validate_snowpark(
453
- dataset=dataset,
454
- inference_method=inference_method,
455
- )
437
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
438
+ self._deps = self._get_dependencies()
456
439
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
457
440
 
458
441
  transform_kwargs = dict(
459
- session = dataset._session,
460
- dependencies = self._deps,
461
- drop_input_cols = self._drop_input_cols,
462
- expected_output_cols_type = expected_dtype,
442
+ session=dataset._session,
443
+ dependencies=self._deps,
444
+ drop_input_cols=self._drop_input_cols,
445
+ expected_output_cols_type=expected_dtype,
463
446
  )
464
447
 
465
448
  elif isinstance(dataset, pd.DataFrame):
466
- transform_kwargs = dict(
467
- snowpark_input_cols = self._snowpark_cols,
468
- drop_input_cols = self._drop_input_cols
469
- )
449
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
470
450
 
471
451
  transform_handlers = ModelTransformerBuilder.build(
472
452
  dataset=dataset,
@@ -485,7 +465,11 @@ class OneVsRestClassifier(BaseTransformer):
485
465
  return output_df
486
466
 
487
467
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
488
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
468
+ def fit_predict(
469
+ self,
470
+ dataset: Union[DataFrame, pd.DataFrame],
471
+ output_cols_prefix: str = "fit_predict_",
472
+ ) -> Union[DataFrame, pd.DataFrame]:
489
473
  """ Method not supported for this class.
490
474
 
491
475
 
@@ -510,22 +494,104 @@ class OneVsRestClassifier(BaseTransformer):
510
494
  )
511
495
  output_result, fitted_estimator = model_trainer.train_fit_predict(
512
496
  drop_input_cols=self._drop_input_cols,
513
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
497
+ expected_output_cols_list=(
498
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
499
+ ),
514
500
  )
515
501
  self._sklearn_object = fitted_estimator
516
502
  self._is_fitted = True
517
503
  return output_result
518
504
 
505
+
506
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
507
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
508
+ """ Method not supported for this class.
509
+
519
510
 
520
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
521
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
522
- """
511
+ Raises:
512
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
513
+
514
+ Args:
515
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
516
+ Snowpark or Pandas DataFrame.
517
+ output_cols_prefix: Prefix for the response columns
523
518
  Returns:
524
519
  Transformed dataset.
525
520
  """
526
- self.fit(dataset)
527
- assert self._sklearn_object is not None
528
- return self._sklearn_object.embedding_
521
+ self._infer_input_output_cols(dataset)
522
+ super()._check_dataset_type(dataset)
523
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
524
+ estimator=self._sklearn_object,
525
+ dataset=dataset,
526
+ input_cols=self.input_cols,
527
+ label_cols=self.label_cols,
528
+ sample_weight_col=self.sample_weight_col,
529
+ autogenerated=self._autogenerated,
530
+ subproject=_SUBPROJECT,
531
+ )
532
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
533
+ drop_input_cols=self._drop_input_cols,
534
+ expected_output_cols_list=self.output_cols,
535
+ )
536
+ self._sklearn_object = fitted_estimator
537
+ self._is_fitted = True
538
+ return output_result
539
+
540
+
541
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
542
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
543
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
544
+ """
545
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
546
+ # The following condition is introduced for kneighbors methods, and not used in other methods
547
+ if output_cols:
548
+ output_cols = [
549
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
550
+ for c in output_cols
551
+ ]
552
+ elif getattr(self._sklearn_object, "classes_", None) is None:
553
+ output_cols = [output_cols_prefix]
554
+ elif self._sklearn_object is not None:
555
+ classes = self._sklearn_object.classes_
556
+ if isinstance(classes, numpy.ndarray):
557
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
558
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
559
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
560
+ output_cols = []
561
+ for i, cl in enumerate(classes):
562
+ # For binary classification, there is only one output column for each class
563
+ # ndarray as the two classes are complementary.
564
+ if len(cl) == 2:
565
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
566
+ else:
567
+ output_cols.extend([
568
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
569
+ ])
570
+ else:
571
+ output_cols = []
572
+
573
+ # Make sure column names are valid snowflake identifiers.
574
+ assert output_cols is not None # Make MyPy happy
575
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
576
+
577
+ return rv
578
+
579
+ def _align_expected_output_names(
580
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
581
+ ) -> List[str]:
582
+ # in case the inferred output column names dimension is different
583
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
584
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
585
+ output_df_columns = list(output_df_pd.columns)
586
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
587
+ if self.sample_weight_col:
588
+ output_df_columns_set -= set(self.sample_weight_col)
589
+ # if the dimension of inferred output column names is correct; use it
590
+ if len(expected_output_cols_list) == len(output_df_columns_set):
591
+ return expected_output_cols_list
592
+ # otherwise, use the sklearn estimator's output
593
+ else:
594
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
529
595
 
530
596
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
531
597
  @telemetry.send_api_usage_telemetry(
@@ -559,24 +625,26 @@ class OneVsRestClassifier(BaseTransformer):
559
625
  # are specific to the type of dataset used.
560
626
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
561
627
 
628
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
629
+
562
630
  if isinstance(dataset, DataFrame):
563
- self._deps = self._batch_inference_validate_snowpark(
564
- dataset=dataset,
565
- inference_method=inference_method,
566
- )
567
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
631
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
632
+ self._deps = self._get_dependencies()
633
+ assert isinstance(
634
+ dataset._session, Session
635
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
568
636
  transform_kwargs = dict(
569
637
  session=dataset._session,
570
638
  dependencies=self._deps,
571
- drop_input_cols = self._drop_input_cols,
639
+ drop_input_cols=self._drop_input_cols,
572
640
  expected_output_cols_type="float",
573
641
  )
642
+ expected_output_cols = self._align_expected_output_names(
643
+ inference_method, dataset, expected_output_cols, output_cols_prefix
644
+ )
574
645
 
575
646
  elif isinstance(dataset, pd.DataFrame):
576
- transform_kwargs = dict(
577
- snowpark_input_cols = self._snowpark_cols,
578
- drop_input_cols = self._drop_input_cols
579
- )
647
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
580
648
 
581
649
  transform_handlers = ModelTransformerBuilder.build(
582
650
  dataset=dataset,
@@ -588,7 +656,7 @@ class OneVsRestClassifier(BaseTransformer):
588
656
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
589
657
  inference_method=inference_method,
590
658
  input_cols=self.input_cols,
591
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
659
+ expected_output_cols=expected_output_cols,
592
660
  **transform_kwargs
593
661
  )
594
662
  return output_df
@@ -620,29 +688,30 @@ class OneVsRestClassifier(BaseTransformer):
620
688
  Output dataset with log probability of the sample for each class in the model.
621
689
  """
622
690
  super()._check_dataset_type(dataset)
623
- inference_method="predict_log_proba"
691
+ inference_method = "predict_log_proba"
692
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
624
693
 
625
694
  # This dictionary contains optional kwargs for batch inference. These kwargs
626
695
  # are specific to the type of dataset used.
627
696
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
628
697
 
629
698
  if isinstance(dataset, DataFrame):
630
- self._deps = self._batch_inference_validate_snowpark(
631
- dataset=dataset,
632
- inference_method=inference_method,
633
- )
634
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
699
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
700
+ self._deps = self._get_dependencies()
701
+ assert isinstance(
702
+ dataset._session, Session
703
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
635
704
  transform_kwargs = dict(
636
705
  session=dataset._session,
637
706
  dependencies=self._deps,
638
- drop_input_cols = self._drop_input_cols,
707
+ drop_input_cols=self._drop_input_cols,
639
708
  expected_output_cols_type="float",
640
709
  )
710
+ expected_output_cols = self._align_expected_output_names(
711
+ inference_method, dataset, expected_output_cols, output_cols_prefix
712
+ )
641
713
  elif isinstance(dataset, pd.DataFrame):
642
- transform_kwargs = dict(
643
- snowpark_input_cols = self._snowpark_cols,
644
- drop_input_cols = self._drop_input_cols
645
- )
714
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
646
715
 
647
716
  transform_handlers = ModelTransformerBuilder.build(
648
717
  dataset=dataset,
@@ -655,7 +724,7 @@ class OneVsRestClassifier(BaseTransformer):
655
724
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
656
725
  inference_method=inference_method,
657
726
  input_cols=self.input_cols,
658
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
727
+ expected_output_cols=expected_output_cols,
659
728
  **transform_kwargs
660
729
  )
661
730
  return output_df
@@ -683,30 +752,32 @@ class OneVsRestClassifier(BaseTransformer):
683
752
  Output dataset with results of the decision function for the samples in input dataset.
684
753
  """
685
754
  super()._check_dataset_type(dataset)
686
- inference_method="decision_function"
755
+ inference_method = "decision_function"
687
756
 
688
757
  # This dictionary contains optional kwargs for batch inference. These kwargs
689
758
  # are specific to the type of dataset used.
690
759
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
691
760
 
761
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
762
+
692
763
  if isinstance(dataset, DataFrame):
693
- self._deps = self._batch_inference_validate_snowpark(
694
- dataset=dataset,
695
- inference_method=inference_method,
696
- )
697
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
764
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
765
+ self._deps = self._get_dependencies()
766
+ assert isinstance(
767
+ dataset._session, Session
768
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
769
  transform_kwargs = dict(
699
770
  session=dataset._session,
700
771
  dependencies=self._deps,
701
- drop_input_cols = self._drop_input_cols,
772
+ drop_input_cols=self._drop_input_cols,
702
773
  expected_output_cols_type="float",
703
774
  )
775
+ expected_output_cols = self._align_expected_output_names(
776
+ inference_method, dataset, expected_output_cols, output_cols_prefix
777
+ )
704
778
 
705
779
  elif isinstance(dataset, pd.DataFrame):
706
- transform_kwargs = dict(
707
- snowpark_input_cols = self._snowpark_cols,
708
- drop_input_cols = self._drop_input_cols
709
- )
780
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
710
781
 
711
782
  transform_handlers = ModelTransformerBuilder.build(
712
783
  dataset=dataset,
@@ -719,7 +790,7 @@ class OneVsRestClassifier(BaseTransformer):
719
790
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
720
791
  inference_method=inference_method,
721
792
  input_cols=self.input_cols,
722
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
793
+ expected_output_cols=expected_output_cols,
723
794
  **transform_kwargs
724
795
  )
725
796
  return output_df
@@ -748,17 +819,17 @@ class OneVsRestClassifier(BaseTransformer):
748
819
  Output dataset with probability of the sample for each class in the model.
749
820
  """
750
821
  super()._check_dataset_type(dataset)
751
- inference_method="score_samples"
822
+ inference_method = "score_samples"
752
823
 
753
824
  # This dictionary contains optional kwargs for batch inference. These kwargs
754
825
  # are specific to the type of dataset used.
755
826
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
756
827
 
828
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
829
+
757
830
  if isinstance(dataset, DataFrame):
758
- self._deps = self._batch_inference_validate_snowpark(
759
- dataset=dataset,
760
- inference_method=inference_method,
761
- )
831
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
832
+ self._deps = self._get_dependencies()
762
833
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
763
834
  transform_kwargs = dict(
764
835
  session=dataset._session,
@@ -766,6 +837,9 @@ class OneVsRestClassifier(BaseTransformer):
766
837
  drop_input_cols = self._drop_input_cols,
767
838
  expected_output_cols_type="float",
768
839
  )
840
+ expected_output_cols = self._align_expected_output_names(
841
+ inference_method, dataset, expected_output_cols, output_cols_prefix
842
+ )
769
843
 
770
844
  elif isinstance(dataset, pd.DataFrame):
771
845
  transform_kwargs = dict(
@@ -784,7 +858,7 @@ class OneVsRestClassifier(BaseTransformer):
784
858
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
785
859
  inference_method=inference_method,
786
860
  input_cols=self.input_cols,
787
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
861
+ expected_output_cols=expected_output_cols,
788
862
  **transform_kwargs
789
863
  )
790
864
  return output_df
@@ -819,17 +893,15 @@ class OneVsRestClassifier(BaseTransformer):
819
893
  transform_kwargs: ScoreKwargsTypedDict = dict()
820
894
 
821
895
  if isinstance(dataset, DataFrame):
822
- self._deps = self._batch_inference_validate_snowpark(
823
- dataset=dataset,
824
- inference_method="score",
825
- )
896
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
897
+ self._deps = self._get_dependencies()
826
898
  selected_cols = self._get_active_columns()
827
899
  if len(selected_cols) > 0:
828
900
  dataset = dataset.select(selected_cols)
829
901
  assert isinstance(dataset._session, Session) # keep mypy happy
830
902
  transform_kwargs = dict(
831
903
  session=dataset._session,
832
- dependencies=["snowflake-snowpark-python"] + self._deps,
904
+ dependencies=self._deps,
833
905
  score_sproc_imports=['sklearn'],
834
906
  )
835
907
  elif isinstance(dataset, pd.DataFrame):
@@ -894,11 +966,8 @@ class OneVsRestClassifier(BaseTransformer):
894
966
 
895
967
  if isinstance(dataset, DataFrame):
896
968
 
897
- self._deps = self._batch_inference_validate_snowpark(
898
- dataset=dataset,
899
- inference_method=inference_method,
900
-
901
- )
969
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
970
+ self._deps = self._get_dependencies()
902
971
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
903
972
  transform_kwargs = dict(
904
973
  session = dataset._session,
@@ -931,50 +1000,84 @@ class OneVsRestClassifier(BaseTransformer):
931
1000
  )
932
1001
  return output_df
933
1002
 
1003
+
1004
+
1005
+ def to_sklearn(self) -> Any:
1006
+ """Get sklearn.multiclass.OneVsRestClassifier object.
1007
+ """
1008
+ if self._sklearn_object is None:
1009
+ self._sklearn_object = self._create_sklearn_object()
1010
+ return self._sklearn_object
1011
+
1012
+ def to_xgboost(self) -> Any:
1013
+ raise exceptions.SnowflakeMLException(
1014
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1015
+ original_exception=AttributeError(
1016
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1017
+ "to_xgboost()",
1018
+ "to_sklearn()"
1019
+ )
1020
+ ),
1021
+ )
1022
+
1023
+ def to_lightgbm(self) -> Any:
1024
+ raise exceptions.SnowflakeMLException(
1025
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1026
+ original_exception=AttributeError(
1027
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1028
+ "to_lightgbm()",
1029
+ "to_sklearn()"
1030
+ )
1031
+ ),
1032
+ )
1033
+
1034
+ def _get_dependencies(self) -> List[str]:
1035
+ return self._deps
1036
+
934
1037
 
935
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1038
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
936
1039
  self._model_signature_dict = dict()
937
1040
 
938
1041
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
939
1042
 
940
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1043
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
941
1044
  outputs: List[BaseFeatureSpec] = []
942
1045
  if hasattr(self, "predict"):
943
1046
  # keep mypy happy
944
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1047
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
945
1048
  # For classifier, the type of predict is the same as the type of label
946
- if self._sklearn_object._estimator_type == 'classifier':
947
- # label columns is the desired type for output
1049
+ if self._sklearn_object._estimator_type == "classifier":
1050
+ # label columns is the desired type for output
948
1051
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
949
1052
  # rename the output columns
950
1053
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
951
- self._model_signature_dict["predict"] = ModelSignature(inputs,
952
- ([] if self._drop_input_cols else inputs)
953
- + outputs)
1054
+ self._model_signature_dict["predict"] = ModelSignature(
1055
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1056
+ )
954
1057
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
955
1058
  # For outlier models, returns -1 for outliers and 1 for inliers.
956
- # Clusterer returns int64 cluster labels.
1059
+ # Clusterer returns int64 cluster labels.
957
1060
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
958
1061
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
959
- self._model_signature_dict["predict"] = ModelSignature(inputs,
960
- ([] if self._drop_input_cols else inputs)
961
- + outputs)
962
-
1062
+ self._model_signature_dict["predict"] = ModelSignature(
1063
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1064
+ )
1065
+
963
1066
  # For regressor, the type of predict is float64
964
- elif self._sklearn_object._estimator_type == 'regressor':
1067
+ elif self._sklearn_object._estimator_type == "regressor":
965
1068
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
966
- self._model_signature_dict["predict"] = ModelSignature(inputs,
967
- ([] if self._drop_input_cols else inputs)
968
- + outputs)
969
-
1069
+ self._model_signature_dict["predict"] = ModelSignature(
1070
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1071
+ )
1072
+
970
1073
  for prob_func in PROB_FUNCTIONS:
971
1074
  if hasattr(self, prob_func):
972
1075
  output_cols_prefix: str = f"{prob_func}_"
973
1076
  output_column_names = self._get_output_column_names(output_cols_prefix)
974
1077
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
975
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
976
- ([] if self._drop_input_cols else inputs)
977
- + outputs)
1078
+ self._model_signature_dict[prob_func] = ModelSignature(
1079
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1080
+ )
978
1081
 
979
1082
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
980
1083
  items = list(self._model_signature_dict.items())
@@ -987,10 +1090,10 @@ class OneVsRestClassifier(BaseTransformer):
987
1090
  """Returns model signature of current class.
988
1091
 
989
1092
  Raises:
990
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1093
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
991
1094
 
992
1095
  Returns:
993
- Dict[str, ModelSignature]: each method and its input output signature
1096
+ Dict with each method and its input output signature
994
1097
  """
995
1098
  if self._model_signature_dict is None:
996
1099
  raise exceptions.SnowflakeMLException(
@@ -998,35 +1101,3 @@ class OneVsRestClassifier(BaseTransformer):
998
1101
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
999
1102
  )
1000
1103
  return self._model_signature_dict
1001
-
1002
- def to_sklearn(self) -> Any:
1003
- """Get sklearn.multiclass.OneVsRestClassifier object.
1004
- """
1005
- if self._sklearn_object is None:
1006
- self._sklearn_object = self._create_sklearn_object()
1007
- return self._sklearn_object
1008
-
1009
- def to_xgboost(self) -> Any:
1010
- raise exceptions.SnowflakeMLException(
1011
- error_code=error_codes.METHOD_NOT_ALLOWED,
1012
- original_exception=AttributeError(
1013
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1014
- "to_xgboost()",
1015
- "to_sklearn()"
1016
- )
1017
- ),
1018
- )
1019
-
1020
- def to_lightgbm(self) -> Any:
1021
- raise exceptions.SnowflakeMLException(
1022
- error_code=error_codes.METHOD_NOT_ALLOWED,
1023
- original_exception=AttributeError(
1024
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
- "to_lightgbm()",
1026
- "to_sklearn()"
1027
- )
1028
- ),
1029
- )
1030
-
1031
- def _get_dependencies(self) -> List[str]:
1032
- return self._deps