snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class DBSCAN(BaseTransformer):
71
64
  r"""Perform DBSCAN clustering from vector array or distance matrix
72
65
  For more details on this class, see [sklearn.cluster.DBSCAN]
@@ -250,12 +243,7 @@ class DBSCAN(BaseTransformer):
250
243
  )
251
244
  return selected_cols
252
245
 
253
- @telemetry.send_api_usage_telemetry(
254
- project=_PROJECT,
255
- subproject=_SUBPROJECT,
256
- custom_tags=dict([("autogen", True)]),
257
- )
258
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DBSCAN":
246
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DBSCAN":
259
247
  """Perform DBSCAN clustering from features, or distance matrix
260
248
  For more details on this function, see [sklearn.cluster.DBSCAN.fit]
261
249
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN.fit)
@@ -282,12 +270,14 @@ class DBSCAN(BaseTransformer):
282
270
 
283
271
  self._snowpark_cols = dataset.select(self.input_cols).columns
284
272
 
285
- # If we are already in a stored procedure, no need to kick off another one.
273
+ # If we are already in a stored procedure, no need to kick off another one.
286
274
  if SNOWML_SPROC_ENV in os.environ:
287
275
  statement_params = telemetry.get_function_usage_statement_params(
288
276
  project=_PROJECT,
289
277
  subproject=_SUBPROJECT,
290
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DBSCAN.__class__.__name__),
278
+ function_name=telemetry.get_statement_params_full_func_name(
279
+ inspect.currentframe(), DBSCAN.__class__.__name__
280
+ ),
291
281
  api_calls=[Session.call],
292
282
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
293
283
  )
@@ -308,27 +298,24 @@ class DBSCAN(BaseTransformer):
308
298
  )
309
299
  self._sklearn_object = model_trainer.train()
310
300
  self._is_fitted = True
311
- self._get_model_signatures(dataset)
301
+ self._generate_model_signatures(dataset)
312
302
  return self
313
303
 
314
304
  def _batch_inference_validate_snowpark(
315
305
  self,
316
306
  dataset: DataFrame,
317
307
  inference_method: str,
318
- ) -> List[str]:
319
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
320
- return the available package that exists in the snowflake anaconda channel
308
+ ) -> None:
309
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
321
310
 
322
311
  Args:
323
312
  dataset: snowpark dataframe
324
313
  inference_method: the inference method such as predict, score...
325
-
314
+
326
315
  Raises:
327
316
  SnowflakeMLException: If the estimator is not fitted, raise error
328
317
  SnowflakeMLException: If the session is None, raise error
329
318
 
330
- Returns:
331
- A list of available package that exists in the snowflake anaconda channel
332
319
  """
333
320
  if not self._is_fitted:
334
321
  raise exceptions.SnowflakeMLException(
@@ -346,9 +333,7 @@ class DBSCAN(BaseTransformer):
346
333
  "Session must not specified for snowpark dataset."
347
334
  ),
348
335
  )
349
- # Validate that key package version in user workspace are supported in snowflake conda channel
350
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
351
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
336
+
352
337
 
353
338
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
354
339
  @telemetry.send_api_usage_telemetry(
@@ -382,7 +367,9 @@ class DBSCAN(BaseTransformer):
382
367
  # when it is classifier, infer the datatype from label columns
383
368
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
384
369
  # Batch inference takes a single expected output column type. Use the first columns type for now.
385
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
370
+ label_cols_signatures = [
371
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
372
+ ]
386
373
  if len(label_cols_signatures) == 0:
387
374
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
388
375
  raise exceptions.SnowflakeMLException(
@@ -390,25 +377,23 @@ class DBSCAN(BaseTransformer):
390
377
  original_exception=ValueError(error_str),
391
378
  )
392
379
 
393
- expected_type_inferred = convert_sp_to_sf_type(
394
- label_cols_signatures[0].as_snowpark_type()
395
- )
380
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
396
381
 
397
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
398
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
382
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
383
+ self._deps = self._get_dependencies()
384
+ assert isinstance(
385
+ dataset._session, Session
386
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
399
387
 
400
388
  transform_kwargs = dict(
401
- session = dataset._session,
402
- dependencies = self._deps,
403
- drop_input_cols = self._drop_input_cols,
404
- expected_output_cols_type = expected_type_inferred,
389
+ session=dataset._session,
390
+ dependencies=self._deps,
391
+ drop_input_cols=self._drop_input_cols,
392
+ expected_output_cols_type=expected_type_inferred,
405
393
  )
406
394
 
407
395
  elif isinstance(dataset, pd.DataFrame):
408
- transform_kwargs = dict(
409
- snowpark_input_cols = self._snowpark_cols,
410
- drop_input_cols = self._drop_input_cols
411
- )
396
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
412
397
 
413
398
  transform_handlers = ModelTransformerBuilder.build(
414
399
  dataset=dataset,
@@ -448,7 +433,7 @@ class DBSCAN(BaseTransformer):
448
433
  Transformed dataset.
449
434
  """
450
435
  super()._check_dataset_type(dataset)
451
- inference_method="transform"
436
+ inference_method = "transform"
452
437
 
453
438
  # This dictionary contains optional kwargs for batch inference. These kwargs
454
439
  # are specific to the type of dataset used.
@@ -478,24 +463,19 @@ class DBSCAN(BaseTransformer):
478
463
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
479
464
  expected_dtype = convert_sp_to_sf_type(output_types[0])
480
465
 
481
- self._deps = self._batch_inference_validate_snowpark(
482
- dataset=dataset,
483
- inference_method=inference_method,
484
- )
466
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
467
+ self._deps = self._get_dependencies()
485
468
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
486
469
 
487
470
  transform_kwargs = dict(
488
- session = dataset._session,
489
- dependencies = self._deps,
490
- drop_input_cols = self._drop_input_cols,
491
- expected_output_cols_type = expected_dtype,
471
+ session=dataset._session,
472
+ dependencies=self._deps,
473
+ drop_input_cols=self._drop_input_cols,
474
+ expected_output_cols_type=expected_dtype,
492
475
  )
493
476
 
494
477
  elif isinstance(dataset, pd.DataFrame):
495
- transform_kwargs = dict(
496
- snowpark_input_cols = self._snowpark_cols,
497
- drop_input_cols = self._drop_input_cols
498
- )
478
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
499
479
 
500
480
  transform_handlers = ModelTransformerBuilder.build(
501
481
  dataset=dataset,
@@ -514,7 +494,11 @@ class DBSCAN(BaseTransformer):
514
494
  return output_df
515
495
 
516
496
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
517
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
497
+ def fit_predict(
498
+ self,
499
+ dataset: Union[DataFrame, pd.DataFrame],
500
+ output_cols_prefix: str = "fit_predict_",
501
+ ) -> Union[DataFrame, pd.DataFrame]:
518
502
  """ Compute clusters from a data or distance matrix and predict labels
519
503
  For more details on this function, see [sklearn.cluster.DBSCAN.fit_predict]
520
504
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN.fit_predict)
@@ -541,22 +525,104 @@ class DBSCAN(BaseTransformer):
541
525
  )
542
526
  output_result, fitted_estimator = model_trainer.train_fit_predict(
543
527
  drop_input_cols=self._drop_input_cols,
544
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
528
+ expected_output_cols_list=(
529
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
530
+ ),
545
531
  )
546
532
  self._sklearn_object = fitted_estimator
547
533
  self._is_fitted = True
548
534
  return output_result
549
535
 
536
+
537
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
538
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
539
+ """ Method not supported for this class.
540
+
541
+
542
+ Raises:
543
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
550
544
 
551
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
552
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
553
- """
545
+ Args:
546
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
547
+ Snowpark or Pandas DataFrame.
548
+ output_cols_prefix: Prefix for the response columns
554
549
  Returns:
555
550
  Transformed dataset.
556
551
  """
557
- self.fit(dataset)
558
- assert self._sklearn_object is not None
559
- return self._sklearn_object.embedding_
552
+ self._infer_input_output_cols(dataset)
553
+ super()._check_dataset_type(dataset)
554
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
555
+ estimator=self._sklearn_object,
556
+ dataset=dataset,
557
+ input_cols=self.input_cols,
558
+ label_cols=self.label_cols,
559
+ sample_weight_col=self.sample_weight_col,
560
+ autogenerated=self._autogenerated,
561
+ subproject=_SUBPROJECT,
562
+ )
563
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
564
+ drop_input_cols=self._drop_input_cols,
565
+ expected_output_cols_list=self.output_cols,
566
+ )
567
+ self._sklearn_object = fitted_estimator
568
+ self._is_fitted = True
569
+ return output_result
570
+
571
+
572
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
573
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
574
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
575
+ """
576
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
577
+ # The following condition is introduced for kneighbors methods, and not used in other methods
578
+ if output_cols:
579
+ output_cols = [
580
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
581
+ for c in output_cols
582
+ ]
583
+ elif getattr(self._sklearn_object, "classes_", None) is None:
584
+ output_cols = [output_cols_prefix]
585
+ elif self._sklearn_object is not None:
586
+ classes = self._sklearn_object.classes_
587
+ if isinstance(classes, numpy.ndarray):
588
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
589
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
590
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
591
+ output_cols = []
592
+ for i, cl in enumerate(classes):
593
+ # For binary classification, there is only one output column for each class
594
+ # ndarray as the two classes are complementary.
595
+ if len(cl) == 2:
596
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
597
+ else:
598
+ output_cols.extend([
599
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
600
+ ])
601
+ else:
602
+ output_cols = []
603
+
604
+ # Make sure column names are valid snowflake identifiers.
605
+ assert output_cols is not None # Make MyPy happy
606
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
607
+
608
+ return rv
609
+
610
+ def _align_expected_output_names(
611
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
612
+ ) -> List[str]:
613
+ # in case the inferred output column names dimension is different
614
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
615
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
616
+ output_df_columns = list(output_df_pd.columns)
617
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
618
+ if self.sample_weight_col:
619
+ output_df_columns_set -= set(self.sample_weight_col)
620
+ # if the dimension of inferred output column names is correct; use it
621
+ if len(expected_output_cols_list) == len(output_df_columns_set):
622
+ return expected_output_cols_list
623
+ # otherwise, use the sklearn estimator's output
624
+ else:
625
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
560
626
 
561
627
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
562
628
  @telemetry.send_api_usage_telemetry(
@@ -588,24 +654,26 @@ class DBSCAN(BaseTransformer):
588
654
  # are specific to the type of dataset used.
589
655
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
590
656
 
657
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
658
+
591
659
  if isinstance(dataset, DataFrame):
592
- self._deps = self._batch_inference_validate_snowpark(
593
- dataset=dataset,
594
- inference_method=inference_method,
595
- )
596
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
660
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
661
+ self._deps = self._get_dependencies()
662
+ assert isinstance(
663
+ dataset._session, Session
664
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
597
665
  transform_kwargs = dict(
598
666
  session=dataset._session,
599
667
  dependencies=self._deps,
600
- drop_input_cols = self._drop_input_cols,
668
+ drop_input_cols=self._drop_input_cols,
601
669
  expected_output_cols_type="float",
602
670
  )
671
+ expected_output_cols = self._align_expected_output_names(
672
+ inference_method, dataset, expected_output_cols, output_cols_prefix
673
+ )
603
674
 
604
675
  elif isinstance(dataset, pd.DataFrame):
605
- transform_kwargs = dict(
606
- snowpark_input_cols = self._snowpark_cols,
607
- drop_input_cols = self._drop_input_cols
608
- )
676
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
609
677
 
610
678
  transform_handlers = ModelTransformerBuilder.build(
611
679
  dataset=dataset,
@@ -617,7 +685,7 @@ class DBSCAN(BaseTransformer):
617
685
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
618
686
  inference_method=inference_method,
619
687
  input_cols=self.input_cols,
620
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
688
+ expected_output_cols=expected_output_cols,
621
689
  **transform_kwargs
622
690
  )
623
691
  return output_df
@@ -647,29 +715,30 @@ class DBSCAN(BaseTransformer):
647
715
  Output dataset with log probability of the sample for each class in the model.
648
716
  """
649
717
  super()._check_dataset_type(dataset)
650
- inference_method="predict_log_proba"
718
+ inference_method = "predict_log_proba"
719
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
651
720
 
652
721
  # This dictionary contains optional kwargs for batch inference. These kwargs
653
722
  # are specific to the type of dataset used.
654
723
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
655
724
 
656
725
  if isinstance(dataset, DataFrame):
657
- self._deps = self._batch_inference_validate_snowpark(
658
- dataset=dataset,
659
- inference_method=inference_method,
660
- )
661
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
726
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
727
+ self._deps = self._get_dependencies()
728
+ assert isinstance(
729
+ dataset._session, Session
730
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
662
731
  transform_kwargs = dict(
663
732
  session=dataset._session,
664
733
  dependencies=self._deps,
665
- drop_input_cols = self._drop_input_cols,
734
+ drop_input_cols=self._drop_input_cols,
666
735
  expected_output_cols_type="float",
667
736
  )
737
+ expected_output_cols = self._align_expected_output_names(
738
+ inference_method, dataset, expected_output_cols, output_cols_prefix
739
+ )
668
740
  elif isinstance(dataset, pd.DataFrame):
669
- transform_kwargs = dict(
670
- snowpark_input_cols = self._snowpark_cols,
671
- drop_input_cols = self._drop_input_cols
672
- )
741
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
673
742
 
674
743
  transform_handlers = ModelTransformerBuilder.build(
675
744
  dataset=dataset,
@@ -682,7 +751,7 @@ class DBSCAN(BaseTransformer):
682
751
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
683
752
  inference_method=inference_method,
684
753
  input_cols=self.input_cols,
685
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
754
+ expected_output_cols=expected_output_cols,
686
755
  **transform_kwargs
687
756
  )
688
757
  return output_df
@@ -708,30 +777,32 @@ class DBSCAN(BaseTransformer):
708
777
  Output dataset with results of the decision function for the samples in input dataset.
709
778
  """
710
779
  super()._check_dataset_type(dataset)
711
- inference_method="decision_function"
780
+ inference_method = "decision_function"
712
781
 
713
782
  # This dictionary contains optional kwargs for batch inference. These kwargs
714
783
  # are specific to the type of dataset used.
715
784
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
716
785
 
786
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
787
+
717
788
  if isinstance(dataset, DataFrame):
718
- self._deps = self._batch_inference_validate_snowpark(
719
- dataset=dataset,
720
- inference_method=inference_method,
721
- )
722
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
789
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
790
+ self._deps = self._get_dependencies()
791
+ assert isinstance(
792
+ dataset._session, Session
793
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
723
794
  transform_kwargs = dict(
724
795
  session=dataset._session,
725
796
  dependencies=self._deps,
726
- drop_input_cols = self._drop_input_cols,
797
+ drop_input_cols=self._drop_input_cols,
727
798
  expected_output_cols_type="float",
728
799
  )
800
+ expected_output_cols = self._align_expected_output_names(
801
+ inference_method, dataset, expected_output_cols, output_cols_prefix
802
+ )
729
803
 
730
804
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
805
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
806
 
736
807
  transform_handlers = ModelTransformerBuilder.build(
737
808
  dataset=dataset,
@@ -744,7 +815,7 @@ class DBSCAN(BaseTransformer):
744
815
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
816
  inference_method=inference_method,
746
817
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
818
+ expected_output_cols=expected_output_cols,
748
819
  **transform_kwargs
749
820
  )
750
821
  return output_df
@@ -773,17 +844,17 @@ class DBSCAN(BaseTransformer):
773
844
  Output dataset with probability of the sample for each class in the model.
774
845
  """
775
846
  super()._check_dataset_type(dataset)
776
- inference_method="score_samples"
847
+ inference_method = "score_samples"
777
848
 
778
849
  # This dictionary contains optional kwargs for batch inference. These kwargs
779
850
  # are specific to the type of dataset used.
780
851
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
781
852
 
853
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
854
+
782
855
  if isinstance(dataset, DataFrame):
783
- self._deps = self._batch_inference_validate_snowpark(
784
- dataset=dataset,
785
- inference_method=inference_method,
786
- )
856
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
857
+ self._deps = self._get_dependencies()
787
858
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
788
859
  transform_kwargs = dict(
789
860
  session=dataset._session,
@@ -791,6 +862,9 @@ class DBSCAN(BaseTransformer):
791
862
  drop_input_cols = self._drop_input_cols,
792
863
  expected_output_cols_type="float",
793
864
  )
865
+ expected_output_cols = self._align_expected_output_names(
866
+ inference_method, dataset, expected_output_cols, output_cols_prefix
867
+ )
794
868
 
795
869
  elif isinstance(dataset, pd.DataFrame):
796
870
  transform_kwargs = dict(
@@ -809,7 +883,7 @@ class DBSCAN(BaseTransformer):
809
883
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
810
884
  inference_method=inference_method,
811
885
  input_cols=self.input_cols,
812
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
886
+ expected_output_cols=expected_output_cols,
813
887
  **transform_kwargs
814
888
  )
815
889
  return output_df
@@ -842,17 +916,15 @@ class DBSCAN(BaseTransformer):
842
916
  transform_kwargs: ScoreKwargsTypedDict = dict()
843
917
 
844
918
  if isinstance(dataset, DataFrame):
845
- self._deps = self._batch_inference_validate_snowpark(
846
- dataset=dataset,
847
- inference_method="score",
848
- )
919
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
920
+ self._deps = self._get_dependencies()
849
921
  selected_cols = self._get_active_columns()
850
922
  if len(selected_cols) > 0:
851
923
  dataset = dataset.select(selected_cols)
852
924
  assert isinstance(dataset._session, Session) # keep mypy happy
853
925
  transform_kwargs = dict(
854
926
  session=dataset._session,
855
- dependencies=["snowflake-snowpark-python"] + self._deps,
927
+ dependencies=self._deps,
856
928
  score_sproc_imports=['sklearn'],
857
929
  )
858
930
  elif isinstance(dataset, pd.DataFrame):
@@ -917,11 +989,8 @@ class DBSCAN(BaseTransformer):
917
989
 
918
990
  if isinstance(dataset, DataFrame):
919
991
 
920
- self._deps = self._batch_inference_validate_snowpark(
921
- dataset=dataset,
922
- inference_method=inference_method,
923
-
924
- )
992
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
993
+ self._deps = self._get_dependencies()
925
994
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
926
995
  transform_kwargs = dict(
927
996
  session = dataset._session,
@@ -954,50 +1023,84 @@ class DBSCAN(BaseTransformer):
954
1023
  )
955
1024
  return output_df
956
1025
 
1026
+
1027
+
1028
+ def to_sklearn(self) -> Any:
1029
+ """Get sklearn.cluster.DBSCAN object.
1030
+ """
1031
+ if self._sklearn_object is None:
1032
+ self._sklearn_object = self._create_sklearn_object()
1033
+ return self._sklearn_object
1034
+
1035
+ def to_xgboost(self) -> Any:
1036
+ raise exceptions.SnowflakeMLException(
1037
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1038
+ original_exception=AttributeError(
1039
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1040
+ "to_xgboost()",
1041
+ "to_sklearn()"
1042
+ )
1043
+ ),
1044
+ )
957
1045
 
958
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1046
+ def to_lightgbm(self) -> Any:
1047
+ raise exceptions.SnowflakeMLException(
1048
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1049
+ original_exception=AttributeError(
1050
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1051
+ "to_lightgbm()",
1052
+ "to_sklearn()"
1053
+ )
1054
+ ),
1055
+ )
1056
+
1057
+ def _get_dependencies(self) -> List[str]:
1058
+ return self._deps
1059
+
1060
+
1061
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
959
1062
  self._model_signature_dict = dict()
960
1063
 
961
1064
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
962
1065
 
963
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1066
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
964
1067
  outputs: List[BaseFeatureSpec] = []
965
1068
  if hasattr(self, "predict"):
966
1069
  # keep mypy happy
967
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1070
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
968
1071
  # For classifier, the type of predict is the same as the type of label
969
- if self._sklearn_object._estimator_type == 'classifier':
970
- # label columns is the desired type for output
1072
+ if self._sklearn_object._estimator_type == "classifier":
1073
+ # label columns is the desired type for output
971
1074
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
972
1075
  # rename the output columns
973
1076
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
974
- self._model_signature_dict["predict"] = ModelSignature(inputs,
975
- ([] if self._drop_input_cols else inputs)
976
- + outputs)
1077
+ self._model_signature_dict["predict"] = ModelSignature(
1078
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1079
+ )
977
1080
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
978
1081
  # For outlier models, returns -1 for outliers and 1 for inliers.
979
- # Clusterer returns int64 cluster labels.
1082
+ # Clusterer returns int64 cluster labels.
980
1083
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
981
1084
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
982
- self._model_signature_dict["predict"] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
985
-
1085
+ self._model_signature_dict["predict"] = ModelSignature(
1086
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1087
+ )
1088
+
986
1089
  # For regressor, the type of predict is float64
987
- elif self._sklearn_object._estimator_type == 'regressor':
1090
+ elif self._sklearn_object._estimator_type == "regressor":
988
1091
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
989
- self._model_signature_dict["predict"] = ModelSignature(inputs,
990
- ([] if self._drop_input_cols else inputs)
991
- + outputs)
992
-
1092
+ self._model_signature_dict["predict"] = ModelSignature(
1093
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1094
+ )
1095
+
993
1096
  for prob_func in PROB_FUNCTIONS:
994
1097
  if hasattr(self, prob_func):
995
1098
  output_cols_prefix: str = f"{prob_func}_"
996
1099
  output_column_names = self._get_output_column_names(output_cols_prefix)
997
1100
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
998
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
999
- ([] if self._drop_input_cols else inputs)
1000
- + outputs)
1101
+ self._model_signature_dict[prob_func] = ModelSignature(
1102
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1103
+ )
1001
1104
 
1002
1105
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1003
1106
  items = list(self._model_signature_dict.items())
@@ -1010,10 +1113,10 @@ class DBSCAN(BaseTransformer):
1010
1113
  """Returns model signature of current class.
1011
1114
 
1012
1115
  Raises:
1013
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1116
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1014
1117
 
1015
1118
  Returns:
1016
- Dict[str, ModelSignature]: each method and its input output signature
1119
+ Dict with each method and its input output signature
1017
1120
  """
1018
1121
  if self._model_signature_dict is None:
1019
1122
  raise exceptions.SnowflakeMLException(
@@ -1021,35 +1124,3 @@ class DBSCAN(BaseTransformer):
1021
1124
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1022
1125
  )
1023
1126
  return self._model_signature_dict
1024
-
1025
- def to_sklearn(self) -> Any:
1026
- """Get sklearn.cluster.DBSCAN object.
1027
- """
1028
- if self._sklearn_object is None:
1029
- self._sklearn_object = self._create_sklearn_object()
1030
- return self._sklearn_object
1031
-
1032
- def to_xgboost(self) -> Any:
1033
- raise exceptions.SnowflakeMLException(
1034
- error_code=error_codes.METHOD_NOT_ALLOWED,
1035
- original_exception=AttributeError(
1036
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
- "to_xgboost()",
1038
- "to_sklearn()"
1039
- )
1040
- ),
1041
- )
1042
-
1043
- def to_lightgbm(self) -> Any:
1044
- raise exceptions.SnowflakeMLException(
1045
- error_code=error_codes.METHOD_NOT_ALLOWED,
1046
- original_exception=AttributeError(
1047
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1048
- "to_lightgbm()",
1049
- "to_sklearn()"
1050
- )
1051
- ),
1052
- )
1053
-
1054
- def _get_dependencies(self) -> List[str]:
1055
- return self._deps