snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class DBSCAN(BaseTransformer):
|
71
64
|
r"""Perform DBSCAN clustering from vector array or distance matrix
|
72
65
|
For more details on this class, see [sklearn.cluster.DBSCAN]
|
@@ -250,12 +243,7 @@ class DBSCAN(BaseTransformer):
|
|
250
243
|
)
|
251
244
|
return selected_cols
|
252
245
|
|
253
|
-
|
254
|
-
project=_PROJECT,
|
255
|
-
subproject=_SUBPROJECT,
|
256
|
-
custom_tags=dict([("autogen", True)]),
|
257
|
-
)
|
258
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DBSCAN":
|
246
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DBSCAN":
|
259
247
|
"""Perform DBSCAN clustering from features, or distance matrix
|
260
248
|
For more details on this function, see [sklearn.cluster.DBSCAN.fit]
|
261
249
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN.fit)
|
@@ -282,12 +270,14 @@ class DBSCAN(BaseTransformer):
|
|
282
270
|
|
283
271
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
284
272
|
|
285
|
-
|
273
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
286
274
|
if SNOWML_SPROC_ENV in os.environ:
|
287
275
|
statement_params = telemetry.get_function_usage_statement_params(
|
288
276
|
project=_PROJECT,
|
289
277
|
subproject=_SUBPROJECT,
|
290
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
278
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
279
|
+
inspect.currentframe(), DBSCAN.__class__.__name__
|
280
|
+
),
|
291
281
|
api_calls=[Session.call],
|
292
282
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
293
283
|
)
|
@@ -308,27 +298,24 @@ class DBSCAN(BaseTransformer):
|
|
308
298
|
)
|
309
299
|
self._sklearn_object = model_trainer.train()
|
310
300
|
self._is_fitted = True
|
311
|
-
self.
|
301
|
+
self._generate_model_signatures(dataset)
|
312
302
|
return self
|
313
303
|
|
314
304
|
def _batch_inference_validate_snowpark(
|
315
305
|
self,
|
316
306
|
dataset: DataFrame,
|
317
307
|
inference_method: str,
|
318
|
-
) ->
|
319
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
320
|
-
return the available package that exists in the snowflake anaconda channel
|
308
|
+
) -> None:
|
309
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
321
310
|
|
322
311
|
Args:
|
323
312
|
dataset: snowpark dataframe
|
324
313
|
inference_method: the inference method such as predict, score...
|
325
|
-
|
314
|
+
|
326
315
|
Raises:
|
327
316
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
328
317
|
SnowflakeMLException: If the session is None, raise error
|
329
318
|
|
330
|
-
Returns:
|
331
|
-
A list of available package that exists in the snowflake anaconda channel
|
332
319
|
"""
|
333
320
|
if not self._is_fitted:
|
334
321
|
raise exceptions.SnowflakeMLException(
|
@@ -346,9 +333,7 @@ class DBSCAN(BaseTransformer):
|
|
346
333
|
"Session must not specified for snowpark dataset."
|
347
334
|
),
|
348
335
|
)
|
349
|
-
|
350
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
351
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
336
|
+
|
352
337
|
|
353
338
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
354
339
|
@telemetry.send_api_usage_telemetry(
|
@@ -382,7 +367,9 @@ class DBSCAN(BaseTransformer):
|
|
382
367
|
# when it is classifier, infer the datatype from label columns
|
383
368
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
384
369
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
385
|
-
label_cols_signatures = [
|
370
|
+
label_cols_signatures = [
|
371
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
372
|
+
]
|
386
373
|
if len(label_cols_signatures) == 0:
|
387
374
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
388
375
|
raise exceptions.SnowflakeMLException(
|
@@ -390,25 +377,23 @@ class DBSCAN(BaseTransformer):
|
|
390
377
|
original_exception=ValueError(error_str),
|
391
378
|
)
|
392
379
|
|
393
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
394
|
-
label_cols_signatures[0].as_snowpark_type()
|
395
|
-
)
|
380
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
396
381
|
|
397
|
-
self.
|
398
|
-
|
382
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
383
|
+
self._deps = self._get_dependencies()
|
384
|
+
assert isinstance(
|
385
|
+
dataset._session, Session
|
386
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
399
387
|
|
400
388
|
transform_kwargs = dict(
|
401
|
-
session
|
402
|
-
dependencies
|
403
|
-
drop_input_cols
|
404
|
-
expected_output_cols_type
|
389
|
+
session=dataset._session,
|
390
|
+
dependencies=self._deps,
|
391
|
+
drop_input_cols=self._drop_input_cols,
|
392
|
+
expected_output_cols_type=expected_type_inferred,
|
405
393
|
)
|
406
394
|
|
407
395
|
elif isinstance(dataset, pd.DataFrame):
|
408
|
-
transform_kwargs = dict(
|
409
|
-
snowpark_input_cols = self._snowpark_cols,
|
410
|
-
drop_input_cols = self._drop_input_cols
|
411
|
-
)
|
396
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
412
397
|
|
413
398
|
transform_handlers = ModelTransformerBuilder.build(
|
414
399
|
dataset=dataset,
|
@@ -448,7 +433,7 @@ class DBSCAN(BaseTransformer):
|
|
448
433
|
Transformed dataset.
|
449
434
|
"""
|
450
435
|
super()._check_dataset_type(dataset)
|
451
|
-
inference_method="transform"
|
436
|
+
inference_method = "transform"
|
452
437
|
|
453
438
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
454
439
|
# are specific to the type of dataset used.
|
@@ -478,24 +463,19 @@ class DBSCAN(BaseTransformer):
|
|
478
463
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
479
464
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
480
465
|
|
481
|
-
self.
|
482
|
-
|
483
|
-
inference_method=inference_method,
|
484
|
-
)
|
466
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
467
|
+
self._deps = self._get_dependencies()
|
485
468
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
486
469
|
|
487
470
|
transform_kwargs = dict(
|
488
|
-
session
|
489
|
-
dependencies
|
490
|
-
drop_input_cols
|
491
|
-
expected_output_cols_type
|
471
|
+
session=dataset._session,
|
472
|
+
dependencies=self._deps,
|
473
|
+
drop_input_cols=self._drop_input_cols,
|
474
|
+
expected_output_cols_type=expected_dtype,
|
492
475
|
)
|
493
476
|
|
494
477
|
elif isinstance(dataset, pd.DataFrame):
|
495
|
-
transform_kwargs = dict(
|
496
|
-
snowpark_input_cols = self._snowpark_cols,
|
497
|
-
drop_input_cols = self._drop_input_cols
|
498
|
-
)
|
478
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
499
479
|
|
500
480
|
transform_handlers = ModelTransformerBuilder.build(
|
501
481
|
dataset=dataset,
|
@@ -514,7 +494,11 @@ class DBSCAN(BaseTransformer):
|
|
514
494
|
return output_df
|
515
495
|
|
516
496
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
517
|
-
def fit_predict(
|
497
|
+
def fit_predict(
|
498
|
+
self,
|
499
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
500
|
+
output_cols_prefix: str = "fit_predict_",
|
501
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
518
502
|
""" Compute clusters from a data or distance matrix and predict labels
|
519
503
|
For more details on this function, see [sklearn.cluster.DBSCAN.fit_predict]
|
520
504
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html#sklearn.cluster.DBSCAN.fit_predict)
|
@@ -541,22 +525,104 @@ class DBSCAN(BaseTransformer):
|
|
541
525
|
)
|
542
526
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
543
527
|
drop_input_cols=self._drop_input_cols,
|
544
|
-
expected_output_cols_list=
|
528
|
+
expected_output_cols_list=(
|
529
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
530
|
+
),
|
545
531
|
)
|
546
532
|
self._sklearn_object = fitted_estimator
|
547
533
|
self._is_fitted = True
|
548
534
|
return output_result
|
549
535
|
|
536
|
+
|
537
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
538
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
539
|
+
""" Method not supported for this class.
|
540
|
+
|
541
|
+
|
542
|
+
Raises:
|
543
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
550
544
|
|
551
|
-
|
552
|
-
|
553
|
-
|
545
|
+
Args:
|
546
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
547
|
+
Snowpark or Pandas DataFrame.
|
548
|
+
output_cols_prefix: Prefix for the response columns
|
554
549
|
Returns:
|
555
550
|
Transformed dataset.
|
556
551
|
"""
|
557
|
-
self.
|
558
|
-
|
559
|
-
|
552
|
+
self._infer_input_output_cols(dataset)
|
553
|
+
super()._check_dataset_type(dataset)
|
554
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
555
|
+
estimator=self._sklearn_object,
|
556
|
+
dataset=dataset,
|
557
|
+
input_cols=self.input_cols,
|
558
|
+
label_cols=self.label_cols,
|
559
|
+
sample_weight_col=self.sample_weight_col,
|
560
|
+
autogenerated=self._autogenerated,
|
561
|
+
subproject=_SUBPROJECT,
|
562
|
+
)
|
563
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
564
|
+
drop_input_cols=self._drop_input_cols,
|
565
|
+
expected_output_cols_list=self.output_cols,
|
566
|
+
)
|
567
|
+
self._sklearn_object = fitted_estimator
|
568
|
+
self._is_fitted = True
|
569
|
+
return output_result
|
570
|
+
|
571
|
+
|
572
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
573
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
574
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
575
|
+
"""
|
576
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
577
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
578
|
+
if output_cols:
|
579
|
+
output_cols = [
|
580
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
581
|
+
for c in output_cols
|
582
|
+
]
|
583
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
584
|
+
output_cols = [output_cols_prefix]
|
585
|
+
elif self._sklearn_object is not None:
|
586
|
+
classes = self._sklearn_object.classes_
|
587
|
+
if isinstance(classes, numpy.ndarray):
|
588
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
589
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
590
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
591
|
+
output_cols = []
|
592
|
+
for i, cl in enumerate(classes):
|
593
|
+
# For binary classification, there is only one output column for each class
|
594
|
+
# ndarray as the two classes are complementary.
|
595
|
+
if len(cl) == 2:
|
596
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
597
|
+
else:
|
598
|
+
output_cols.extend([
|
599
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
600
|
+
])
|
601
|
+
else:
|
602
|
+
output_cols = []
|
603
|
+
|
604
|
+
# Make sure column names are valid snowflake identifiers.
|
605
|
+
assert output_cols is not None # Make MyPy happy
|
606
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
607
|
+
|
608
|
+
return rv
|
609
|
+
|
610
|
+
def _align_expected_output_names(
|
611
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
612
|
+
) -> List[str]:
|
613
|
+
# in case the inferred output column names dimension is different
|
614
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
615
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
616
|
+
output_df_columns = list(output_df_pd.columns)
|
617
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
618
|
+
if self.sample_weight_col:
|
619
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
620
|
+
# if the dimension of inferred output column names is correct; use it
|
621
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
622
|
+
return expected_output_cols_list
|
623
|
+
# otherwise, use the sklearn estimator's output
|
624
|
+
else:
|
625
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
560
626
|
|
561
627
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
562
628
|
@telemetry.send_api_usage_telemetry(
|
@@ -588,24 +654,26 @@ class DBSCAN(BaseTransformer):
|
|
588
654
|
# are specific to the type of dataset used.
|
589
655
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
590
656
|
|
657
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
658
|
+
|
591
659
|
if isinstance(dataset, DataFrame):
|
592
|
-
self.
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
|
660
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
661
|
+
self._deps = self._get_dependencies()
|
662
|
+
assert isinstance(
|
663
|
+
dataset._session, Session
|
664
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
597
665
|
transform_kwargs = dict(
|
598
666
|
session=dataset._session,
|
599
667
|
dependencies=self._deps,
|
600
|
-
drop_input_cols
|
668
|
+
drop_input_cols=self._drop_input_cols,
|
601
669
|
expected_output_cols_type="float",
|
602
670
|
)
|
671
|
+
expected_output_cols = self._align_expected_output_names(
|
672
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
673
|
+
)
|
603
674
|
|
604
675
|
elif isinstance(dataset, pd.DataFrame):
|
605
|
-
transform_kwargs = dict(
|
606
|
-
snowpark_input_cols = self._snowpark_cols,
|
607
|
-
drop_input_cols = self._drop_input_cols
|
608
|
-
)
|
676
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
609
677
|
|
610
678
|
transform_handlers = ModelTransformerBuilder.build(
|
611
679
|
dataset=dataset,
|
@@ -617,7 +685,7 @@ class DBSCAN(BaseTransformer):
|
|
617
685
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
618
686
|
inference_method=inference_method,
|
619
687
|
input_cols=self.input_cols,
|
620
|
-
expected_output_cols=
|
688
|
+
expected_output_cols=expected_output_cols,
|
621
689
|
**transform_kwargs
|
622
690
|
)
|
623
691
|
return output_df
|
@@ -647,29 +715,30 @@ class DBSCAN(BaseTransformer):
|
|
647
715
|
Output dataset with log probability of the sample for each class in the model.
|
648
716
|
"""
|
649
717
|
super()._check_dataset_type(dataset)
|
650
|
-
inference_method="predict_log_proba"
|
718
|
+
inference_method = "predict_log_proba"
|
719
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
651
720
|
|
652
721
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
653
722
|
# are specific to the type of dataset used.
|
654
723
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
655
724
|
|
656
725
|
if isinstance(dataset, DataFrame):
|
657
|
-
self.
|
658
|
-
|
659
|
-
|
660
|
-
|
661
|
-
|
726
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
727
|
+
self._deps = self._get_dependencies()
|
728
|
+
assert isinstance(
|
729
|
+
dataset._session, Session
|
730
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
662
731
|
transform_kwargs = dict(
|
663
732
|
session=dataset._session,
|
664
733
|
dependencies=self._deps,
|
665
|
-
drop_input_cols
|
734
|
+
drop_input_cols=self._drop_input_cols,
|
666
735
|
expected_output_cols_type="float",
|
667
736
|
)
|
737
|
+
expected_output_cols = self._align_expected_output_names(
|
738
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
739
|
+
)
|
668
740
|
elif isinstance(dataset, pd.DataFrame):
|
669
|
-
transform_kwargs = dict(
|
670
|
-
snowpark_input_cols = self._snowpark_cols,
|
671
|
-
drop_input_cols = self._drop_input_cols
|
672
|
-
)
|
741
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
673
742
|
|
674
743
|
transform_handlers = ModelTransformerBuilder.build(
|
675
744
|
dataset=dataset,
|
@@ -682,7 +751,7 @@ class DBSCAN(BaseTransformer):
|
|
682
751
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
683
752
|
inference_method=inference_method,
|
684
753
|
input_cols=self.input_cols,
|
685
|
-
expected_output_cols=
|
754
|
+
expected_output_cols=expected_output_cols,
|
686
755
|
**transform_kwargs
|
687
756
|
)
|
688
757
|
return output_df
|
@@ -708,30 +777,32 @@ class DBSCAN(BaseTransformer):
|
|
708
777
|
Output dataset with results of the decision function for the samples in input dataset.
|
709
778
|
"""
|
710
779
|
super()._check_dataset_type(dataset)
|
711
|
-
inference_method="decision_function"
|
780
|
+
inference_method = "decision_function"
|
712
781
|
|
713
782
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
714
783
|
# are specific to the type of dataset used.
|
715
784
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
716
785
|
|
786
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
787
|
+
|
717
788
|
if isinstance(dataset, DataFrame):
|
718
|
-
self.
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
789
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
790
|
+
self._deps = self._get_dependencies()
|
791
|
+
assert isinstance(
|
792
|
+
dataset._session, Session
|
793
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
723
794
|
transform_kwargs = dict(
|
724
795
|
session=dataset._session,
|
725
796
|
dependencies=self._deps,
|
726
|
-
drop_input_cols
|
797
|
+
drop_input_cols=self._drop_input_cols,
|
727
798
|
expected_output_cols_type="float",
|
728
799
|
)
|
800
|
+
expected_output_cols = self._align_expected_output_names(
|
801
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
802
|
+
)
|
729
803
|
|
730
804
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
805
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
806
|
|
736
807
|
transform_handlers = ModelTransformerBuilder.build(
|
737
808
|
dataset=dataset,
|
@@ -744,7 +815,7 @@ class DBSCAN(BaseTransformer):
|
|
744
815
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
816
|
inference_method=inference_method,
|
746
817
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
818
|
+
expected_output_cols=expected_output_cols,
|
748
819
|
**transform_kwargs
|
749
820
|
)
|
750
821
|
return output_df
|
@@ -773,17 +844,17 @@ class DBSCAN(BaseTransformer):
|
|
773
844
|
Output dataset with probability of the sample for each class in the model.
|
774
845
|
"""
|
775
846
|
super()._check_dataset_type(dataset)
|
776
|
-
inference_method="score_samples"
|
847
|
+
inference_method = "score_samples"
|
777
848
|
|
778
849
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
779
850
|
# are specific to the type of dataset used.
|
780
851
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
781
852
|
|
853
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
854
|
+
|
782
855
|
if isinstance(dataset, DataFrame):
|
783
|
-
self.
|
784
|
-
|
785
|
-
inference_method=inference_method,
|
786
|
-
)
|
856
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
857
|
+
self._deps = self._get_dependencies()
|
787
858
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
788
859
|
transform_kwargs = dict(
|
789
860
|
session=dataset._session,
|
@@ -791,6 +862,9 @@ class DBSCAN(BaseTransformer):
|
|
791
862
|
drop_input_cols = self._drop_input_cols,
|
792
863
|
expected_output_cols_type="float",
|
793
864
|
)
|
865
|
+
expected_output_cols = self._align_expected_output_names(
|
866
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
867
|
+
)
|
794
868
|
|
795
869
|
elif isinstance(dataset, pd.DataFrame):
|
796
870
|
transform_kwargs = dict(
|
@@ -809,7 +883,7 @@ class DBSCAN(BaseTransformer):
|
|
809
883
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
810
884
|
inference_method=inference_method,
|
811
885
|
input_cols=self.input_cols,
|
812
|
-
expected_output_cols=
|
886
|
+
expected_output_cols=expected_output_cols,
|
813
887
|
**transform_kwargs
|
814
888
|
)
|
815
889
|
return output_df
|
@@ -842,17 +916,15 @@ class DBSCAN(BaseTransformer):
|
|
842
916
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
843
917
|
|
844
918
|
if isinstance(dataset, DataFrame):
|
845
|
-
self.
|
846
|
-
|
847
|
-
inference_method="score",
|
848
|
-
)
|
919
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
920
|
+
self._deps = self._get_dependencies()
|
849
921
|
selected_cols = self._get_active_columns()
|
850
922
|
if len(selected_cols) > 0:
|
851
923
|
dataset = dataset.select(selected_cols)
|
852
924
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
853
925
|
transform_kwargs = dict(
|
854
926
|
session=dataset._session,
|
855
|
-
dependencies=
|
927
|
+
dependencies=self._deps,
|
856
928
|
score_sproc_imports=['sklearn'],
|
857
929
|
)
|
858
930
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -917,11 +989,8 @@ class DBSCAN(BaseTransformer):
|
|
917
989
|
|
918
990
|
if isinstance(dataset, DataFrame):
|
919
991
|
|
920
|
-
self.
|
921
|
-
|
922
|
-
inference_method=inference_method,
|
923
|
-
|
924
|
-
)
|
992
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
993
|
+
self._deps = self._get_dependencies()
|
925
994
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
926
995
|
transform_kwargs = dict(
|
927
996
|
session = dataset._session,
|
@@ -954,50 +1023,84 @@ class DBSCAN(BaseTransformer):
|
|
954
1023
|
)
|
955
1024
|
return output_df
|
956
1025
|
|
1026
|
+
|
1027
|
+
|
1028
|
+
def to_sklearn(self) -> Any:
|
1029
|
+
"""Get sklearn.cluster.DBSCAN object.
|
1030
|
+
"""
|
1031
|
+
if self._sklearn_object is None:
|
1032
|
+
self._sklearn_object = self._create_sklearn_object()
|
1033
|
+
return self._sklearn_object
|
1034
|
+
|
1035
|
+
def to_xgboost(self) -> Any:
|
1036
|
+
raise exceptions.SnowflakeMLException(
|
1037
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1038
|
+
original_exception=AttributeError(
|
1039
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1040
|
+
"to_xgboost()",
|
1041
|
+
"to_sklearn()"
|
1042
|
+
)
|
1043
|
+
),
|
1044
|
+
)
|
957
1045
|
|
958
|
-
def
|
1046
|
+
def to_lightgbm(self) -> Any:
|
1047
|
+
raise exceptions.SnowflakeMLException(
|
1048
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1049
|
+
original_exception=AttributeError(
|
1050
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1051
|
+
"to_lightgbm()",
|
1052
|
+
"to_sklearn()"
|
1053
|
+
)
|
1054
|
+
),
|
1055
|
+
)
|
1056
|
+
|
1057
|
+
def _get_dependencies(self) -> List[str]:
|
1058
|
+
return self._deps
|
1059
|
+
|
1060
|
+
|
1061
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
959
1062
|
self._model_signature_dict = dict()
|
960
1063
|
|
961
1064
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
962
1065
|
|
963
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1066
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
964
1067
|
outputs: List[BaseFeatureSpec] = []
|
965
1068
|
if hasattr(self, "predict"):
|
966
1069
|
# keep mypy happy
|
967
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1070
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
968
1071
|
# For classifier, the type of predict is the same as the type of label
|
969
|
-
if self._sklearn_object._estimator_type ==
|
970
|
-
|
1072
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1073
|
+
# label columns is the desired type for output
|
971
1074
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
972
1075
|
# rename the output columns
|
973
1076
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
974
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
975
|
-
|
976
|
-
|
1077
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1078
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1079
|
+
)
|
977
1080
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
978
1081
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
979
|
-
# Clusterer returns int64 cluster labels.
|
1082
|
+
# Clusterer returns int64 cluster labels.
|
980
1083
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
981
1084
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
982
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
983
|
-
|
984
|
-
|
985
|
-
|
1085
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1086
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1087
|
+
)
|
1088
|
+
|
986
1089
|
# For regressor, the type of predict is float64
|
987
|
-
elif self._sklearn_object._estimator_type ==
|
1090
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
988
1091
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
989
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
990
|
-
|
991
|
-
|
992
|
-
|
1092
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1093
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1094
|
+
)
|
1095
|
+
|
993
1096
|
for prob_func in PROB_FUNCTIONS:
|
994
1097
|
if hasattr(self, prob_func):
|
995
1098
|
output_cols_prefix: str = f"{prob_func}_"
|
996
1099
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
997
1100
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
998
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
999
|
-
|
1000
|
-
|
1101
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1102
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1103
|
+
)
|
1001
1104
|
|
1002
1105
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1003
1106
|
items = list(self._model_signature_dict.items())
|
@@ -1010,10 +1113,10 @@ class DBSCAN(BaseTransformer):
|
|
1010
1113
|
"""Returns model signature of current class.
|
1011
1114
|
|
1012
1115
|
Raises:
|
1013
|
-
|
1116
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1014
1117
|
|
1015
1118
|
Returns:
|
1016
|
-
Dict
|
1119
|
+
Dict with each method and its input output signature
|
1017
1120
|
"""
|
1018
1121
|
if self._model_signature_dict is None:
|
1019
1122
|
raise exceptions.SnowflakeMLException(
|
@@ -1021,35 +1124,3 @@ class DBSCAN(BaseTransformer):
|
|
1021
1124
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1022
1125
|
)
|
1023
1126
|
return self._model_signature_dict
|
1024
|
-
|
1025
|
-
def to_sklearn(self) -> Any:
|
1026
|
-
"""Get sklearn.cluster.DBSCAN object.
|
1027
|
-
"""
|
1028
|
-
if self._sklearn_object is None:
|
1029
|
-
self._sklearn_object = self._create_sklearn_object()
|
1030
|
-
return self._sklearn_object
|
1031
|
-
|
1032
|
-
def to_xgboost(self) -> Any:
|
1033
|
-
raise exceptions.SnowflakeMLException(
|
1034
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1035
|
-
original_exception=AttributeError(
|
1036
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1037
|
-
"to_xgboost()",
|
1038
|
-
"to_sklearn()"
|
1039
|
-
)
|
1040
|
-
),
|
1041
|
-
)
|
1042
|
-
|
1043
|
-
def to_lightgbm(self) -> Any:
|
1044
|
-
raise exceptions.SnowflakeMLException(
|
1045
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1046
|
-
original_exception=AttributeError(
|
1047
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1048
|
-
"to_lightgbm()",
|
1049
|
-
"to_sklearn()"
|
1050
|
-
)
|
1051
|
-
),
|
1052
|
-
)
|
1053
|
-
|
1054
|
-
def _get_dependencies(self) -> List[str]:
|
1055
|
-
return self._deps
|