snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class GraphicalLasso(BaseTransformer):
|
71
64
|
r"""Sparse inverse covariance estimation with an l1-penalized estimator
|
72
65
|
For more details on this class, see [sklearn.covariance.GraphicalLasso]
|
@@ -250,12 +243,7 @@ class GraphicalLasso(BaseTransformer):
|
|
250
243
|
)
|
251
244
|
return selected_cols
|
252
245
|
|
253
|
-
|
254
|
-
project=_PROJECT,
|
255
|
-
subproject=_SUBPROJECT,
|
256
|
-
custom_tags=dict([("autogen", True)]),
|
257
|
-
)
|
258
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GraphicalLasso":
|
246
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GraphicalLasso":
|
259
247
|
"""Fit the GraphicalLasso model to X
|
260
248
|
For more details on this function, see [sklearn.covariance.GraphicalLasso.fit]
|
261
249
|
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance.GraphicalLasso.html#sklearn.covariance.GraphicalLasso.fit)
|
@@ -282,12 +270,14 @@ class GraphicalLasso(BaseTransformer):
|
|
282
270
|
|
283
271
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
284
272
|
|
285
|
-
|
273
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
286
274
|
if SNOWML_SPROC_ENV in os.environ:
|
287
275
|
statement_params = telemetry.get_function_usage_statement_params(
|
288
276
|
project=_PROJECT,
|
289
277
|
subproject=_SUBPROJECT,
|
290
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
278
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
279
|
+
inspect.currentframe(), GraphicalLasso.__class__.__name__
|
280
|
+
),
|
291
281
|
api_calls=[Session.call],
|
292
282
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
293
283
|
)
|
@@ -308,27 +298,24 @@ class GraphicalLasso(BaseTransformer):
|
|
308
298
|
)
|
309
299
|
self._sklearn_object = model_trainer.train()
|
310
300
|
self._is_fitted = True
|
311
|
-
self.
|
301
|
+
self._generate_model_signatures(dataset)
|
312
302
|
return self
|
313
303
|
|
314
304
|
def _batch_inference_validate_snowpark(
|
315
305
|
self,
|
316
306
|
dataset: DataFrame,
|
317
307
|
inference_method: str,
|
318
|
-
) ->
|
319
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
320
|
-
return the available package that exists in the snowflake anaconda channel
|
308
|
+
) -> None:
|
309
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
321
310
|
|
322
311
|
Args:
|
323
312
|
dataset: snowpark dataframe
|
324
313
|
inference_method: the inference method such as predict, score...
|
325
|
-
|
314
|
+
|
326
315
|
Raises:
|
327
316
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
328
317
|
SnowflakeMLException: If the session is None, raise error
|
329
318
|
|
330
|
-
Returns:
|
331
|
-
A list of available package that exists in the snowflake anaconda channel
|
332
319
|
"""
|
333
320
|
if not self._is_fitted:
|
334
321
|
raise exceptions.SnowflakeMLException(
|
@@ -346,9 +333,7 @@ class GraphicalLasso(BaseTransformer):
|
|
346
333
|
"Session must not specified for snowpark dataset."
|
347
334
|
),
|
348
335
|
)
|
349
|
-
|
350
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
351
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
336
|
+
|
352
337
|
|
353
338
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
354
339
|
@telemetry.send_api_usage_telemetry(
|
@@ -382,7 +367,9 @@ class GraphicalLasso(BaseTransformer):
|
|
382
367
|
# when it is classifier, infer the datatype from label columns
|
383
368
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
384
369
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
385
|
-
label_cols_signatures = [
|
370
|
+
label_cols_signatures = [
|
371
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
372
|
+
]
|
386
373
|
if len(label_cols_signatures) == 0:
|
387
374
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
388
375
|
raise exceptions.SnowflakeMLException(
|
@@ -390,25 +377,23 @@ class GraphicalLasso(BaseTransformer):
|
|
390
377
|
original_exception=ValueError(error_str),
|
391
378
|
)
|
392
379
|
|
393
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
394
|
-
label_cols_signatures[0].as_snowpark_type()
|
395
|
-
)
|
380
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
396
381
|
|
397
|
-
self.
|
398
|
-
|
382
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
383
|
+
self._deps = self._get_dependencies()
|
384
|
+
assert isinstance(
|
385
|
+
dataset._session, Session
|
386
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
399
387
|
|
400
388
|
transform_kwargs = dict(
|
401
|
-
session
|
402
|
-
dependencies
|
403
|
-
drop_input_cols
|
404
|
-
expected_output_cols_type
|
389
|
+
session=dataset._session,
|
390
|
+
dependencies=self._deps,
|
391
|
+
drop_input_cols=self._drop_input_cols,
|
392
|
+
expected_output_cols_type=expected_type_inferred,
|
405
393
|
)
|
406
394
|
|
407
395
|
elif isinstance(dataset, pd.DataFrame):
|
408
|
-
transform_kwargs = dict(
|
409
|
-
snowpark_input_cols = self._snowpark_cols,
|
410
|
-
drop_input_cols = self._drop_input_cols
|
411
|
-
)
|
396
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
412
397
|
|
413
398
|
transform_handlers = ModelTransformerBuilder.build(
|
414
399
|
dataset=dataset,
|
@@ -448,7 +433,7 @@ class GraphicalLasso(BaseTransformer):
|
|
448
433
|
Transformed dataset.
|
449
434
|
"""
|
450
435
|
super()._check_dataset_type(dataset)
|
451
|
-
inference_method="transform"
|
436
|
+
inference_method = "transform"
|
452
437
|
|
453
438
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
454
439
|
# are specific to the type of dataset used.
|
@@ -478,24 +463,19 @@ class GraphicalLasso(BaseTransformer):
|
|
478
463
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
479
464
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
480
465
|
|
481
|
-
self.
|
482
|
-
|
483
|
-
inference_method=inference_method,
|
484
|
-
)
|
466
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
467
|
+
self._deps = self._get_dependencies()
|
485
468
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
486
469
|
|
487
470
|
transform_kwargs = dict(
|
488
|
-
session
|
489
|
-
dependencies
|
490
|
-
drop_input_cols
|
491
|
-
expected_output_cols_type
|
471
|
+
session=dataset._session,
|
472
|
+
dependencies=self._deps,
|
473
|
+
drop_input_cols=self._drop_input_cols,
|
474
|
+
expected_output_cols_type=expected_dtype,
|
492
475
|
)
|
493
476
|
|
494
477
|
elif isinstance(dataset, pd.DataFrame):
|
495
|
-
transform_kwargs = dict(
|
496
|
-
snowpark_input_cols = self._snowpark_cols,
|
497
|
-
drop_input_cols = self._drop_input_cols
|
498
|
-
)
|
478
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
499
479
|
|
500
480
|
transform_handlers = ModelTransformerBuilder.build(
|
501
481
|
dataset=dataset,
|
@@ -514,7 +494,11 @@ class GraphicalLasso(BaseTransformer):
|
|
514
494
|
return output_df
|
515
495
|
|
516
496
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
517
|
-
def fit_predict(
|
497
|
+
def fit_predict(
|
498
|
+
self,
|
499
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
500
|
+
output_cols_prefix: str = "fit_predict_",
|
501
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
518
502
|
""" Method not supported for this class.
|
519
503
|
|
520
504
|
|
@@ -539,22 +523,104 @@ class GraphicalLasso(BaseTransformer):
|
|
539
523
|
)
|
540
524
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
541
525
|
drop_input_cols=self._drop_input_cols,
|
542
|
-
expected_output_cols_list=
|
526
|
+
expected_output_cols_list=(
|
527
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
528
|
+
),
|
543
529
|
)
|
544
530
|
self._sklearn_object = fitted_estimator
|
545
531
|
self._is_fitted = True
|
546
532
|
return output_result
|
547
533
|
|
534
|
+
|
535
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
536
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
537
|
+
""" Method not supported for this class.
|
538
|
+
|
548
539
|
|
549
|
-
|
550
|
-
|
551
|
-
|
540
|
+
Raises:
|
541
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
542
|
+
|
543
|
+
Args:
|
544
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
545
|
+
Snowpark or Pandas DataFrame.
|
546
|
+
output_cols_prefix: Prefix for the response columns
|
552
547
|
Returns:
|
553
548
|
Transformed dataset.
|
554
549
|
"""
|
555
|
-
self.
|
556
|
-
|
557
|
-
|
550
|
+
self._infer_input_output_cols(dataset)
|
551
|
+
super()._check_dataset_type(dataset)
|
552
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
553
|
+
estimator=self._sklearn_object,
|
554
|
+
dataset=dataset,
|
555
|
+
input_cols=self.input_cols,
|
556
|
+
label_cols=self.label_cols,
|
557
|
+
sample_weight_col=self.sample_weight_col,
|
558
|
+
autogenerated=self._autogenerated,
|
559
|
+
subproject=_SUBPROJECT,
|
560
|
+
)
|
561
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
562
|
+
drop_input_cols=self._drop_input_cols,
|
563
|
+
expected_output_cols_list=self.output_cols,
|
564
|
+
)
|
565
|
+
self._sklearn_object = fitted_estimator
|
566
|
+
self._is_fitted = True
|
567
|
+
return output_result
|
568
|
+
|
569
|
+
|
570
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
571
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
572
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
573
|
+
"""
|
574
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
575
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
576
|
+
if output_cols:
|
577
|
+
output_cols = [
|
578
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
579
|
+
for c in output_cols
|
580
|
+
]
|
581
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
582
|
+
output_cols = [output_cols_prefix]
|
583
|
+
elif self._sklearn_object is not None:
|
584
|
+
classes = self._sklearn_object.classes_
|
585
|
+
if isinstance(classes, numpy.ndarray):
|
586
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
587
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
588
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
589
|
+
output_cols = []
|
590
|
+
for i, cl in enumerate(classes):
|
591
|
+
# For binary classification, there is only one output column for each class
|
592
|
+
# ndarray as the two classes are complementary.
|
593
|
+
if len(cl) == 2:
|
594
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
595
|
+
else:
|
596
|
+
output_cols.extend([
|
597
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
598
|
+
])
|
599
|
+
else:
|
600
|
+
output_cols = []
|
601
|
+
|
602
|
+
# Make sure column names are valid snowflake identifiers.
|
603
|
+
assert output_cols is not None # Make MyPy happy
|
604
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
605
|
+
|
606
|
+
return rv
|
607
|
+
|
608
|
+
def _align_expected_output_names(
|
609
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
610
|
+
) -> List[str]:
|
611
|
+
# in case the inferred output column names dimension is different
|
612
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
613
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
614
|
+
output_df_columns = list(output_df_pd.columns)
|
615
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
616
|
+
if self.sample_weight_col:
|
617
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
618
|
+
# if the dimension of inferred output column names is correct; use it
|
619
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
620
|
+
return expected_output_cols_list
|
621
|
+
# otherwise, use the sklearn estimator's output
|
622
|
+
else:
|
623
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
558
624
|
|
559
625
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
560
626
|
@telemetry.send_api_usage_telemetry(
|
@@ -586,24 +652,26 @@ class GraphicalLasso(BaseTransformer):
|
|
586
652
|
# are specific to the type of dataset used.
|
587
653
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
588
654
|
|
655
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
656
|
+
|
589
657
|
if isinstance(dataset, DataFrame):
|
590
|
-
self.
|
591
|
-
|
592
|
-
|
593
|
-
|
594
|
-
|
658
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
659
|
+
self._deps = self._get_dependencies()
|
660
|
+
assert isinstance(
|
661
|
+
dataset._session, Session
|
662
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
595
663
|
transform_kwargs = dict(
|
596
664
|
session=dataset._session,
|
597
665
|
dependencies=self._deps,
|
598
|
-
drop_input_cols
|
666
|
+
drop_input_cols=self._drop_input_cols,
|
599
667
|
expected_output_cols_type="float",
|
600
668
|
)
|
669
|
+
expected_output_cols = self._align_expected_output_names(
|
670
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
671
|
+
)
|
601
672
|
|
602
673
|
elif isinstance(dataset, pd.DataFrame):
|
603
|
-
transform_kwargs = dict(
|
604
|
-
snowpark_input_cols = self._snowpark_cols,
|
605
|
-
drop_input_cols = self._drop_input_cols
|
606
|
-
)
|
674
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
607
675
|
|
608
676
|
transform_handlers = ModelTransformerBuilder.build(
|
609
677
|
dataset=dataset,
|
@@ -615,7 +683,7 @@ class GraphicalLasso(BaseTransformer):
|
|
615
683
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
616
684
|
inference_method=inference_method,
|
617
685
|
input_cols=self.input_cols,
|
618
|
-
expected_output_cols=
|
686
|
+
expected_output_cols=expected_output_cols,
|
619
687
|
**transform_kwargs
|
620
688
|
)
|
621
689
|
return output_df
|
@@ -645,29 +713,30 @@ class GraphicalLasso(BaseTransformer):
|
|
645
713
|
Output dataset with log probability of the sample for each class in the model.
|
646
714
|
"""
|
647
715
|
super()._check_dataset_type(dataset)
|
648
|
-
inference_method="predict_log_proba"
|
716
|
+
inference_method = "predict_log_proba"
|
717
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
649
718
|
|
650
719
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
651
720
|
# are specific to the type of dataset used.
|
652
721
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
653
722
|
|
654
723
|
if isinstance(dataset, DataFrame):
|
655
|
-
self.
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
724
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
725
|
+
self._deps = self._get_dependencies()
|
726
|
+
assert isinstance(
|
727
|
+
dataset._session, Session
|
728
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
660
729
|
transform_kwargs = dict(
|
661
730
|
session=dataset._session,
|
662
731
|
dependencies=self._deps,
|
663
|
-
drop_input_cols
|
732
|
+
drop_input_cols=self._drop_input_cols,
|
664
733
|
expected_output_cols_type="float",
|
665
734
|
)
|
735
|
+
expected_output_cols = self._align_expected_output_names(
|
736
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
737
|
+
)
|
666
738
|
elif isinstance(dataset, pd.DataFrame):
|
667
|
-
transform_kwargs = dict(
|
668
|
-
snowpark_input_cols = self._snowpark_cols,
|
669
|
-
drop_input_cols = self._drop_input_cols
|
670
|
-
)
|
739
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
671
740
|
|
672
741
|
transform_handlers = ModelTransformerBuilder.build(
|
673
742
|
dataset=dataset,
|
@@ -680,7 +749,7 @@ class GraphicalLasso(BaseTransformer):
|
|
680
749
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
681
750
|
inference_method=inference_method,
|
682
751
|
input_cols=self.input_cols,
|
683
|
-
expected_output_cols=
|
752
|
+
expected_output_cols=expected_output_cols,
|
684
753
|
**transform_kwargs
|
685
754
|
)
|
686
755
|
return output_df
|
@@ -706,30 +775,32 @@ class GraphicalLasso(BaseTransformer):
|
|
706
775
|
Output dataset with results of the decision function for the samples in input dataset.
|
707
776
|
"""
|
708
777
|
super()._check_dataset_type(dataset)
|
709
|
-
inference_method="decision_function"
|
778
|
+
inference_method = "decision_function"
|
710
779
|
|
711
780
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
712
781
|
# are specific to the type of dataset used.
|
713
782
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
714
783
|
|
784
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
785
|
+
|
715
786
|
if isinstance(dataset, DataFrame):
|
716
|
-
self.
|
717
|
-
|
718
|
-
|
719
|
-
|
720
|
-
|
787
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
788
|
+
self._deps = self._get_dependencies()
|
789
|
+
assert isinstance(
|
790
|
+
dataset._session, Session
|
791
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
721
792
|
transform_kwargs = dict(
|
722
793
|
session=dataset._session,
|
723
794
|
dependencies=self._deps,
|
724
|
-
drop_input_cols
|
795
|
+
drop_input_cols=self._drop_input_cols,
|
725
796
|
expected_output_cols_type="float",
|
726
797
|
)
|
798
|
+
expected_output_cols = self._align_expected_output_names(
|
799
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
800
|
+
)
|
727
801
|
|
728
802
|
elif isinstance(dataset, pd.DataFrame):
|
729
|
-
transform_kwargs = dict(
|
730
|
-
snowpark_input_cols = self._snowpark_cols,
|
731
|
-
drop_input_cols = self._drop_input_cols
|
732
|
-
)
|
803
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
733
804
|
|
734
805
|
transform_handlers = ModelTransformerBuilder.build(
|
735
806
|
dataset=dataset,
|
@@ -742,7 +813,7 @@ class GraphicalLasso(BaseTransformer):
|
|
742
813
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
743
814
|
inference_method=inference_method,
|
744
815
|
input_cols=self.input_cols,
|
745
|
-
expected_output_cols=
|
816
|
+
expected_output_cols=expected_output_cols,
|
746
817
|
**transform_kwargs
|
747
818
|
)
|
748
819
|
return output_df
|
@@ -771,17 +842,17 @@ class GraphicalLasso(BaseTransformer):
|
|
771
842
|
Output dataset with probability of the sample for each class in the model.
|
772
843
|
"""
|
773
844
|
super()._check_dataset_type(dataset)
|
774
|
-
inference_method="score_samples"
|
845
|
+
inference_method = "score_samples"
|
775
846
|
|
776
847
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
777
848
|
# are specific to the type of dataset used.
|
778
849
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
779
850
|
|
851
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
852
|
+
|
780
853
|
if isinstance(dataset, DataFrame):
|
781
|
-
self.
|
782
|
-
|
783
|
-
inference_method=inference_method,
|
784
|
-
)
|
854
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
855
|
+
self._deps = self._get_dependencies()
|
785
856
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
786
857
|
transform_kwargs = dict(
|
787
858
|
session=dataset._session,
|
@@ -789,6 +860,9 @@ class GraphicalLasso(BaseTransformer):
|
|
789
860
|
drop_input_cols = self._drop_input_cols,
|
790
861
|
expected_output_cols_type="float",
|
791
862
|
)
|
863
|
+
expected_output_cols = self._align_expected_output_names(
|
864
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
865
|
+
)
|
792
866
|
|
793
867
|
elif isinstance(dataset, pd.DataFrame):
|
794
868
|
transform_kwargs = dict(
|
@@ -807,7 +881,7 @@ class GraphicalLasso(BaseTransformer):
|
|
807
881
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
808
882
|
inference_method=inference_method,
|
809
883
|
input_cols=self.input_cols,
|
810
|
-
expected_output_cols=
|
884
|
+
expected_output_cols=expected_output_cols,
|
811
885
|
**transform_kwargs
|
812
886
|
)
|
813
887
|
return output_df
|
@@ -842,17 +916,15 @@ class GraphicalLasso(BaseTransformer):
|
|
842
916
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
843
917
|
|
844
918
|
if isinstance(dataset, DataFrame):
|
845
|
-
self.
|
846
|
-
|
847
|
-
inference_method="score",
|
848
|
-
)
|
919
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
920
|
+
self._deps = self._get_dependencies()
|
849
921
|
selected_cols = self._get_active_columns()
|
850
922
|
if len(selected_cols) > 0:
|
851
923
|
dataset = dataset.select(selected_cols)
|
852
924
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
853
925
|
transform_kwargs = dict(
|
854
926
|
session=dataset._session,
|
855
|
-
dependencies=
|
927
|
+
dependencies=self._deps,
|
856
928
|
score_sproc_imports=['sklearn'],
|
857
929
|
)
|
858
930
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -917,11 +989,8 @@ class GraphicalLasso(BaseTransformer):
|
|
917
989
|
|
918
990
|
if isinstance(dataset, DataFrame):
|
919
991
|
|
920
|
-
self.
|
921
|
-
|
922
|
-
inference_method=inference_method,
|
923
|
-
|
924
|
-
)
|
992
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
993
|
+
self._deps = self._get_dependencies()
|
925
994
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
926
995
|
transform_kwargs = dict(
|
927
996
|
session = dataset._session,
|
@@ -954,50 +1023,84 @@ class GraphicalLasso(BaseTransformer):
|
|
954
1023
|
)
|
955
1024
|
return output_df
|
956
1025
|
|
1026
|
+
|
1027
|
+
|
1028
|
+
def to_sklearn(self) -> Any:
|
1029
|
+
"""Get sklearn.covariance.GraphicalLasso object.
|
1030
|
+
"""
|
1031
|
+
if self._sklearn_object is None:
|
1032
|
+
self._sklearn_object = self._create_sklearn_object()
|
1033
|
+
return self._sklearn_object
|
1034
|
+
|
1035
|
+
def to_xgboost(self) -> Any:
|
1036
|
+
raise exceptions.SnowflakeMLException(
|
1037
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1038
|
+
original_exception=AttributeError(
|
1039
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1040
|
+
"to_xgboost()",
|
1041
|
+
"to_sklearn()"
|
1042
|
+
)
|
1043
|
+
),
|
1044
|
+
)
|
1045
|
+
|
1046
|
+
def to_lightgbm(self) -> Any:
|
1047
|
+
raise exceptions.SnowflakeMLException(
|
1048
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1049
|
+
original_exception=AttributeError(
|
1050
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1051
|
+
"to_lightgbm()",
|
1052
|
+
"to_sklearn()"
|
1053
|
+
)
|
1054
|
+
),
|
1055
|
+
)
|
1056
|
+
|
1057
|
+
def _get_dependencies(self) -> List[str]:
|
1058
|
+
return self._deps
|
1059
|
+
|
957
1060
|
|
958
|
-
def
|
1061
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
959
1062
|
self._model_signature_dict = dict()
|
960
1063
|
|
961
1064
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
962
1065
|
|
963
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1066
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
964
1067
|
outputs: List[BaseFeatureSpec] = []
|
965
1068
|
if hasattr(self, "predict"):
|
966
1069
|
# keep mypy happy
|
967
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1070
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
968
1071
|
# For classifier, the type of predict is the same as the type of label
|
969
|
-
if self._sklearn_object._estimator_type ==
|
970
|
-
|
1072
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1073
|
+
# label columns is the desired type for output
|
971
1074
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
972
1075
|
# rename the output columns
|
973
1076
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
974
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
975
|
-
|
976
|
-
|
1077
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1078
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1079
|
+
)
|
977
1080
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
978
1081
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
979
|
-
# Clusterer returns int64 cluster labels.
|
1082
|
+
# Clusterer returns int64 cluster labels.
|
980
1083
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
981
1084
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
982
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
983
|
-
|
984
|
-
|
985
|
-
|
1085
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1086
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1087
|
+
)
|
1088
|
+
|
986
1089
|
# For regressor, the type of predict is float64
|
987
|
-
elif self._sklearn_object._estimator_type ==
|
1090
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
988
1091
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
989
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
990
|
-
|
991
|
-
|
992
|
-
|
1092
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1093
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1094
|
+
)
|
1095
|
+
|
993
1096
|
for prob_func in PROB_FUNCTIONS:
|
994
1097
|
if hasattr(self, prob_func):
|
995
1098
|
output_cols_prefix: str = f"{prob_func}_"
|
996
1099
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
997
1100
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
998
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
999
|
-
|
1000
|
-
|
1101
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1102
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1103
|
+
)
|
1001
1104
|
|
1002
1105
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1003
1106
|
items = list(self._model_signature_dict.items())
|
@@ -1010,10 +1113,10 @@ class GraphicalLasso(BaseTransformer):
|
|
1010
1113
|
"""Returns model signature of current class.
|
1011
1114
|
|
1012
1115
|
Raises:
|
1013
|
-
|
1116
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1014
1117
|
|
1015
1118
|
Returns:
|
1016
|
-
Dict
|
1119
|
+
Dict with each method and its input output signature
|
1017
1120
|
"""
|
1018
1121
|
if self._model_signature_dict is None:
|
1019
1122
|
raise exceptions.SnowflakeMLException(
|
@@ -1021,35 +1124,3 @@ class GraphicalLasso(BaseTransformer):
|
|
1021
1124
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1022
1125
|
)
|
1023
1126
|
return self._model_signature_dict
|
1024
|
-
|
1025
|
-
def to_sklearn(self) -> Any:
|
1026
|
-
"""Get sklearn.covariance.GraphicalLasso object.
|
1027
|
-
"""
|
1028
|
-
if self._sklearn_object is None:
|
1029
|
-
self._sklearn_object = self._create_sklearn_object()
|
1030
|
-
return self._sklearn_object
|
1031
|
-
|
1032
|
-
def to_xgboost(self) -> Any:
|
1033
|
-
raise exceptions.SnowflakeMLException(
|
1034
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1035
|
-
original_exception=AttributeError(
|
1036
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1037
|
-
"to_xgboost()",
|
1038
|
-
"to_sklearn()"
|
1039
|
-
)
|
1040
|
-
),
|
1041
|
-
)
|
1042
|
-
|
1043
|
-
def to_lightgbm(self) -> Any:
|
1044
|
-
raise exceptions.SnowflakeMLException(
|
1045
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1046
|
-
original_exception=AttributeError(
|
1047
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1048
|
-
"to_lightgbm()",
|
1049
|
-
"to_sklearn()"
|
1050
|
-
)
|
1051
|
-
),
|
1052
|
-
)
|
1053
|
-
|
1054
|
-
def _get_dependencies(self) -> List[str]:
|
1055
|
-
return self._deps
|