snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class RadiusNeighborsRegressor(BaseTransformer):
71
64
  r"""Regression based on neighbors within a fixed radius
72
65
  For more details on this class, see [sklearn.neighbors.RadiusNeighborsRegressor]
@@ -275,12 +268,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
275
268
  )
276
269
  return selected_cols
277
270
 
278
- @telemetry.send_api_usage_telemetry(
279
- project=_PROJECT,
280
- subproject=_SUBPROJECT,
281
- custom_tags=dict([("autogen", True)]),
282
- )
283
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RadiusNeighborsRegressor":
271
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RadiusNeighborsRegressor":
284
272
  """Fit the radius neighbors regressor from the training dataset
285
273
  For more details on this function, see [sklearn.neighbors.RadiusNeighborsRegressor.fit]
286
274
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsRegressor.html#sklearn.neighbors.RadiusNeighborsRegressor.fit)
@@ -307,12 +295,14 @@ class RadiusNeighborsRegressor(BaseTransformer):
307
295
 
308
296
  self._snowpark_cols = dataset.select(self.input_cols).columns
309
297
 
310
- # If we are already in a stored procedure, no need to kick off another one.
298
+ # If we are already in a stored procedure, no need to kick off another one.
311
299
  if SNOWML_SPROC_ENV in os.environ:
312
300
  statement_params = telemetry.get_function_usage_statement_params(
313
301
  project=_PROJECT,
314
302
  subproject=_SUBPROJECT,
315
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RadiusNeighborsRegressor.__class__.__name__),
303
+ function_name=telemetry.get_statement_params_full_func_name(
304
+ inspect.currentframe(), RadiusNeighborsRegressor.__class__.__name__
305
+ ),
316
306
  api_calls=[Session.call],
317
307
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
318
308
  )
@@ -333,27 +323,24 @@ class RadiusNeighborsRegressor(BaseTransformer):
333
323
  )
334
324
  self._sklearn_object = model_trainer.train()
335
325
  self._is_fitted = True
336
- self._get_model_signatures(dataset)
326
+ self._generate_model_signatures(dataset)
337
327
  return self
338
328
 
339
329
  def _batch_inference_validate_snowpark(
340
330
  self,
341
331
  dataset: DataFrame,
342
332
  inference_method: str,
343
- ) -> List[str]:
344
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
345
- return the available package that exists in the snowflake anaconda channel
333
+ ) -> None:
334
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
346
335
 
347
336
  Args:
348
337
  dataset: snowpark dataframe
349
338
  inference_method: the inference method such as predict, score...
350
-
339
+
351
340
  Raises:
352
341
  SnowflakeMLException: If the estimator is not fitted, raise error
353
342
  SnowflakeMLException: If the session is None, raise error
354
343
 
355
- Returns:
356
- A list of available package that exists in the snowflake anaconda channel
357
344
  """
358
345
  if not self._is_fitted:
359
346
  raise exceptions.SnowflakeMLException(
@@ -371,9 +358,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
371
358
  "Session must not specified for snowpark dataset."
372
359
  ),
373
360
  )
374
- # Validate that key package version in user workspace are supported in snowflake conda channel
375
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
376
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
361
+
377
362
 
378
363
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
379
364
  @telemetry.send_api_usage_telemetry(
@@ -409,7 +394,9 @@ class RadiusNeighborsRegressor(BaseTransformer):
409
394
  # when it is classifier, infer the datatype from label columns
410
395
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
411
396
  # Batch inference takes a single expected output column type. Use the first columns type for now.
412
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
397
+ label_cols_signatures = [
398
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
399
+ ]
413
400
  if len(label_cols_signatures) == 0:
414
401
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
415
402
  raise exceptions.SnowflakeMLException(
@@ -417,25 +404,23 @@ class RadiusNeighborsRegressor(BaseTransformer):
417
404
  original_exception=ValueError(error_str),
418
405
  )
419
406
 
420
- expected_type_inferred = convert_sp_to_sf_type(
421
- label_cols_signatures[0].as_snowpark_type()
422
- )
407
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
423
408
 
424
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
425
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
409
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
410
+ self._deps = self._get_dependencies()
411
+ assert isinstance(
412
+ dataset._session, Session
413
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
426
414
 
427
415
  transform_kwargs = dict(
428
- session = dataset._session,
429
- dependencies = self._deps,
430
- drop_input_cols = self._drop_input_cols,
431
- expected_output_cols_type = expected_type_inferred,
416
+ session=dataset._session,
417
+ dependencies=self._deps,
418
+ drop_input_cols=self._drop_input_cols,
419
+ expected_output_cols_type=expected_type_inferred,
432
420
  )
433
421
 
434
422
  elif isinstance(dataset, pd.DataFrame):
435
- transform_kwargs = dict(
436
- snowpark_input_cols = self._snowpark_cols,
437
- drop_input_cols = self._drop_input_cols
438
- )
423
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
439
424
 
440
425
  transform_handlers = ModelTransformerBuilder.build(
441
426
  dataset=dataset,
@@ -475,7 +460,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
475
460
  Transformed dataset.
476
461
  """
477
462
  super()._check_dataset_type(dataset)
478
- inference_method="transform"
463
+ inference_method = "transform"
479
464
 
480
465
  # This dictionary contains optional kwargs for batch inference. These kwargs
481
466
  # are specific to the type of dataset used.
@@ -505,24 +490,19 @@ class RadiusNeighborsRegressor(BaseTransformer):
505
490
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
506
491
  expected_dtype = convert_sp_to_sf_type(output_types[0])
507
492
 
508
- self._deps = self._batch_inference_validate_snowpark(
509
- dataset=dataset,
510
- inference_method=inference_method,
511
- )
493
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
494
+ self._deps = self._get_dependencies()
512
495
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
513
496
 
514
497
  transform_kwargs = dict(
515
- session = dataset._session,
516
- dependencies = self._deps,
517
- drop_input_cols = self._drop_input_cols,
518
- expected_output_cols_type = expected_dtype,
498
+ session=dataset._session,
499
+ dependencies=self._deps,
500
+ drop_input_cols=self._drop_input_cols,
501
+ expected_output_cols_type=expected_dtype,
519
502
  )
520
503
 
521
504
  elif isinstance(dataset, pd.DataFrame):
522
- transform_kwargs = dict(
523
- snowpark_input_cols = self._snowpark_cols,
524
- drop_input_cols = self._drop_input_cols
525
- )
505
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
526
506
 
527
507
  transform_handlers = ModelTransformerBuilder.build(
528
508
  dataset=dataset,
@@ -541,7 +521,11 @@ class RadiusNeighborsRegressor(BaseTransformer):
541
521
  return output_df
542
522
 
543
523
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
544
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
524
+ def fit_predict(
525
+ self,
526
+ dataset: Union[DataFrame, pd.DataFrame],
527
+ output_cols_prefix: str = "fit_predict_",
528
+ ) -> Union[DataFrame, pd.DataFrame]:
545
529
  """ Method not supported for this class.
546
530
 
547
531
 
@@ -566,22 +550,104 @@ class RadiusNeighborsRegressor(BaseTransformer):
566
550
  )
567
551
  output_result, fitted_estimator = model_trainer.train_fit_predict(
568
552
  drop_input_cols=self._drop_input_cols,
569
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
553
+ expected_output_cols_list=(
554
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
555
+ ),
570
556
  )
571
557
  self._sklearn_object = fitted_estimator
572
558
  self._is_fitted = True
573
559
  return output_result
574
560
 
561
+
562
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
563
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
564
+ """ Method not supported for this class.
565
+
575
566
 
576
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
577
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
578
- """
567
+ Raises:
568
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
569
+
570
+ Args:
571
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
572
+ Snowpark or Pandas DataFrame.
573
+ output_cols_prefix: Prefix for the response columns
579
574
  Returns:
580
575
  Transformed dataset.
581
576
  """
582
- self.fit(dataset)
583
- assert self._sklearn_object is not None
584
- return self._sklearn_object.embedding_
577
+ self._infer_input_output_cols(dataset)
578
+ super()._check_dataset_type(dataset)
579
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
580
+ estimator=self._sklearn_object,
581
+ dataset=dataset,
582
+ input_cols=self.input_cols,
583
+ label_cols=self.label_cols,
584
+ sample_weight_col=self.sample_weight_col,
585
+ autogenerated=self._autogenerated,
586
+ subproject=_SUBPROJECT,
587
+ )
588
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
589
+ drop_input_cols=self._drop_input_cols,
590
+ expected_output_cols_list=self.output_cols,
591
+ )
592
+ self._sklearn_object = fitted_estimator
593
+ self._is_fitted = True
594
+ return output_result
595
+
596
+
597
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
598
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
599
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
600
+ """
601
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
602
+ # The following condition is introduced for kneighbors methods, and not used in other methods
603
+ if output_cols:
604
+ output_cols = [
605
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
606
+ for c in output_cols
607
+ ]
608
+ elif getattr(self._sklearn_object, "classes_", None) is None:
609
+ output_cols = [output_cols_prefix]
610
+ elif self._sklearn_object is not None:
611
+ classes = self._sklearn_object.classes_
612
+ if isinstance(classes, numpy.ndarray):
613
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
614
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
615
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
616
+ output_cols = []
617
+ for i, cl in enumerate(classes):
618
+ # For binary classification, there is only one output column for each class
619
+ # ndarray as the two classes are complementary.
620
+ if len(cl) == 2:
621
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
622
+ else:
623
+ output_cols.extend([
624
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
625
+ ])
626
+ else:
627
+ output_cols = []
628
+
629
+ # Make sure column names are valid snowflake identifiers.
630
+ assert output_cols is not None # Make MyPy happy
631
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
632
+
633
+ return rv
634
+
635
+ def _align_expected_output_names(
636
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
637
+ ) -> List[str]:
638
+ # in case the inferred output column names dimension is different
639
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
640
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
641
+ output_df_columns = list(output_df_pd.columns)
642
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
643
+ if self.sample_weight_col:
644
+ output_df_columns_set -= set(self.sample_weight_col)
645
+ # if the dimension of inferred output column names is correct; use it
646
+ if len(expected_output_cols_list) == len(output_df_columns_set):
647
+ return expected_output_cols_list
648
+ # otherwise, use the sklearn estimator's output
649
+ else:
650
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
585
651
 
586
652
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
587
653
  @telemetry.send_api_usage_telemetry(
@@ -613,24 +679,26 @@ class RadiusNeighborsRegressor(BaseTransformer):
613
679
  # are specific to the type of dataset used.
614
680
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
615
681
 
682
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
683
+
616
684
  if isinstance(dataset, DataFrame):
617
- self._deps = self._batch_inference_validate_snowpark(
618
- dataset=dataset,
619
- inference_method=inference_method,
620
- )
621
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
685
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
686
+ self._deps = self._get_dependencies()
687
+ assert isinstance(
688
+ dataset._session, Session
689
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
622
690
  transform_kwargs = dict(
623
691
  session=dataset._session,
624
692
  dependencies=self._deps,
625
- drop_input_cols = self._drop_input_cols,
693
+ drop_input_cols=self._drop_input_cols,
626
694
  expected_output_cols_type="float",
627
695
  )
696
+ expected_output_cols = self._align_expected_output_names(
697
+ inference_method, dataset, expected_output_cols, output_cols_prefix
698
+ )
628
699
 
629
700
  elif isinstance(dataset, pd.DataFrame):
630
- transform_kwargs = dict(
631
- snowpark_input_cols = self._snowpark_cols,
632
- drop_input_cols = self._drop_input_cols
633
- )
701
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
634
702
 
635
703
  transform_handlers = ModelTransformerBuilder.build(
636
704
  dataset=dataset,
@@ -642,7 +710,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
642
710
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
643
711
  inference_method=inference_method,
644
712
  input_cols=self.input_cols,
645
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
713
+ expected_output_cols=expected_output_cols,
646
714
  **transform_kwargs
647
715
  )
648
716
  return output_df
@@ -672,29 +740,30 @@ class RadiusNeighborsRegressor(BaseTransformer):
672
740
  Output dataset with log probability of the sample for each class in the model.
673
741
  """
674
742
  super()._check_dataset_type(dataset)
675
- inference_method="predict_log_proba"
743
+ inference_method = "predict_log_proba"
744
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
676
745
 
677
746
  # This dictionary contains optional kwargs for batch inference. These kwargs
678
747
  # are specific to the type of dataset used.
679
748
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
680
749
 
681
750
  if isinstance(dataset, DataFrame):
682
- self._deps = self._batch_inference_validate_snowpark(
683
- dataset=dataset,
684
- inference_method=inference_method,
685
- )
686
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
752
+ self._deps = self._get_dependencies()
753
+ assert isinstance(
754
+ dataset._session, Session
755
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
687
756
  transform_kwargs = dict(
688
757
  session=dataset._session,
689
758
  dependencies=self._deps,
690
- drop_input_cols = self._drop_input_cols,
759
+ drop_input_cols=self._drop_input_cols,
691
760
  expected_output_cols_type="float",
692
761
  )
762
+ expected_output_cols = self._align_expected_output_names(
763
+ inference_method, dataset, expected_output_cols, output_cols_prefix
764
+ )
693
765
  elif isinstance(dataset, pd.DataFrame):
694
- transform_kwargs = dict(
695
- snowpark_input_cols = self._snowpark_cols,
696
- drop_input_cols = self._drop_input_cols
697
- )
766
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
698
767
 
699
768
  transform_handlers = ModelTransformerBuilder.build(
700
769
  dataset=dataset,
@@ -707,7 +776,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
707
776
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
708
777
  inference_method=inference_method,
709
778
  input_cols=self.input_cols,
710
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
779
+ expected_output_cols=expected_output_cols,
711
780
  **transform_kwargs
712
781
  )
713
782
  return output_df
@@ -733,30 +802,32 @@ class RadiusNeighborsRegressor(BaseTransformer):
733
802
  Output dataset with results of the decision function for the samples in input dataset.
734
803
  """
735
804
  super()._check_dataset_type(dataset)
736
- inference_method="decision_function"
805
+ inference_method = "decision_function"
737
806
 
738
807
  # This dictionary contains optional kwargs for batch inference. These kwargs
739
808
  # are specific to the type of dataset used.
740
809
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
741
810
 
811
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
812
+
742
813
  if isinstance(dataset, DataFrame):
743
- self._deps = self._batch_inference_validate_snowpark(
744
- dataset=dataset,
745
- inference_method=inference_method,
746
- )
747
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
814
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
815
+ self._deps = self._get_dependencies()
816
+ assert isinstance(
817
+ dataset._session, Session
818
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
748
819
  transform_kwargs = dict(
749
820
  session=dataset._session,
750
821
  dependencies=self._deps,
751
- drop_input_cols = self._drop_input_cols,
822
+ drop_input_cols=self._drop_input_cols,
752
823
  expected_output_cols_type="float",
753
824
  )
825
+ expected_output_cols = self._align_expected_output_names(
826
+ inference_method, dataset, expected_output_cols, output_cols_prefix
827
+ )
754
828
 
755
829
  elif isinstance(dataset, pd.DataFrame):
756
- transform_kwargs = dict(
757
- snowpark_input_cols = self._snowpark_cols,
758
- drop_input_cols = self._drop_input_cols
759
- )
830
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
760
831
 
761
832
  transform_handlers = ModelTransformerBuilder.build(
762
833
  dataset=dataset,
@@ -769,7 +840,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
769
840
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
770
841
  inference_method=inference_method,
771
842
  input_cols=self.input_cols,
772
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
843
+ expected_output_cols=expected_output_cols,
773
844
  **transform_kwargs
774
845
  )
775
846
  return output_df
@@ -798,17 +869,17 @@ class RadiusNeighborsRegressor(BaseTransformer):
798
869
  Output dataset with probability of the sample for each class in the model.
799
870
  """
800
871
  super()._check_dataset_type(dataset)
801
- inference_method="score_samples"
872
+ inference_method = "score_samples"
802
873
 
803
874
  # This dictionary contains optional kwargs for batch inference. These kwargs
804
875
  # are specific to the type of dataset used.
805
876
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
806
877
 
878
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
879
+
807
880
  if isinstance(dataset, DataFrame):
808
- self._deps = self._batch_inference_validate_snowpark(
809
- dataset=dataset,
810
- inference_method=inference_method,
811
- )
881
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
882
+ self._deps = self._get_dependencies()
812
883
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
813
884
  transform_kwargs = dict(
814
885
  session=dataset._session,
@@ -816,6 +887,9 @@ class RadiusNeighborsRegressor(BaseTransformer):
816
887
  drop_input_cols = self._drop_input_cols,
817
888
  expected_output_cols_type="float",
818
889
  )
890
+ expected_output_cols = self._align_expected_output_names(
891
+ inference_method, dataset, expected_output_cols, output_cols_prefix
892
+ )
819
893
 
820
894
  elif isinstance(dataset, pd.DataFrame):
821
895
  transform_kwargs = dict(
@@ -834,7 +908,7 @@ class RadiusNeighborsRegressor(BaseTransformer):
834
908
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
835
909
  inference_method=inference_method,
836
910
  input_cols=self.input_cols,
837
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
911
+ expected_output_cols=expected_output_cols,
838
912
  **transform_kwargs
839
913
  )
840
914
  return output_df
@@ -869,17 +943,15 @@ class RadiusNeighborsRegressor(BaseTransformer):
869
943
  transform_kwargs: ScoreKwargsTypedDict = dict()
870
944
 
871
945
  if isinstance(dataset, DataFrame):
872
- self._deps = self._batch_inference_validate_snowpark(
873
- dataset=dataset,
874
- inference_method="score",
875
- )
946
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
947
+ self._deps = self._get_dependencies()
876
948
  selected_cols = self._get_active_columns()
877
949
  if len(selected_cols) > 0:
878
950
  dataset = dataset.select(selected_cols)
879
951
  assert isinstance(dataset._session, Session) # keep mypy happy
880
952
  transform_kwargs = dict(
881
953
  session=dataset._session,
882
- dependencies=["snowflake-snowpark-python"] + self._deps,
954
+ dependencies=self._deps,
883
955
  score_sproc_imports=['sklearn'],
884
956
  )
885
957
  elif isinstance(dataset, pd.DataFrame):
@@ -944,11 +1016,8 @@ class RadiusNeighborsRegressor(BaseTransformer):
944
1016
 
945
1017
  if isinstance(dataset, DataFrame):
946
1018
 
947
- self._deps = self._batch_inference_validate_snowpark(
948
- dataset=dataset,
949
- inference_method=inference_method,
950
-
951
- )
1019
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1020
+ self._deps = self._get_dependencies()
952
1021
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
953
1022
  transform_kwargs = dict(
954
1023
  session = dataset._session,
@@ -981,50 +1050,84 @@ class RadiusNeighborsRegressor(BaseTransformer):
981
1050
  )
982
1051
  return output_df
983
1052
 
1053
+
1054
+
1055
+ def to_sklearn(self) -> Any:
1056
+ """Get sklearn.neighbors.RadiusNeighborsRegressor object.
1057
+ """
1058
+ if self._sklearn_object is None:
1059
+ self._sklearn_object = self._create_sklearn_object()
1060
+ return self._sklearn_object
1061
+
1062
+ def to_xgboost(self) -> Any:
1063
+ raise exceptions.SnowflakeMLException(
1064
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1065
+ original_exception=AttributeError(
1066
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1067
+ "to_xgboost()",
1068
+ "to_sklearn()"
1069
+ )
1070
+ ),
1071
+ )
1072
+
1073
+ def to_lightgbm(self) -> Any:
1074
+ raise exceptions.SnowflakeMLException(
1075
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1076
+ original_exception=AttributeError(
1077
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1078
+ "to_lightgbm()",
1079
+ "to_sklearn()"
1080
+ )
1081
+ ),
1082
+ )
1083
+
1084
+ def _get_dependencies(self) -> List[str]:
1085
+ return self._deps
1086
+
984
1087
 
985
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1088
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
986
1089
  self._model_signature_dict = dict()
987
1090
 
988
1091
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
989
1092
 
990
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1093
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
991
1094
  outputs: List[BaseFeatureSpec] = []
992
1095
  if hasattr(self, "predict"):
993
1096
  # keep mypy happy
994
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1097
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
995
1098
  # For classifier, the type of predict is the same as the type of label
996
- if self._sklearn_object._estimator_type == 'classifier':
997
- # label columns is the desired type for output
1099
+ if self._sklearn_object._estimator_type == "classifier":
1100
+ # label columns is the desired type for output
998
1101
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
999
1102
  # rename the output columns
1000
1103
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1001
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1002
- ([] if self._drop_input_cols else inputs)
1003
- + outputs)
1104
+ self._model_signature_dict["predict"] = ModelSignature(
1105
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1106
+ )
1004
1107
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1005
1108
  # For outlier models, returns -1 for outliers and 1 for inliers.
1006
- # Clusterer returns int64 cluster labels.
1109
+ # Clusterer returns int64 cluster labels.
1007
1110
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1008
1111
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1009
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1010
- ([] if self._drop_input_cols else inputs)
1011
- + outputs)
1012
-
1112
+ self._model_signature_dict["predict"] = ModelSignature(
1113
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1114
+ )
1115
+
1013
1116
  # For regressor, the type of predict is float64
1014
- elif self._sklearn_object._estimator_type == 'regressor':
1117
+ elif self._sklearn_object._estimator_type == "regressor":
1015
1118
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1016
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1019
-
1119
+ self._model_signature_dict["predict"] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1122
+
1020
1123
  for prob_func in PROB_FUNCTIONS:
1021
1124
  if hasattr(self, prob_func):
1022
1125
  output_cols_prefix: str = f"{prob_func}_"
1023
1126
  output_column_names = self._get_output_column_names(output_cols_prefix)
1024
1127
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1025
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1026
- ([] if self._drop_input_cols else inputs)
1027
- + outputs)
1128
+ self._model_signature_dict[prob_func] = ModelSignature(
1129
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1130
+ )
1028
1131
 
1029
1132
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1030
1133
  items = list(self._model_signature_dict.items())
@@ -1037,10 +1140,10 @@ class RadiusNeighborsRegressor(BaseTransformer):
1037
1140
  """Returns model signature of current class.
1038
1141
 
1039
1142
  Raises:
1040
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1143
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1041
1144
 
1042
1145
  Returns:
1043
- Dict[str, ModelSignature]: each method and its input output signature
1146
+ Dict with each method and its input output signature
1044
1147
  """
1045
1148
  if self._model_signature_dict is None:
1046
1149
  raise exceptions.SnowflakeMLException(
@@ -1048,35 +1151,3 @@ class RadiusNeighborsRegressor(BaseTransformer):
1048
1151
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1049
1152
  )
1050
1153
  return self._model_signature_dict
1051
-
1052
- def to_sklearn(self) -> Any:
1053
- """Get sklearn.neighbors.RadiusNeighborsRegressor object.
1054
- """
1055
- if self._sklearn_object is None:
1056
- self._sklearn_object = self._create_sklearn_object()
1057
- return self._sklearn_object
1058
-
1059
- def to_xgboost(self) -> Any:
1060
- raise exceptions.SnowflakeMLException(
1061
- error_code=error_codes.METHOD_NOT_ALLOWED,
1062
- original_exception=AttributeError(
1063
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1064
- "to_xgboost()",
1065
- "to_sklearn()"
1066
- )
1067
- ),
1068
- )
1069
-
1070
- def to_lightgbm(self) -> Any:
1071
- raise exceptions.SnowflakeMLException(
1072
- error_code=error_codes.METHOD_NOT_ALLOWED,
1073
- original_exception=AttributeError(
1074
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1075
- "to_lightgbm()",
1076
- "to_sklearn()"
1077
- )
1078
- ),
1079
- )
1080
-
1081
- def _get_dependencies(self) -> List[str]:
1082
- return self._deps