snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neural_network".replace(
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class BernoulliRBM(BaseTransformer):
71
64
  r"""Bernoulli Restricted Boltzmann Machine (RBM)
72
65
  For more details on this class, see [sklearn.neural_network.BernoulliRBM]
@@ -232,12 +225,7 @@ class BernoulliRBM(BaseTransformer):
232
225
  )
233
226
  return selected_cols
234
227
 
235
- @telemetry.send_api_usage_telemetry(
236
- project=_PROJECT,
237
- subproject=_SUBPROJECT,
238
- custom_tags=dict([("autogen", True)]),
239
- )
240
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BernoulliRBM":
228
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BernoulliRBM":
241
229
  """Fit the model to the data X
242
230
  For more details on this function, see [sklearn.neural_network.BernoulliRBM.fit]
243
231
  (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html#sklearn.neural_network.BernoulliRBM.fit)
@@ -264,12 +252,14 @@ class BernoulliRBM(BaseTransformer):
264
252
 
265
253
  self._snowpark_cols = dataset.select(self.input_cols).columns
266
254
 
267
- # If we are already in a stored procedure, no need to kick off another one.
255
+ # If we are already in a stored procedure, no need to kick off another one.
268
256
  if SNOWML_SPROC_ENV in os.environ:
269
257
  statement_params = telemetry.get_function_usage_statement_params(
270
258
  project=_PROJECT,
271
259
  subproject=_SUBPROJECT,
272
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BernoulliRBM.__class__.__name__),
260
+ function_name=telemetry.get_statement_params_full_func_name(
261
+ inspect.currentframe(), BernoulliRBM.__class__.__name__
262
+ ),
273
263
  api_calls=[Session.call],
274
264
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
275
265
  )
@@ -290,27 +280,24 @@ class BernoulliRBM(BaseTransformer):
290
280
  )
291
281
  self._sklearn_object = model_trainer.train()
292
282
  self._is_fitted = True
293
- self._get_model_signatures(dataset)
283
+ self._generate_model_signatures(dataset)
294
284
  return self
295
285
 
296
286
  def _batch_inference_validate_snowpark(
297
287
  self,
298
288
  dataset: DataFrame,
299
289
  inference_method: str,
300
- ) -> List[str]:
301
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
302
- return the available package that exists in the snowflake anaconda channel
290
+ ) -> None:
291
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
303
292
 
304
293
  Args:
305
294
  dataset: snowpark dataframe
306
295
  inference_method: the inference method such as predict, score...
307
-
296
+
308
297
  Raises:
309
298
  SnowflakeMLException: If the estimator is not fitted, raise error
310
299
  SnowflakeMLException: If the session is None, raise error
311
300
 
312
- Returns:
313
- A list of available package that exists in the snowflake anaconda channel
314
301
  """
315
302
  if not self._is_fitted:
316
303
  raise exceptions.SnowflakeMLException(
@@ -328,9 +315,7 @@ class BernoulliRBM(BaseTransformer):
328
315
  "Session must not specified for snowpark dataset."
329
316
  ),
330
317
  )
331
- # Validate that key package version in user workspace are supported in snowflake conda channel
332
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
333
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
318
+
334
319
 
335
320
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
336
321
  @telemetry.send_api_usage_telemetry(
@@ -364,7 +349,9 @@ class BernoulliRBM(BaseTransformer):
364
349
  # when it is classifier, infer the datatype from label columns
365
350
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
366
351
  # Batch inference takes a single expected output column type. Use the first columns type for now.
367
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
352
+ label_cols_signatures = [
353
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
354
+ ]
368
355
  if len(label_cols_signatures) == 0:
369
356
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
370
357
  raise exceptions.SnowflakeMLException(
@@ -372,25 +359,23 @@ class BernoulliRBM(BaseTransformer):
372
359
  original_exception=ValueError(error_str),
373
360
  )
374
361
 
375
- expected_type_inferred = convert_sp_to_sf_type(
376
- label_cols_signatures[0].as_snowpark_type()
377
- )
362
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
378
363
 
379
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
380
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
364
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
365
+ self._deps = self._get_dependencies()
366
+ assert isinstance(
367
+ dataset._session, Session
368
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
381
369
 
382
370
  transform_kwargs = dict(
383
- session = dataset._session,
384
- dependencies = self._deps,
385
- drop_input_cols = self._drop_input_cols,
386
- expected_output_cols_type = expected_type_inferred,
371
+ session=dataset._session,
372
+ dependencies=self._deps,
373
+ drop_input_cols=self._drop_input_cols,
374
+ expected_output_cols_type=expected_type_inferred,
387
375
  )
388
376
 
389
377
  elif isinstance(dataset, pd.DataFrame):
390
- transform_kwargs = dict(
391
- snowpark_input_cols = self._snowpark_cols,
392
- drop_input_cols = self._drop_input_cols
393
- )
378
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
394
379
 
395
380
  transform_handlers = ModelTransformerBuilder.build(
396
381
  dataset=dataset,
@@ -432,7 +417,7 @@ class BernoulliRBM(BaseTransformer):
432
417
  Transformed dataset.
433
418
  """
434
419
  super()._check_dataset_type(dataset)
435
- inference_method="transform"
420
+ inference_method = "transform"
436
421
 
437
422
  # This dictionary contains optional kwargs for batch inference. These kwargs
438
423
  # are specific to the type of dataset used.
@@ -462,24 +447,19 @@ class BernoulliRBM(BaseTransformer):
462
447
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
463
448
  expected_dtype = convert_sp_to_sf_type(output_types[0])
464
449
 
465
- self._deps = self._batch_inference_validate_snowpark(
466
- dataset=dataset,
467
- inference_method=inference_method,
468
- )
450
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
451
+ self._deps = self._get_dependencies()
469
452
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
470
453
 
471
454
  transform_kwargs = dict(
472
- session = dataset._session,
473
- dependencies = self._deps,
474
- drop_input_cols = self._drop_input_cols,
475
- expected_output_cols_type = expected_dtype,
455
+ session=dataset._session,
456
+ dependencies=self._deps,
457
+ drop_input_cols=self._drop_input_cols,
458
+ expected_output_cols_type=expected_dtype,
476
459
  )
477
460
 
478
461
  elif isinstance(dataset, pd.DataFrame):
479
- transform_kwargs = dict(
480
- snowpark_input_cols = self._snowpark_cols,
481
- drop_input_cols = self._drop_input_cols
482
- )
462
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
483
463
 
484
464
  transform_handlers = ModelTransformerBuilder.build(
485
465
  dataset=dataset,
@@ -498,7 +478,11 @@ class BernoulliRBM(BaseTransformer):
498
478
  return output_df
499
479
 
500
480
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
501
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
481
+ def fit_predict(
482
+ self,
483
+ dataset: Union[DataFrame, pd.DataFrame],
484
+ output_cols_prefix: str = "fit_predict_",
485
+ ) -> Union[DataFrame, pd.DataFrame]:
502
486
  """ Method not supported for this class.
503
487
 
504
488
 
@@ -523,22 +507,106 @@ class BernoulliRBM(BaseTransformer):
523
507
  )
524
508
  output_result, fitted_estimator = model_trainer.train_fit_predict(
525
509
  drop_input_cols=self._drop_input_cols,
526
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
510
+ expected_output_cols_list=(
511
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
512
+ ),
527
513
  )
528
514
  self._sklearn_object = fitted_estimator
529
515
  self._is_fitted = True
530
516
  return output_result
531
517
 
518
+
519
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
520
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
521
+ """ Fit to data, then transform it
522
+ For more details on this function, see [sklearn.neural_network.BernoulliRBM.fit_transform]
523
+ (https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.BernoulliRBM.html#sklearn.neural_network.BernoulliRBM.fit_transform)
524
+
525
+
526
+ Raises:
527
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
532
528
 
533
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
534
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
535
- """
529
+ Args:
530
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
531
+ Snowpark or Pandas DataFrame.
532
+ output_cols_prefix: Prefix for the response columns
536
533
  Returns:
537
534
  Transformed dataset.
538
535
  """
539
- self.fit(dataset)
540
- assert self._sklearn_object is not None
541
- return self._sklearn_object.embedding_
536
+ self._infer_input_output_cols(dataset)
537
+ super()._check_dataset_type(dataset)
538
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
539
+ estimator=self._sklearn_object,
540
+ dataset=dataset,
541
+ input_cols=self.input_cols,
542
+ label_cols=self.label_cols,
543
+ sample_weight_col=self.sample_weight_col,
544
+ autogenerated=self._autogenerated,
545
+ subproject=_SUBPROJECT,
546
+ )
547
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
548
+ drop_input_cols=self._drop_input_cols,
549
+ expected_output_cols_list=self.output_cols,
550
+ )
551
+ self._sklearn_object = fitted_estimator
552
+ self._is_fitted = True
553
+ return output_result
554
+
555
+
556
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
557
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
558
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
559
+ """
560
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
561
+ # The following condition is introduced for kneighbors methods, and not used in other methods
562
+ if output_cols:
563
+ output_cols = [
564
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
565
+ for c in output_cols
566
+ ]
567
+ elif getattr(self._sklearn_object, "classes_", None) is None:
568
+ output_cols = [output_cols_prefix]
569
+ elif self._sklearn_object is not None:
570
+ classes = self._sklearn_object.classes_
571
+ if isinstance(classes, numpy.ndarray):
572
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
573
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
574
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
575
+ output_cols = []
576
+ for i, cl in enumerate(classes):
577
+ # For binary classification, there is only one output column for each class
578
+ # ndarray as the two classes are complementary.
579
+ if len(cl) == 2:
580
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
581
+ else:
582
+ output_cols.extend([
583
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
584
+ ])
585
+ else:
586
+ output_cols = []
587
+
588
+ # Make sure column names are valid snowflake identifiers.
589
+ assert output_cols is not None # Make MyPy happy
590
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
591
+
592
+ return rv
593
+
594
+ def _align_expected_output_names(
595
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
596
+ ) -> List[str]:
597
+ # in case the inferred output column names dimension is different
598
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
599
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
600
+ output_df_columns = list(output_df_pd.columns)
601
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
602
+ if self.sample_weight_col:
603
+ output_df_columns_set -= set(self.sample_weight_col)
604
+ # if the dimension of inferred output column names is correct; use it
605
+ if len(expected_output_cols_list) == len(output_df_columns_set):
606
+ return expected_output_cols_list
607
+ # otherwise, use the sklearn estimator's output
608
+ else:
609
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
542
610
 
543
611
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
544
612
  @telemetry.send_api_usage_telemetry(
@@ -570,24 +638,26 @@ class BernoulliRBM(BaseTransformer):
570
638
  # are specific to the type of dataset used.
571
639
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
572
640
 
641
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
642
+
573
643
  if isinstance(dataset, DataFrame):
574
- self._deps = self._batch_inference_validate_snowpark(
575
- dataset=dataset,
576
- inference_method=inference_method,
577
- )
578
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
644
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
645
+ self._deps = self._get_dependencies()
646
+ assert isinstance(
647
+ dataset._session, Session
648
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
579
649
  transform_kwargs = dict(
580
650
  session=dataset._session,
581
651
  dependencies=self._deps,
582
- drop_input_cols = self._drop_input_cols,
652
+ drop_input_cols=self._drop_input_cols,
583
653
  expected_output_cols_type="float",
584
654
  )
655
+ expected_output_cols = self._align_expected_output_names(
656
+ inference_method, dataset, expected_output_cols, output_cols_prefix
657
+ )
585
658
 
586
659
  elif isinstance(dataset, pd.DataFrame):
587
- transform_kwargs = dict(
588
- snowpark_input_cols = self._snowpark_cols,
589
- drop_input_cols = self._drop_input_cols
590
- )
660
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
591
661
 
592
662
  transform_handlers = ModelTransformerBuilder.build(
593
663
  dataset=dataset,
@@ -599,7 +669,7 @@ class BernoulliRBM(BaseTransformer):
599
669
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
600
670
  inference_method=inference_method,
601
671
  input_cols=self.input_cols,
602
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
672
+ expected_output_cols=expected_output_cols,
603
673
  **transform_kwargs
604
674
  )
605
675
  return output_df
@@ -629,29 +699,30 @@ class BernoulliRBM(BaseTransformer):
629
699
  Output dataset with log probability of the sample for each class in the model.
630
700
  """
631
701
  super()._check_dataset_type(dataset)
632
- inference_method="predict_log_proba"
702
+ inference_method = "predict_log_proba"
703
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
633
704
 
634
705
  # This dictionary contains optional kwargs for batch inference. These kwargs
635
706
  # are specific to the type of dataset used.
636
707
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
637
708
 
638
709
  if isinstance(dataset, DataFrame):
639
- self._deps = self._batch_inference_validate_snowpark(
640
- dataset=dataset,
641
- inference_method=inference_method,
642
- )
643
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
710
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
711
+ self._deps = self._get_dependencies()
712
+ assert isinstance(
713
+ dataset._session, Session
714
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
644
715
  transform_kwargs = dict(
645
716
  session=dataset._session,
646
717
  dependencies=self._deps,
647
- drop_input_cols = self._drop_input_cols,
718
+ drop_input_cols=self._drop_input_cols,
648
719
  expected_output_cols_type="float",
649
720
  )
721
+ expected_output_cols = self._align_expected_output_names(
722
+ inference_method, dataset, expected_output_cols, output_cols_prefix
723
+ )
650
724
  elif isinstance(dataset, pd.DataFrame):
651
- transform_kwargs = dict(
652
- snowpark_input_cols = self._snowpark_cols,
653
- drop_input_cols = self._drop_input_cols
654
- )
725
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
655
726
 
656
727
  transform_handlers = ModelTransformerBuilder.build(
657
728
  dataset=dataset,
@@ -664,7 +735,7 @@ class BernoulliRBM(BaseTransformer):
664
735
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
665
736
  inference_method=inference_method,
666
737
  input_cols=self.input_cols,
667
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
738
+ expected_output_cols=expected_output_cols,
668
739
  **transform_kwargs
669
740
  )
670
741
  return output_df
@@ -690,30 +761,32 @@ class BernoulliRBM(BaseTransformer):
690
761
  Output dataset with results of the decision function for the samples in input dataset.
691
762
  """
692
763
  super()._check_dataset_type(dataset)
693
- inference_method="decision_function"
764
+ inference_method = "decision_function"
694
765
 
695
766
  # This dictionary contains optional kwargs for batch inference. These kwargs
696
767
  # are specific to the type of dataset used.
697
768
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
698
769
 
770
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
771
+
699
772
  if isinstance(dataset, DataFrame):
700
- self._deps = self._batch_inference_validate_snowpark(
701
- dataset=dataset,
702
- inference_method=inference_method,
703
- )
704
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
773
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
774
+ self._deps = self._get_dependencies()
775
+ assert isinstance(
776
+ dataset._session, Session
777
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
705
778
  transform_kwargs = dict(
706
779
  session=dataset._session,
707
780
  dependencies=self._deps,
708
- drop_input_cols = self._drop_input_cols,
781
+ drop_input_cols=self._drop_input_cols,
709
782
  expected_output_cols_type="float",
710
783
  )
784
+ expected_output_cols = self._align_expected_output_names(
785
+ inference_method, dataset, expected_output_cols, output_cols_prefix
786
+ )
711
787
 
712
788
  elif isinstance(dataset, pd.DataFrame):
713
- transform_kwargs = dict(
714
- snowpark_input_cols = self._snowpark_cols,
715
- drop_input_cols = self._drop_input_cols
716
- )
789
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
717
790
 
718
791
  transform_handlers = ModelTransformerBuilder.build(
719
792
  dataset=dataset,
@@ -726,7 +799,7 @@ class BernoulliRBM(BaseTransformer):
726
799
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
727
800
  inference_method=inference_method,
728
801
  input_cols=self.input_cols,
729
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
802
+ expected_output_cols=expected_output_cols,
730
803
  **transform_kwargs
731
804
  )
732
805
  return output_df
@@ -757,17 +830,17 @@ class BernoulliRBM(BaseTransformer):
757
830
  Output dataset with probability of the sample for each class in the model.
758
831
  """
759
832
  super()._check_dataset_type(dataset)
760
- inference_method="score_samples"
833
+ inference_method = "score_samples"
761
834
 
762
835
  # This dictionary contains optional kwargs for batch inference. These kwargs
763
836
  # are specific to the type of dataset used.
764
837
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
765
838
 
839
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
840
+
766
841
  if isinstance(dataset, DataFrame):
767
- self._deps = self._batch_inference_validate_snowpark(
768
- dataset=dataset,
769
- inference_method=inference_method,
770
- )
842
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
843
+ self._deps = self._get_dependencies()
771
844
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
772
845
  transform_kwargs = dict(
773
846
  session=dataset._session,
@@ -775,6 +848,9 @@ class BernoulliRBM(BaseTransformer):
775
848
  drop_input_cols = self._drop_input_cols,
776
849
  expected_output_cols_type="float",
777
850
  )
851
+ expected_output_cols = self._align_expected_output_names(
852
+ inference_method, dataset, expected_output_cols, output_cols_prefix
853
+ )
778
854
 
779
855
  elif isinstance(dataset, pd.DataFrame):
780
856
  transform_kwargs = dict(
@@ -793,7 +869,7 @@ class BernoulliRBM(BaseTransformer):
793
869
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
794
870
  inference_method=inference_method,
795
871
  input_cols=self.input_cols,
796
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
872
+ expected_output_cols=expected_output_cols,
797
873
  **transform_kwargs
798
874
  )
799
875
  return output_df
@@ -826,17 +902,15 @@ class BernoulliRBM(BaseTransformer):
826
902
  transform_kwargs: ScoreKwargsTypedDict = dict()
827
903
 
828
904
  if isinstance(dataset, DataFrame):
829
- self._deps = self._batch_inference_validate_snowpark(
830
- dataset=dataset,
831
- inference_method="score",
832
- )
905
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
906
+ self._deps = self._get_dependencies()
833
907
  selected_cols = self._get_active_columns()
834
908
  if len(selected_cols) > 0:
835
909
  dataset = dataset.select(selected_cols)
836
910
  assert isinstance(dataset._session, Session) # keep mypy happy
837
911
  transform_kwargs = dict(
838
912
  session=dataset._session,
839
- dependencies=["snowflake-snowpark-python"] + self._deps,
913
+ dependencies=self._deps,
840
914
  score_sproc_imports=['sklearn'],
841
915
  )
842
916
  elif isinstance(dataset, pd.DataFrame):
@@ -901,11 +975,8 @@ class BernoulliRBM(BaseTransformer):
901
975
 
902
976
  if isinstance(dataset, DataFrame):
903
977
 
904
- self._deps = self._batch_inference_validate_snowpark(
905
- dataset=dataset,
906
- inference_method=inference_method,
907
-
908
- )
978
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
979
+ self._deps = self._get_dependencies()
909
980
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
910
981
  transform_kwargs = dict(
911
982
  session = dataset._session,
@@ -938,50 +1009,84 @@ class BernoulliRBM(BaseTransformer):
938
1009
  )
939
1010
  return output_df
940
1011
 
1012
+
1013
+
1014
+ def to_sklearn(self) -> Any:
1015
+ """Get sklearn.neural_network.BernoulliRBM object.
1016
+ """
1017
+ if self._sklearn_object is None:
1018
+ self._sklearn_object = self._create_sklearn_object()
1019
+ return self._sklearn_object
1020
+
1021
+ def to_xgboost(self) -> Any:
1022
+ raise exceptions.SnowflakeMLException(
1023
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1024
+ original_exception=AttributeError(
1025
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1026
+ "to_xgboost()",
1027
+ "to_sklearn()"
1028
+ )
1029
+ ),
1030
+ )
941
1031
 
942
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1032
+ def to_lightgbm(self) -> Any:
1033
+ raise exceptions.SnowflakeMLException(
1034
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1035
+ original_exception=AttributeError(
1036
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
+ "to_lightgbm()",
1038
+ "to_sklearn()"
1039
+ )
1040
+ ),
1041
+ )
1042
+
1043
+ def _get_dependencies(self) -> List[str]:
1044
+ return self._deps
1045
+
1046
+
1047
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
943
1048
  self._model_signature_dict = dict()
944
1049
 
945
1050
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
946
1051
 
947
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1052
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
948
1053
  outputs: List[BaseFeatureSpec] = []
949
1054
  if hasattr(self, "predict"):
950
1055
  # keep mypy happy
951
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1056
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
952
1057
  # For classifier, the type of predict is the same as the type of label
953
- if self._sklearn_object._estimator_type == 'classifier':
954
- # label columns is the desired type for output
1058
+ if self._sklearn_object._estimator_type == "classifier":
1059
+ # label columns is the desired type for output
955
1060
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
956
1061
  # rename the output columns
957
1062
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
958
- self._model_signature_dict["predict"] = ModelSignature(inputs,
959
- ([] if self._drop_input_cols else inputs)
960
- + outputs)
1063
+ self._model_signature_dict["predict"] = ModelSignature(
1064
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1065
+ )
961
1066
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
962
1067
  # For outlier models, returns -1 for outliers and 1 for inliers.
963
- # Clusterer returns int64 cluster labels.
1068
+ # Clusterer returns int64 cluster labels.
964
1069
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
965
1070
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
966
- self._model_signature_dict["predict"] = ModelSignature(inputs,
967
- ([] if self._drop_input_cols else inputs)
968
- + outputs)
969
-
1071
+ self._model_signature_dict["predict"] = ModelSignature(
1072
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1073
+ )
1074
+
970
1075
  # For regressor, the type of predict is float64
971
- elif self._sklearn_object._estimator_type == 'regressor':
1076
+ elif self._sklearn_object._estimator_type == "regressor":
972
1077
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
973
- self._model_signature_dict["predict"] = ModelSignature(inputs,
974
- ([] if self._drop_input_cols else inputs)
975
- + outputs)
976
-
1078
+ self._model_signature_dict["predict"] = ModelSignature(
1079
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1080
+ )
1081
+
977
1082
  for prob_func in PROB_FUNCTIONS:
978
1083
  if hasattr(self, prob_func):
979
1084
  output_cols_prefix: str = f"{prob_func}_"
980
1085
  output_column_names = self._get_output_column_names(output_cols_prefix)
981
1086
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
982
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
1087
+ self._model_signature_dict[prob_func] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
985
1090
 
986
1091
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
987
1092
  items = list(self._model_signature_dict.items())
@@ -994,10 +1099,10 @@ class BernoulliRBM(BaseTransformer):
994
1099
  """Returns model signature of current class.
995
1100
 
996
1101
  Raises:
997
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1102
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
998
1103
 
999
1104
  Returns:
1000
- Dict[str, ModelSignature]: each method and its input output signature
1105
+ Dict with each method and its input output signature
1001
1106
  """
1002
1107
  if self._model_signature_dict is None:
1003
1108
  raise exceptions.SnowflakeMLException(
@@ -1005,35 +1110,3 @@ class BernoulliRBM(BaseTransformer):
1005
1110
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1006
1111
  )
1007
1112
  return self._model_signature_dict
1008
-
1009
- def to_sklearn(self) -> Any:
1010
- """Get sklearn.neural_network.BernoulliRBM object.
1011
- """
1012
- if self._sklearn_object is None:
1013
- self._sklearn_object = self._create_sklearn_object()
1014
- return self._sklearn_object
1015
-
1016
- def to_xgboost(self) -> Any:
1017
- raise exceptions.SnowflakeMLException(
1018
- error_code=error_codes.METHOD_NOT_ALLOWED,
1019
- original_exception=AttributeError(
1020
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1021
- "to_xgboost()",
1022
- "to_sklearn()"
1023
- )
1024
- ),
1025
- )
1026
-
1027
- def to_lightgbm(self) -> Any:
1028
- raise exceptions.SnowflakeMLException(
1029
- error_code=error_codes.METHOD_NOT_ALLOWED,
1030
- original_exception=AttributeError(
1031
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1032
- "to_lightgbm()",
1033
- "to_sklearn()"
1034
- )
1035
- ),
1036
- )
1037
-
1038
- def _get_dependencies(self) -> List[str]:
1039
- return self._deps