snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
34
34
  BatchInferenceKwargsTypedDict,
35
35
  ScoreKwargsTypedDict
36
36
  )
37
+ from snowflake.ml.model._signatures import utils as model_signature_utils
38
+ from snowflake.ml.model.model_signature import (
39
+ BaseFeatureSpec,
40
+ DataType,
41
+ FeatureSpec,
42
+ ModelSignature,
43
+ _infer_signature,
44
+ _rename_signature_with_snowflake_identifiers,
45
+ )
37
46
 
38
47
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
39
48
 
@@ -44,16 +53,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
44
53
  validate_sklearn_args,
45
54
  )
46
55
 
47
- from snowflake.ml.model.model_signature import (
48
- DataType,
49
- FeatureSpec,
50
- ModelSignature,
51
- _infer_signature,
52
- _rename_signature_with_snowflake_identifiers,
53
- BaseFeatureSpec,
54
- )
55
- from snowflake.ml.model._signatures import utils as model_signature_utils
56
-
57
56
  _PROJECT = "ModelDevelopment"
58
57
  # Derive subproject from module name by removing "sklearn"
59
58
  # and converting module name from underscore to CamelCase
@@ -62,12 +61,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn
62
61
 
63
62
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
64
63
 
65
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
66
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
67
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
68
- return check
69
-
70
-
71
64
  class IterativeImputer(BaseTransformer):
72
65
  r"""Multivariate imputer that estimates each feature from all the others
73
66
  For more details on this class, see [sklearn.impute.IterativeImputer]
@@ -324,12 +317,7 @@ class IterativeImputer(BaseTransformer):
324
317
  )
325
318
  return selected_cols
326
319
 
327
- @telemetry.send_api_usage_telemetry(
328
- project=_PROJECT,
329
- subproject=_SUBPROJECT,
330
- custom_tags=dict([("autogen", True)]),
331
- )
332
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IterativeImputer":
320
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IterativeImputer":
333
321
  """Fit the imputer on `X` and return self
334
322
  For more details on this function, see [sklearn.impute.IterativeImputer.fit]
335
323
  (https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer.fit)
@@ -356,12 +344,14 @@ class IterativeImputer(BaseTransformer):
356
344
 
357
345
  self._snowpark_cols = dataset.select(self.input_cols).columns
358
346
 
359
- # If we are already in a stored procedure, no need to kick off another one.
347
+ # If we are already in a stored procedure, no need to kick off another one.
360
348
  if SNOWML_SPROC_ENV in os.environ:
361
349
  statement_params = telemetry.get_function_usage_statement_params(
362
350
  project=_PROJECT,
363
351
  subproject=_SUBPROJECT,
364
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IterativeImputer.__class__.__name__),
352
+ function_name=telemetry.get_statement_params_full_func_name(
353
+ inspect.currentframe(), IterativeImputer.__class__.__name__
354
+ ),
365
355
  api_calls=[Session.call],
366
356
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
367
357
  )
@@ -382,27 +372,24 @@ class IterativeImputer(BaseTransformer):
382
372
  )
383
373
  self._sklearn_object = model_trainer.train()
384
374
  self._is_fitted = True
385
- self._get_model_signatures(dataset)
375
+ self._generate_model_signatures(dataset)
386
376
  return self
387
377
 
388
378
  def _batch_inference_validate_snowpark(
389
379
  self,
390
380
  dataset: DataFrame,
391
381
  inference_method: str,
392
- ) -> List[str]:
393
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
394
- return the available package that exists in the snowflake anaconda channel
382
+ ) -> None:
383
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
395
384
 
396
385
  Args:
397
386
  dataset: snowpark dataframe
398
387
  inference_method: the inference method such as predict, score...
399
-
388
+
400
389
  Raises:
401
390
  SnowflakeMLException: If the estimator is not fitted, raise error
402
391
  SnowflakeMLException: If the session is None, raise error
403
392
 
404
- Returns:
405
- A list of available package that exists in the snowflake anaconda channel
406
393
  """
407
394
  if not self._is_fitted:
408
395
  raise exceptions.SnowflakeMLException(
@@ -420,9 +407,7 @@ class IterativeImputer(BaseTransformer):
420
407
  "Session must not specified for snowpark dataset."
421
408
  ),
422
409
  )
423
- # Validate that key package version in user workspace are supported in snowflake conda channel
424
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
425
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
410
+
426
411
 
427
412
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
428
413
  @telemetry.send_api_usage_telemetry(
@@ -456,7 +441,9 @@ class IterativeImputer(BaseTransformer):
456
441
  # when it is classifier, infer the datatype from label columns
457
442
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
458
443
  # Batch inference takes a single expected output column type. Use the first columns type for now.
459
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
444
+ label_cols_signatures = [
445
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
446
+ ]
460
447
  if len(label_cols_signatures) == 0:
461
448
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
462
449
  raise exceptions.SnowflakeMLException(
@@ -464,25 +451,23 @@ class IterativeImputer(BaseTransformer):
464
451
  original_exception=ValueError(error_str),
465
452
  )
466
453
 
467
- expected_type_inferred = convert_sp_to_sf_type(
468
- label_cols_signatures[0].as_snowpark_type()
469
- )
454
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
470
455
 
471
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
472
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
456
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
457
+ self._deps = self._get_dependencies()
458
+ assert isinstance(
459
+ dataset._session, Session
460
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
473
461
 
474
462
  transform_kwargs = dict(
475
- session = dataset._session,
476
- dependencies = self._deps,
477
- drop_input_cols = self._drop_input_cols,
478
- expected_output_cols_type = expected_type_inferred,
463
+ session=dataset._session,
464
+ dependencies=self._deps,
465
+ drop_input_cols=self._drop_input_cols,
466
+ expected_output_cols_type=expected_type_inferred,
479
467
  )
480
468
 
481
469
  elif isinstance(dataset, pd.DataFrame):
482
- transform_kwargs = dict(
483
- snowpark_input_cols = self._snowpark_cols,
484
- drop_input_cols = self._drop_input_cols
485
- )
470
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
486
471
 
487
472
  transform_handlers = ModelTransformerBuilder.build(
488
473
  dataset=dataset,
@@ -524,7 +509,7 @@ class IterativeImputer(BaseTransformer):
524
509
  Transformed dataset.
525
510
  """
526
511
  super()._check_dataset_type(dataset)
527
- inference_method="transform"
512
+ inference_method = "transform"
528
513
 
529
514
  # This dictionary contains optional kwargs for batch inference. These kwargs
530
515
  # are specific to the type of dataset used.
@@ -554,24 +539,19 @@ class IterativeImputer(BaseTransformer):
554
539
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
555
540
  expected_dtype = convert_sp_to_sf_type(output_types[0])
556
541
 
557
- self._deps = self._batch_inference_validate_snowpark(
558
- dataset=dataset,
559
- inference_method=inference_method,
560
- )
542
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
543
+ self._deps = self._get_dependencies()
561
544
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
562
545
 
563
546
  transform_kwargs = dict(
564
- session = dataset._session,
565
- dependencies = self._deps,
566
- drop_input_cols = self._drop_input_cols,
567
- expected_output_cols_type = expected_dtype,
547
+ session=dataset._session,
548
+ dependencies=self._deps,
549
+ drop_input_cols=self._drop_input_cols,
550
+ expected_output_cols_type=expected_dtype,
568
551
  )
569
552
 
570
553
  elif isinstance(dataset, pd.DataFrame):
571
- transform_kwargs = dict(
572
- snowpark_input_cols = self._snowpark_cols,
573
- drop_input_cols = self._drop_input_cols
574
- )
554
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
575
555
 
576
556
  transform_handlers = ModelTransformerBuilder.build(
577
557
  dataset=dataset,
@@ -590,7 +570,11 @@ class IterativeImputer(BaseTransformer):
590
570
  return output_df
591
571
 
592
572
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
593
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
573
+ def fit_predict(
574
+ self,
575
+ dataset: Union[DataFrame, pd.DataFrame],
576
+ output_cols_prefix: str = "fit_predict_",
577
+ ) -> Union[DataFrame, pd.DataFrame]:
594
578
  """ Method not supported for this class.
595
579
 
596
580
 
@@ -615,22 +599,106 @@ class IterativeImputer(BaseTransformer):
615
599
  )
616
600
  output_result, fitted_estimator = model_trainer.train_fit_predict(
617
601
  drop_input_cols=self._drop_input_cols,
618
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
602
+ expected_output_cols_list=(
603
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
604
+ ),
619
605
  )
620
606
  self._sklearn_object = fitted_estimator
621
607
  self._is_fitted = True
622
608
  return output_result
623
609
 
610
+
611
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
612
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
613
+ """ Fit the imputer on `X` and return the transformed `X`
614
+ For more details on this function, see [sklearn.impute.IterativeImputer.fit_transform]
615
+ (https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer.fit_transform)
616
+
617
+
618
+ Raises:
619
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
624
620
 
625
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
626
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
627
- """
621
+ Args:
622
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
623
+ Snowpark or Pandas DataFrame.
624
+ output_cols_prefix: Prefix for the response columns
628
625
  Returns:
629
626
  Transformed dataset.
630
627
  """
631
- self.fit(dataset)
632
- assert self._sklearn_object is not None
633
- return self._sklearn_object.embedding_
628
+ self._infer_input_output_cols(dataset)
629
+ super()._check_dataset_type(dataset)
630
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
631
+ estimator=self._sklearn_object,
632
+ dataset=dataset,
633
+ input_cols=self.input_cols,
634
+ label_cols=self.label_cols,
635
+ sample_weight_col=self.sample_weight_col,
636
+ autogenerated=self._autogenerated,
637
+ subproject=_SUBPROJECT,
638
+ )
639
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
640
+ drop_input_cols=self._drop_input_cols,
641
+ expected_output_cols_list=self.output_cols,
642
+ )
643
+ self._sklearn_object = fitted_estimator
644
+ self._is_fitted = True
645
+ return output_result
646
+
647
+
648
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
649
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
650
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
651
+ """
652
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
653
+ # The following condition is introduced for kneighbors methods, and not used in other methods
654
+ if output_cols:
655
+ output_cols = [
656
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
657
+ for c in output_cols
658
+ ]
659
+ elif getattr(self._sklearn_object, "classes_", None) is None:
660
+ output_cols = [output_cols_prefix]
661
+ elif self._sklearn_object is not None:
662
+ classes = self._sklearn_object.classes_
663
+ if isinstance(classes, numpy.ndarray):
664
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
665
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
666
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
667
+ output_cols = []
668
+ for i, cl in enumerate(classes):
669
+ # For binary classification, there is only one output column for each class
670
+ # ndarray as the two classes are complementary.
671
+ if len(cl) == 2:
672
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
673
+ else:
674
+ output_cols.extend([
675
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
676
+ ])
677
+ else:
678
+ output_cols = []
679
+
680
+ # Make sure column names are valid snowflake identifiers.
681
+ assert output_cols is not None # Make MyPy happy
682
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
683
+
684
+ return rv
685
+
686
+ def _align_expected_output_names(
687
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
688
+ ) -> List[str]:
689
+ # in case the inferred output column names dimension is different
690
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
691
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
692
+ output_df_columns = list(output_df_pd.columns)
693
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
694
+ if self.sample_weight_col:
695
+ output_df_columns_set -= set(self.sample_weight_col)
696
+ # if the dimension of inferred output column names is correct; use it
697
+ if len(expected_output_cols_list) == len(output_df_columns_set):
698
+ return expected_output_cols_list
699
+ # otherwise, use the sklearn estimator's output
700
+ else:
701
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
634
702
 
635
703
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
636
704
  @telemetry.send_api_usage_telemetry(
@@ -662,24 +730,26 @@ class IterativeImputer(BaseTransformer):
662
730
  # are specific to the type of dataset used.
663
731
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
664
732
 
733
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
734
+
665
735
  if isinstance(dataset, DataFrame):
666
- self._deps = self._batch_inference_validate_snowpark(
667
- dataset=dataset,
668
- inference_method=inference_method,
669
- )
670
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
736
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
737
+ self._deps = self._get_dependencies()
738
+ assert isinstance(
739
+ dataset._session, Session
740
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
741
  transform_kwargs = dict(
672
742
  session=dataset._session,
673
743
  dependencies=self._deps,
674
- drop_input_cols = self._drop_input_cols,
744
+ drop_input_cols=self._drop_input_cols,
675
745
  expected_output_cols_type="float",
676
746
  )
747
+ expected_output_cols = self._align_expected_output_names(
748
+ inference_method, dataset, expected_output_cols, output_cols_prefix
749
+ )
677
750
 
678
751
  elif isinstance(dataset, pd.DataFrame):
679
- transform_kwargs = dict(
680
- snowpark_input_cols = self._snowpark_cols,
681
- drop_input_cols = self._drop_input_cols
682
- )
752
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
683
753
 
684
754
  transform_handlers = ModelTransformerBuilder.build(
685
755
  dataset=dataset,
@@ -691,7 +761,7 @@ class IterativeImputer(BaseTransformer):
691
761
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
692
762
  inference_method=inference_method,
693
763
  input_cols=self.input_cols,
694
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
764
+ expected_output_cols=expected_output_cols,
695
765
  **transform_kwargs
696
766
  )
697
767
  return output_df
@@ -721,29 +791,30 @@ class IterativeImputer(BaseTransformer):
721
791
  Output dataset with log probability of the sample for each class in the model.
722
792
  """
723
793
  super()._check_dataset_type(dataset)
724
- inference_method="predict_log_proba"
794
+ inference_method = "predict_log_proba"
795
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
725
796
 
726
797
  # This dictionary contains optional kwargs for batch inference. These kwargs
727
798
  # are specific to the type of dataset used.
728
799
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
729
800
 
730
801
  if isinstance(dataset, DataFrame):
731
- self._deps = self._batch_inference_validate_snowpark(
732
- dataset=dataset,
733
- inference_method=inference_method,
734
- )
735
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
802
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
803
+ self._deps = self._get_dependencies()
804
+ assert isinstance(
805
+ dataset._session, Session
806
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
736
807
  transform_kwargs = dict(
737
808
  session=dataset._session,
738
809
  dependencies=self._deps,
739
- drop_input_cols = self._drop_input_cols,
810
+ drop_input_cols=self._drop_input_cols,
740
811
  expected_output_cols_type="float",
741
812
  )
813
+ expected_output_cols = self._align_expected_output_names(
814
+ inference_method, dataset, expected_output_cols, output_cols_prefix
815
+ )
742
816
  elif isinstance(dataset, pd.DataFrame):
743
- transform_kwargs = dict(
744
- snowpark_input_cols = self._snowpark_cols,
745
- drop_input_cols = self._drop_input_cols
746
- )
817
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
747
818
 
748
819
  transform_handlers = ModelTransformerBuilder.build(
749
820
  dataset=dataset,
@@ -756,7 +827,7 @@ class IterativeImputer(BaseTransformer):
756
827
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
757
828
  inference_method=inference_method,
758
829
  input_cols=self.input_cols,
759
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
830
+ expected_output_cols=expected_output_cols,
760
831
  **transform_kwargs
761
832
  )
762
833
  return output_df
@@ -782,30 +853,32 @@ class IterativeImputer(BaseTransformer):
782
853
  Output dataset with results of the decision function for the samples in input dataset.
783
854
  """
784
855
  super()._check_dataset_type(dataset)
785
- inference_method="decision_function"
856
+ inference_method = "decision_function"
786
857
 
787
858
  # This dictionary contains optional kwargs for batch inference. These kwargs
788
859
  # are specific to the type of dataset used.
789
860
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
790
861
 
862
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
863
+
791
864
  if isinstance(dataset, DataFrame):
792
- self._deps = self._batch_inference_validate_snowpark(
793
- dataset=dataset,
794
- inference_method=inference_method,
795
- )
796
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
865
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
866
+ self._deps = self._get_dependencies()
867
+ assert isinstance(
868
+ dataset._session, Session
869
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
797
870
  transform_kwargs = dict(
798
871
  session=dataset._session,
799
872
  dependencies=self._deps,
800
- drop_input_cols = self._drop_input_cols,
873
+ drop_input_cols=self._drop_input_cols,
801
874
  expected_output_cols_type="float",
802
875
  )
876
+ expected_output_cols = self._align_expected_output_names(
877
+ inference_method, dataset, expected_output_cols, output_cols_prefix
878
+ )
803
879
 
804
880
  elif isinstance(dataset, pd.DataFrame):
805
- transform_kwargs = dict(
806
- snowpark_input_cols = self._snowpark_cols,
807
- drop_input_cols = self._drop_input_cols
808
- )
881
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
809
882
 
810
883
  transform_handlers = ModelTransformerBuilder.build(
811
884
  dataset=dataset,
@@ -818,7 +891,7 @@ class IterativeImputer(BaseTransformer):
818
891
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
819
892
  inference_method=inference_method,
820
893
  input_cols=self.input_cols,
821
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
894
+ expected_output_cols=expected_output_cols,
822
895
  **transform_kwargs
823
896
  )
824
897
  return output_df
@@ -847,17 +920,17 @@ class IterativeImputer(BaseTransformer):
847
920
  Output dataset with probability of the sample for each class in the model.
848
921
  """
849
922
  super()._check_dataset_type(dataset)
850
- inference_method="score_samples"
923
+ inference_method = "score_samples"
851
924
 
852
925
  # This dictionary contains optional kwargs for batch inference. These kwargs
853
926
  # are specific to the type of dataset used.
854
927
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
855
928
 
929
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
930
+
856
931
  if isinstance(dataset, DataFrame):
857
- self._deps = self._batch_inference_validate_snowpark(
858
- dataset=dataset,
859
- inference_method=inference_method,
860
- )
932
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
933
+ self._deps = self._get_dependencies()
861
934
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
862
935
  transform_kwargs = dict(
863
936
  session=dataset._session,
@@ -865,6 +938,9 @@ class IterativeImputer(BaseTransformer):
865
938
  drop_input_cols = self._drop_input_cols,
866
939
  expected_output_cols_type="float",
867
940
  )
941
+ expected_output_cols = self._align_expected_output_names(
942
+ inference_method, dataset, expected_output_cols, output_cols_prefix
943
+ )
868
944
 
869
945
  elif isinstance(dataset, pd.DataFrame):
870
946
  transform_kwargs = dict(
@@ -883,7 +959,7 @@ class IterativeImputer(BaseTransformer):
883
959
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
884
960
  inference_method=inference_method,
885
961
  input_cols=self.input_cols,
886
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
962
+ expected_output_cols=expected_output_cols,
887
963
  **transform_kwargs
888
964
  )
889
965
  return output_df
@@ -916,17 +992,15 @@ class IterativeImputer(BaseTransformer):
916
992
  transform_kwargs: ScoreKwargsTypedDict = dict()
917
993
 
918
994
  if isinstance(dataset, DataFrame):
919
- self._deps = self._batch_inference_validate_snowpark(
920
- dataset=dataset,
921
- inference_method="score",
922
- )
995
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
996
+ self._deps = self._get_dependencies()
923
997
  selected_cols = self._get_active_columns()
924
998
  if len(selected_cols) > 0:
925
999
  dataset = dataset.select(selected_cols)
926
1000
  assert isinstance(dataset._session, Session) # keep mypy happy
927
1001
  transform_kwargs = dict(
928
1002
  session=dataset._session,
929
- dependencies=["snowflake-snowpark-python"] + self._deps,
1003
+ dependencies=self._deps,
930
1004
  score_sproc_imports=['sklearn'],
931
1005
  )
932
1006
  elif isinstance(dataset, pd.DataFrame):
@@ -991,11 +1065,8 @@ class IterativeImputer(BaseTransformer):
991
1065
 
992
1066
  if isinstance(dataset, DataFrame):
993
1067
 
994
- self._deps = self._batch_inference_validate_snowpark(
995
- dataset=dataset,
996
- inference_method=inference_method,
997
-
998
- )
1068
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1069
+ self._deps = self._get_dependencies()
999
1070
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1000
1071
  transform_kwargs = dict(
1001
1072
  session = dataset._session,
@@ -1028,50 +1099,84 @@ class IterativeImputer(BaseTransformer):
1028
1099
  )
1029
1100
  return output_df
1030
1101
 
1102
+
1103
+
1104
+ def to_sklearn(self) -> Any:
1105
+ """Get sklearn.impute.IterativeImputer object.
1106
+ """
1107
+ if self._sklearn_object is None:
1108
+ self._sklearn_object = self._create_sklearn_object()
1109
+ return self._sklearn_object
1110
+
1111
+ def to_xgboost(self) -> Any:
1112
+ raise exceptions.SnowflakeMLException(
1113
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1114
+ original_exception=AttributeError(
1115
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1116
+ "to_xgboost()",
1117
+ "to_sklearn()"
1118
+ )
1119
+ ),
1120
+ )
1031
1121
 
1032
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1122
+ def to_lightgbm(self) -> Any:
1123
+ raise exceptions.SnowflakeMLException(
1124
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1125
+ original_exception=AttributeError(
1126
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1127
+ "to_lightgbm()",
1128
+ "to_sklearn()"
1129
+ )
1130
+ ),
1131
+ )
1132
+
1133
+ def _get_dependencies(self) -> List[str]:
1134
+ return self._deps
1135
+
1136
+
1137
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1033
1138
  self._model_signature_dict = dict()
1034
1139
 
1035
1140
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1036
1141
 
1037
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1142
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1038
1143
  outputs: List[BaseFeatureSpec] = []
1039
1144
  if hasattr(self, "predict"):
1040
1145
  # keep mypy happy
1041
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1146
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1042
1147
  # For classifier, the type of predict is the same as the type of label
1043
- if self._sklearn_object._estimator_type == 'classifier':
1044
- # label columns is the desired type for output
1148
+ if self._sklearn_object._estimator_type == "classifier":
1149
+ # label columns is the desired type for output
1045
1150
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1046
1151
  # rename the output columns
1047
1152
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1048
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1049
- ([] if self._drop_input_cols else inputs)
1050
- + outputs)
1153
+ self._model_signature_dict["predict"] = ModelSignature(
1154
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1155
+ )
1051
1156
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1052
1157
  # For outlier models, returns -1 for outliers and 1 for inliers.
1053
- # Clusterer returns int64 cluster labels.
1158
+ # Clusterer returns int64 cluster labels.
1054
1159
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1055
1160
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1056
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1057
- ([] if self._drop_input_cols else inputs)
1058
- + outputs)
1059
-
1161
+ self._model_signature_dict["predict"] = ModelSignature(
1162
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1163
+ )
1164
+
1060
1165
  # For regressor, the type of predict is float64
1061
- elif self._sklearn_object._estimator_type == 'regressor':
1166
+ elif self._sklearn_object._estimator_type == "regressor":
1062
1167
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1063
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1064
- ([] if self._drop_input_cols else inputs)
1065
- + outputs)
1066
-
1168
+ self._model_signature_dict["predict"] = ModelSignature(
1169
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1170
+ )
1171
+
1067
1172
  for prob_func in PROB_FUNCTIONS:
1068
1173
  if hasattr(self, prob_func):
1069
1174
  output_cols_prefix: str = f"{prob_func}_"
1070
1175
  output_column_names = self._get_output_column_names(output_cols_prefix)
1071
1176
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1072
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1073
- ([] if self._drop_input_cols else inputs)
1074
- + outputs)
1177
+ self._model_signature_dict[prob_func] = ModelSignature(
1178
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1179
+ )
1075
1180
 
1076
1181
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1077
1182
  items = list(self._model_signature_dict.items())
@@ -1084,10 +1189,10 @@ class IterativeImputer(BaseTransformer):
1084
1189
  """Returns model signature of current class.
1085
1190
 
1086
1191
  Raises:
1087
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1192
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1088
1193
 
1089
1194
  Returns:
1090
- Dict[str, ModelSignature]: each method and its input output signature
1195
+ Dict with each method and its input output signature
1091
1196
  """
1092
1197
  if self._model_signature_dict is None:
1093
1198
  raise exceptions.SnowflakeMLException(
@@ -1095,35 +1200,3 @@ class IterativeImputer(BaseTransformer):
1095
1200
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1096
1201
  )
1097
1202
  return self._model_signature_dict
1098
-
1099
- def to_sklearn(self) -> Any:
1100
- """Get sklearn.impute.IterativeImputer object.
1101
- """
1102
- if self._sklearn_object is None:
1103
- self._sklearn_object = self._create_sklearn_object()
1104
- return self._sklearn_object
1105
-
1106
- def to_xgboost(self) -> Any:
1107
- raise exceptions.SnowflakeMLException(
1108
- error_code=error_codes.METHOD_NOT_ALLOWED,
1109
- original_exception=AttributeError(
1110
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1111
- "to_xgboost()",
1112
- "to_sklearn()"
1113
- )
1114
- ),
1115
- )
1116
-
1117
- def to_lightgbm(self) -> Any:
1118
- raise exceptions.SnowflakeMLException(
1119
- error_code=error_codes.METHOD_NOT_ALLOWED,
1120
- original_exception=AttributeError(
1121
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1122
- "to_lightgbm()",
1123
- "to_sklearn()"
1124
- )
1125
- ),
1126
- )
1127
-
1128
- def _get_dependencies(self) -> List[str]:
1129
- return self._deps