snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
34
34
|
BatchInferenceKwargsTypedDict,
|
35
35
|
ScoreKwargsTypedDict
|
36
36
|
)
|
37
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
38
|
+
from snowflake.ml.model.model_signature import (
|
39
|
+
BaseFeatureSpec,
|
40
|
+
DataType,
|
41
|
+
FeatureSpec,
|
42
|
+
ModelSignature,
|
43
|
+
_infer_signature,
|
44
|
+
_rename_signature_with_snowflake_identifiers,
|
45
|
+
)
|
37
46
|
|
38
47
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
39
48
|
|
@@ -44,16 +53,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
44
53
|
validate_sklearn_args,
|
45
54
|
)
|
46
55
|
|
47
|
-
from snowflake.ml.model.model_signature import (
|
48
|
-
DataType,
|
49
|
-
FeatureSpec,
|
50
|
-
ModelSignature,
|
51
|
-
_infer_signature,
|
52
|
-
_rename_signature_with_snowflake_identifiers,
|
53
|
-
BaseFeatureSpec,
|
54
|
-
)
|
55
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
56
|
-
|
57
56
|
_PROJECT = "ModelDevelopment"
|
58
57
|
# Derive subproject from module name by removing "sklearn"
|
59
58
|
# and converting module name from underscore to CamelCase
|
@@ -62,12 +61,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn
|
|
62
61
|
|
63
62
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
64
63
|
|
65
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
66
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
67
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
68
|
-
return check
|
69
|
-
|
70
|
-
|
71
64
|
class IterativeImputer(BaseTransformer):
|
72
65
|
r"""Multivariate imputer that estimates each feature from all the others
|
73
66
|
For more details on this class, see [sklearn.impute.IterativeImputer]
|
@@ -324,12 +317,7 @@ class IterativeImputer(BaseTransformer):
|
|
324
317
|
)
|
325
318
|
return selected_cols
|
326
319
|
|
327
|
-
|
328
|
-
project=_PROJECT,
|
329
|
-
subproject=_SUBPROJECT,
|
330
|
-
custom_tags=dict([("autogen", True)]),
|
331
|
-
)
|
332
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IterativeImputer":
|
320
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IterativeImputer":
|
333
321
|
"""Fit the imputer on `X` and return self
|
334
322
|
For more details on this function, see [sklearn.impute.IterativeImputer.fit]
|
335
323
|
(https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer.fit)
|
@@ -356,12 +344,14 @@ class IterativeImputer(BaseTransformer):
|
|
356
344
|
|
357
345
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
358
346
|
|
359
|
-
|
347
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
360
348
|
if SNOWML_SPROC_ENV in os.environ:
|
361
349
|
statement_params = telemetry.get_function_usage_statement_params(
|
362
350
|
project=_PROJECT,
|
363
351
|
subproject=_SUBPROJECT,
|
364
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
352
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
353
|
+
inspect.currentframe(), IterativeImputer.__class__.__name__
|
354
|
+
),
|
365
355
|
api_calls=[Session.call],
|
366
356
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
367
357
|
)
|
@@ -382,27 +372,24 @@ class IterativeImputer(BaseTransformer):
|
|
382
372
|
)
|
383
373
|
self._sklearn_object = model_trainer.train()
|
384
374
|
self._is_fitted = True
|
385
|
-
self.
|
375
|
+
self._generate_model_signatures(dataset)
|
386
376
|
return self
|
387
377
|
|
388
378
|
def _batch_inference_validate_snowpark(
|
389
379
|
self,
|
390
380
|
dataset: DataFrame,
|
391
381
|
inference_method: str,
|
392
|
-
) ->
|
393
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
394
|
-
return the available package that exists in the snowflake anaconda channel
|
382
|
+
) -> None:
|
383
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
395
384
|
|
396
385
|
Args:
|
397
386
|
dataset: snowpark dataframe
|
398
387
|
inference_method: the inference method such as predict, score...
|
399
|
-
|
388
|
+
|
400
389
|
Raises:
|
401
390
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
402
391
|
SnowflakeMLException: If the session is None, raise error
|
403
392
|
|
404
|
-
Returns:
|
405
|
-
A list of available package that exists in the snowflake anaconda channel
|
406
393
|
"""
|
407
394
|
if not self._is_fitted:
|
408
395
|
raise exceptions.SnowflakeMLException(
|
@@ -420,9 +407,7 @@ class IterativeImputer(BaseTransformer):
|
|
420
407
|
"Session must not specified for snowpark dataset."
|
421
408
|
),
|
422
409
|
)
|
423
|
-
|
424
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
425
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
410
|
+
|
426
411
|
|
427
412
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
428
413
|
@telemetry.send_api_usage_telemetry(
|
@@ -456,7 +441,9 @@ class IterativeImputer(BaseTransformer):
|
|
456
441
|
# when it is classifier, infer the datatype from label columns
|
457
442
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
458
443
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
459
|
-
label_cols_signatures = [
|
444
|
+
label_cols_signatures = [
|
445
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
446
|
+
]
|
460
447
|
if len(label_cols_signatures) == 0:
|
461
448
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
462
449
|
raise exceptions.SnowflakeMLException(
|
@@ -464,25 +451,23 @@ class IterativeImputer(BaseTransformer):
|
|
464
451
|
original_exception=ValueError(error_str),
|
465
452
|
)
|
466
453
|
|
467
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
468
|
-
label_cols_signatures[0].as_snowpark_type()
|
469
|
-
)
|
454
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
470
455
|
|
471
|
-
self.
|
472
|
-
|
456
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
457
|
+
self._deps = self._get_dependencies()
|
458
|
+
assert isinstance(
|
459
|
+
dataset._session, Session
|
460
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
473
461
|
|
474
462
|
transform_kwargs = dict(
|
475
|
-
session
|
476
|
-
dependencies
|
477
|
-
drop_input_cols
|
478
|
-
expected_output_cols_type
|
463
|
+
session=dataset._session,
|
464
|
+
dependencies=self._deps,
|
465
|
+
drop_input_cols=self._drop_input_cols,
|
466
|
+
expected_output_cols_type=expected_type_inferred,
|
479
467
|
)
|
480
468
|
|
481
469
|
elif isinstance(dataset, pd.DataFrame):
|
482
|
-
transform_kwargs = dict(
|
483
|
-
snowpark_input_cols = self._snowpark_cols,
|
484
|
-
drop_input_cols = self._drop_input_cols
|
485
|
-
)
|
470
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
486
471
|
|
487
472
|
transform_handlers = ModelTransformerBuilder.build(
|
488
473
|
dataset=dataset,
|
@@ -524,7 +509,7 @@ class IterativeImputer(BaseTransformer):
|
|
524
509
|
Transformed dataset.
|
525
510
|
"""
|
526
511
|
super()._check_dataset_type(dataset)
|
527
|
-
inference_method="transform"
|
512
|
+
inference_method = "transform"
|
528
513
|
|
529
514
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
530
515
|
# are specific to the type of dataset used.
|
@@ -554,24 +539,19 @@ class IterativeImputer(BaseTransformer):
|
|
554
539
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
555
540
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
556
541
|
|
557
|
-
self.
|
558
|
-
|
559
|
-
inference_method=inference_method,
|
560
|
-
)
|
542
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
543
|
+
self._deps = self._get_dependencies()
|
561
544
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
562
545
|
|
563
546
|
transform_kwargs = dict(
|
564
|
-
session
|
565
|
-
dependencies
|
566
|
-
drop_input_cols
|
567
|
-
expected_output_cols_type
|
547
|
+
session=dataset._session,
|
548
|
+
dependencies=self._deps,
|
549
|
+
drop_input_cols=self._drop_input_cols,
|
550
|
+
expected_output_cols_type=expected_dtype,
|
568
551
|
)
|
569
552
|
|
570
553
|
elif isinstance(dataset, pd.DataFrame):
|
571
|
-
transform_kwargs = dict(
|
572
|
-
snowpark_input_cols = self._snowpark_cols,
|
573
|
-
drop_input_cols = self._drop_input_cols
|
574
|
-
)
|
554
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
575
555
|
|
576
556
|
transform_handlers = ModelTransformerBuilder.build(
|
577
557
|
dataset=dataset,
|
@@ -590,7 +570,11 @@ class IterativeImputer(BaseTransformer):
|
|
590
570
|
return output_df
|
591
571
|
|
592
572
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
593
|
-
def fit_predict(
|
573
|
+
def fit_predict(
|
574
|
+
self,
|
575
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
576
|
+
output_cols_prefix: str = "fit_predict_",
|
577
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
594
578
|
""" Method not supported for this class.
|
595
579
|
|
596
580
|
|
@@ -615,22 +599,106 @@ class IterativeImputer(BaseTransformer):
|
|
615
599
|
)
|
616
600
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
617
601
|
drop_input_cols=self._drop_input_cols,
|
618
|
-
expected_output_cols_list=
|
602
|
+
expected_output_cols_list=(
|
603
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
604
|
+
),
|
619
605
|
)
|
620
606
|
self._sklearn_object = fitted_estimator
|
621
607
|
self._is_fitted = True
|
622
608
|
return output_result
|
623
609
|
|
610
|
+
|
611
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
612
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
613
|
+
""" Fit the imputer on `X` and return the transformed `X`
|
614
|
+
For more details on this function, see [sklearn.impute.IterativeImputer.fit_transform]
|
615
|
+
(https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html#sklearn.impute.IterativeImputer.fit_transform)
|
616
|
+
|
617
|
+
|
618
|
+
Raises:
|
619
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
624
620
|
|
625
|
-
|
626
|
-
|
627
|
-
|
621
|
+
Args:
|
622
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
623
|
+
Snowpark or Pandas DataFrame.
|
624
|
+
output_cols_prefix: Prefix for the response columns
|
628
625
|
Returns:
|
629
626
|
Transformed dataset.
|
630
627
|
"""
|
631
|
-
self.
|
632
|
-
|
633
|
-
|
628
|
+
self._infer_input_output_cols(dataset)
|
629
|
+
super()._check_dataset_type(dataset)
|
630
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
631
|
+
estimator=self._sklearn_object,
|
632
|
+
dataset=dataset,
|
633
|
+
input_cols=self.input_cols,
|
634
|
+
label_cols=self.label_cols,
|
635
|
+
sample_weight_col=self.sample_weight_col,
|
636
|
+
autogenerated=self._autogenerated,
|
637
|
+
subproject=_SUBPROJECT,
|
638
|
+
)
|
639
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
640
|
+
drop_input_cols=self._drop_input_cols,
|
641
|
+
expected_output_cols_list=self.output_cols,
|
642
|
+
)
|
643
|
+
self._sklearn_object = fitted_estimator
|
644
|
+
self._is_fitted = True
|
645
|
+
return output_result
|
646
|
+
|
647
|
+
|
648
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
649
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
650
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
651
|
+
"""
|
652
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
653
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
654
|
+
if output_cols:
|
655
|
+
output_cols = [
|
656
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
657
|
+
for c in output_cols
|
658
|
+
]
|
659
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
660
|
+
output_cols = [output_cols_prefix]
|
661
|
+
elif self._sklearn_object is not None:
|
662
|
+
classes = self._sklearn_object.classes_
|
663
|
+
if isinstance(classes, numpy.ndarray):
|
664
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
665
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
666
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
667
|
+
output_cols = []
|
668
|
+
for i, cl in enumerate(classes):
|
669
|
+
# For binary classification, there is only one output column for each class
|
670
|
+
# ndarray as the two classes are complementary.
|
671
|
+
if len(cl) == 2:
|
672
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
673
|
+
else:
|
674
|
+
output_cols.extend([
|
675
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
676
|
+
])
|
677
|
+
else:
|
678
|
+
output_cols = []
|
679
|
+
|
680
|
+
# Make sure column names are valid snowflake identifiers.
|
681
|
+
assert output_cols is not None # Make MyPy happy
|
682
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
683
|
+
|
684
|
+
return rv
|
685
|
+
|
686
|
+
def _align_expected_output_names(
|
687
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
688
|
+
) -> List[str]:
|
689
|
+
# in case the inferred output column names dimension is different
|
690
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
691
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
692
|
+
output_df_columns = list(output_df_pd.columns)
|
693
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
694
|
+
if self.sample_weight_col:
|
695
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
696
|
+
# if the dimension of inferred output column names is correct; use it
|
697
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
698
|
+
return expected_output_cols_list
|
699
|
+
# otherwise, use the sklearn estimator's output
|
700
|
+
else:
|
701
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
634
702
|
|
635
703
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
636
704
|
@telemetry.send_api_usage_telemetry(
|
@@ -662,24 +730,26 @@ class IterativeImputer(BaseTransformer):
|
|
662
730
|
# are specific to the type of dataset used.
|
663
731
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
664
732
|
|
733
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
734
|
+
|
665
735
|
if isinstance(dataset, DataFrame):
|
666
|
-
self.
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
|
736
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
737
|
+
self._deps = self._get_dependencies()
|
738
|
+
assert isinstance(
|
739
|
+
dataset._session, Session
|
740
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
671
741
|
transform_kwargs = dict(
|
672
742
|
session=dataset._session,
|
673
743
|
dependencies=self._deps,
|
674
|
-
drop_input_cols
|
744
|
+
drop_input_cols=self._drop_input_cols,
|
675
745
|
expected_output_cols_type="float",
|
676
746
|
)
|
747
|
+
expected_output_cols = self._align_expected_output_names(
|
748
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
749
|
+
)
|
677
750
|
|
678
751
|
elif isinstance(dataset, pd.DataFrame):
|
679
|
-
transform_kwargs = dict(
|
680
|
-
snowpark_input_cols = self._snowpark_cols,
|
681
|
-
drop_input_cols = self._drop_input_cols
|
682
|
-
)
|
752
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
683
753
|
|
684
754
|
transform_handlers = ModelTransformerBuilder.build(
|
685
755
|
dataset=dataset,
|
@@ -691,7 +761,7 @@ class IterativeImputer(BaseTransformer):
|
|
691
761
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
692
762
|
inference_method=inference_method,
|
693
763
|
input_cols=self.input_cols,
|
694
|
-
expected_output_cols=
|
764
|
+
expected_output_cols=expected_output_cols,
|
695
765
|
**transform_kwargs
|
696
766
|
)
|
697
767
|
return output_df
|
@@ -721,29 +791,30 @@ class IterativeImputer(BaseTransformer):
|
|
721
791
|
Output dataset with log probability of the sample for each class in the model.
|
722
792
|
"""
|
723
793
|
super()._check_dataset_type(dataset)
|
724
|
-
inference_method="predict_log_proba"
|
794
|
+
inference_method = "predict_log_proba"
|
795
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
725
796
|
|
726
797
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
727
798
|
# are specific to the type of dataset used.
|
728
799
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
729
800
|
|
730
801
|
if isinstance(dataset, DataFrame):
|
731
|
-
self.
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
802
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
803
|
+
self._deps = self._get_dependencies()
|
804
|
+
assert isinstance(
|
805
|
+
dataset._session, Session
|
806
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
736
807
|
transform_kwargs = dict(
|
737
808
|
session=dataset._session,
|
738
809
|
dependencies=self._deps,
|
739
|
-
drop_input_cols
|
810
|
+
drop_input_cols=self._drop_input_cols,
|
740
811
|
expected_output_cols_type="float",
|
741
812
|
)
|
813
|
+
expected_output_cols = self._align_expected_output_names(
|
814
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
815
|
+
)
|
742
816
|
elif isinstance(dataset, pd.DataFrame):
|
743
|
-
transform_kwargs = dict(
|
744
|
-
snowpark_input_cols = self._snowpark_cols,
|
745
|
-
drop_input_cols = self._drop_input_cols
|
746
|
-
)
|
817
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
747
818
|
|
748
819
|
transform_handlers = ModelTransformerBuilder.build(
|
749
820
|
dataset=dataset,
|
@@ -756,7 +827,7 @@ class IterativeImputer(BaseTransformer):
|
|
756
827
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
757
828
|
inference_method=inference_method,
|
758
829
|
input_cols=self.input_cols,
|
759
|
-
expected_output_cols=
|
830
|
+
expected_output_cols=expected_output_cols,
|
760
831
|
**transform_kwargs
|
761
832
|
)
|
762
833
|
return output_df
|
@@ -782,30 +853,32 @@ class IterativeImputer(BaseTransformer):
|
|
782
853
|
Output dataset with results of the decision function for the samples in input dataset.
|
783
854
|
"""
|
784
855
|
super()._check_dataset_type(dataset)
|
785
|
-
inference_method="decision_function"
|
856
|
+
inference_method = "decision_function"
|
786
857
|
|
787
858
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
788
859
|
# are specific to the type of dataset used.
|
789
860
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
790
861
|
|
862
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
863
|
+
|
791
864
|
if isinstance(dataset, DataFrame):
|
792
|
-
self.
|
793
|
-
|
794
|
-
|
795
|
-
|
796
|
-
|
865
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
866
|
+
self._deps = self._get_dependencies()
|
867
|
+
assert isinstance(
|
868
|
+
dataset._session, Session
|
869
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
797
870
|
transform_kwargs = dict(
|
798
871
|
session=dataset._session,
|
799
872
|
dependencies=self._deps,
|
800
|
-
drop_input_cols
|
873
|
+
drop_input_cols=self._drop_input_cols,
|
801
874
|
expected_output_cols_type="float",
|
802
875
|
)
|
876
|
+
expected_output_cols = self._align_expected_output_names(
|
877
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
878
|
+
)
|
803
879
|
|
804
880
|
elif isinstance(dataset, pd.DataFrame):
|
805
|
-
transform_kwargs = dict(
|
806
|
-
snowpark_input_cols = self._snowpark_cols,
|
807
|
-
drop_input_cols = self._drop_input_cols
|
808
|
-
)
|
881
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
809
882
|
|
810
883
|
transform_handlers = ModelTransformerBuilder.build(
|
811
884
|
dataset=dataset,
|
@@ -818,7 +891,7 @@ class IterativeImputer(BaseTransformer):
|
|
818
891
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
819
892
|
inference_method=inference_method,
|
820
893
|
input_cols=self.input_cols,
|
821
|
-
expected_output_cols=
|
894
|
+
expected_output_cols=expected_output_cols,
|
822
895
|
**transform_kwargs
|
823
896
|
)
|
824
897
|
return output_df
|
@@ -847,17 +920,17 @@ class IterativeImputer(BaseTransformer):
|
|
847
920
|
Output dataset with probability of the sample for each class in the model.
|
848
921
|
"""
|
849
922
|
super()._check_dataset_type(dataset)
|
850
|
-
inference_method="score_samples"
|
923
|
+
inference_method = "score_samples"
|
851
924
|
|
852
925
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
853
926
|
# are specific to the type of dataset used.
|
854
927
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
855
928
|
|
929
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
930
|
+
|
856
931
|
if isinstance(dataset, DataFrame):
|
857
|
-
self.
|
858
|
-
|
859
|
-
inference_method=inference_method,
|
860
|
-
)
|
932
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
933
|
+
self._deps = self._get_dependencies()
|
861
934
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
862
935
|
transform_kwargs = dict(
|
863
936
|
session=dataset._session,
|
@@ -865,6 +938,9 @@ class IterativeImputer(BaseTransformer):
|
|
865
938
|
drop_input_cols = self._drop_input_cols,
|
866
939
|
expected_output_cols_type="float",
|
867
940
|
)
|
941
|
+
expected_output_cols = self._align_expected_output_names(
|
942
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
943
|
+
)
|
868
944
|
|
869
945
|
elif isinstance(dataset, pd.DataFrame):
|
870
946
|
transform_kwargs = dict(
|
@@ -883,7 +959,7 @@ class IterativeImputer(BaseTransformer):
|
|
883
959
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
884
960
|
inference_method=inference_method,
|
885
961
|
input_cols=self.input_cols,
|
886
|
-
expected_output_cols=
|
962
|
+
expected_output_cols=expected_output_cols,
|
887
963
|
**transform_kwargs
|
888
964
|
)
|
889
965
|
return output_df
|
@@ -916,17 +992,15 @@ class IterativeImputer(BaseTransformer):
|
|
916
992
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
917
993
|
|
918
994
|
if isinstance(dataset, DataFrame):
|
919
|
-
self.
|
920
|
-
|
921
|
-
inference_method="score",
|
922
|
-
)
|
995
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
996
|
+
self._deps = self._get_dependencies()
|
923
997
|
selected_cols = self._get_active_columns()
|
924
998
|
if len(selected_cols) > 0:
|
925
999
|
dataset = dataset.select(selected_cols)
|
926
1000
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
927
1001
|
transform_kwargs = dict(
|
928
1002
|
session=dataset._session,
|
929
|
-
dependencies=
|
1003
|
+
dependencies=self._deps,
|
930
1004
|
score_sproc_imports=['sklearn'],
|
931
1005
|
)
|
932
1006
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -991,11 +1065,8 @@ class IterativeImputer(BaseTransformer):
|
|
991
1065
|
|
992
1066
|
if isinstance(dataset, DataFrame):
|
993
1067
|
|
994
|
-
self.
|
995
|
-
|
996
|
-
inference_method=inference_method,
|
997
|
-
|
998
|
-
)
|
1068
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1069
|
+
self._deps = self._get_dependencies()
|
999
1070
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
1000
1071
|
transform_kwargs = dict(
|
1001
1072
|
session = dataset._session,
|
@@ -1028,50 +1099,84 @@ class IterativeImputer(BaseTransformer):
|
|
1028
1099
|
)
|
1029
1100
|
return output_df
|
1030
1101
|
|
1102
|
+
|
1103
|
+
|
1104
|
+
def to_sklearn(self) -> Any:
|
1105
|
+
"""Get sklearn.impute.IterativeImputer object.
|
1106
|
+
"""
|
1107
|
+
if self._sklearn_object is None:
|
1108
|
+
self._sklearn_object = self._create_sklearn_object()
|
1109
|
+
return self._sklearn_object
|
1110
|
+
|
1111
|
+
def to_xgboost(self) -> Any:
|
1112
|
+
raise exceptions.SnowflakeMLException(
|
1113
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1114
|
+
original_exception=AttributeError(
|
1115
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1116
|
+
"to_xgboost()",
|
1117
|
+
"to_sklearn()"
|
1118
|
+
)
|
1119
|
+
),
|
1120
|
+
)
|
1031
1121
|
|
1032
|
-
def
|
1122
|
+
def to_lightgbm(self) -> Any:
|
1123
|
+
raise exceptions.SnowflakeMLException(
|
1124
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1125
|
+
original_exception=AttributeError(
|
1126
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1127
|
+
"to_lightgbm()",
|
1128
|
+
"to_sklearn()"
|
1129
|
+
)
|
1130
|
+
),
|
1131
|
+
)
|
1132
|
+
|
1133
|
+
def _get_dependencies(self) -> List[str]:
|
1134
|
+
return self._deps
|
1135
|
+
|
1136
|
+
|
1137
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1033
1138
|
self._model_signature_dict = dict()
|
1034
1139
|
|
1035
1140
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1036
1141
|
|
1037
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1142
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1038
1143
|
outputs: List[BaseFeatureSpec] = []
|
1039
1144
|
if hasattr(self, "predict"):
|
1040
1145
|
# keep mypy happy
|
1041
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1146
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1042
1147
|
# For classifier, the type of predict is the same as the type of label
|
1043
|
-
if self._sklearn_object._estimator_type ==
|
1044
|
-
|
1148
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1149
|
+
# label columns is the desired type for output
|
1045
1150
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1046
1151
|
# rename the output columns
|
1047
1152
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1048
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1049
|
-
|
1050
|
-
|
1153
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1154
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1155
|
+
)
|
1051
1156
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1052
1157
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1053
|
-
# Clusterer returns int64 cluster labels.
|
1158
|
+
# Clusterer returns int64 cluster labels.
|
1054
1159
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1055
1160
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1056
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1057
|
-
|
1058
|
-
|
1059
|
-
|
1161
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1162
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1163
|
+
)
|
1164
|
+
|
1060
1165
|
# For regressor, the type of predict is float64
|
1061
|
-
elif self._sklearn_object._estimator_type ==
|
1166
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1062
1167
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1063
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1064
|
-
|
1065
|
-
|
1066
|
-
|
1168
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1169
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1170
|
+
)
|
1171
|
+
|
1067
1172
|
for prob_func in PROB_FUNCTIONS:
|
1068
1173
|
if hasattr(self, prob_func):
|
1069
1174
|
output_cols_prefix: str = f"{prob_func}_"
|
1070
1175
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1071
1176
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1072
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1073
|
-
|
1074
|
-
|
1177
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1178
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1179
|
+
)
|
1075
1180
|
|
1076
1181
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1077
1182
|
items = list(self._model_signature_dict.items())
|
@@ -1084,10 +1189,10 @@ class IterativeImputer(BaseTransformer):
|
|
1084
1189
|
"""Returns model signature of current class.
|
1085
1190
|
|
1086
1191
|
Raises:
|
1087
|
-
|
1192
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1088
1193
|
|
1089
1194
|
Returns:
|
1090
|
-
Dict
|
1195
|
+
Dict with each method and its input output signature
|
1091
1196
|
"""
|
1092
1197
|
if self._model_signature_dict is None:
|
1093
1198
|
raise exceptions.SnowflakeMLException(
|
@@ -1095,35 +1200,3 @@ class IterativeImputer(BaseTransformer):
|
|
1095
1200
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1096
1201
|
)
|
1097
1202
|
return self._model_signature_dict
|
1098
|
-
|
1099
|
-
def to_sklearn(self) -> Any:
|
1100
|
-
"""Get sklearn.impute.IterativeImputer object.
|
1101
|
-
"""
|
1102
|
-
if self._sklearn_object is None:
|
1103
|
-
self._sklearn_object = self._create_sklearn_object()
|
1104
|
-
return self._sklearn_object
|
1105
|
-
|
1106
|
-
def to_xgboost(self) -> Any:
|
1107
|
-
raise exceptions.SnowflakeMLException(
|
1108
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1109
|
-
original_exception=AttributeError(
|
1110
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1111
|
-
"to_xgboost()",
|
1112
|
-
"to_sklearn()"
|
1113
|
-
)
|
1114
|
-
),
|
1115
|
-
)
|
1116
|
-
|
1117
|
-
def to_lightgbm(self) -> Any:
|
1118
|
-
raise exceptions.SnowflakeMLException(
|
1119
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1120
|
-
original_exception=AttributeError(
|
1121
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1122
|
-
"to_lightgbm()",
|
1123
|
-
"to_sklearn()"
|
1124
|
-
)
|
1125
|
-
),
|
1126
|
-
)
|
1127
|
-
|
1128
|
-
def _get_dependencies(self) -> List[str]:
|
1129
|
-
return self._deps
|