snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class TruncatedSVD(BaseTransformer):
71
64
  r"""Dimensionality reduction using truncated SVD (aka LSA)
72
65
  For more details on this class, see [sklearn.decomposition.TruncatedSVD]
@@ -240,12 +233,7 @@ class TruncatedSVD(BaseTransformer):
240
233
  )
241
234
  return selected_cols
242
235
 
243
- @telemetry.send_api_usage_telemetry(
244
- project=_PROJECT,
245
- subproject=_SUBPROJECT,
246
- custom_tags=dict([("autogen", True)]),
247
- )
248
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TruncatedSVD":
236
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TruncatedSVD":
249
237
  """Fit model on training data X
250
238
  For more details on this function, see [sklearn.decomposition.TruncatedSVD.fit]
251
239
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html#sklearn.decomposition.TruncatedSVD.fit)
@@ -272,12 +260,14 @@ class TruncatedSVD(BaseTransformer):
272
260
 
273
261
  self._snowpark_cols = dataset.select(self.input_cols).columns
274
262
 
275
- # If we are already in a stored procedure, no need to kick off another one.
263
+ # If we are already in a stored procedure, no need to kick off another one.
276
264
  if SNOWML_SPROC_ENV in os.environ:
277
265
  statement_params = telemetry.get_function_usage_statement_params(
278
266
  project=_PROJECT,
279
267
  subproject=_SUBPROJECT,
280
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TruncatedSVD.__class__.__name__),
268
+ function_name=telemetry.get_statement_params_full_func_name(
269
+ inspect.currentframe(), TruncatedSVD.__class__.__name__
270
+ ),
281
271
  api_calls=[Session.call],
282
272
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
283
273
  )
@@ -298,27 +288,24 @@ class TruncatedSVD(BaseTransformer):
298
288
  )
299
289
  self._sklearn_object = model_trainer.train()
300
290
  self._is_fitted = True
301
- self._get_model_signatures(dataset)
291
+ self._generate_model_signatures(dataset)
302
292
  return self
303
293
 
304
294
  def _batch_inference_validate_snowpark(
305
295
  self,
306
296
  dataset: DataFrame,
307
297
  inference_method: str,
308
- ) -> List[str]:
309
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
310
- return the available package that exists in the snowflake anaconda channel
298
+ ) -> None:
299
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
311
300
 
312
301
  Args:
313
302
  dataset: snowpark dataframe
314
303
  inference_method: the inference method such as predict, score...
315
-
304
+
316
305
  Raises:
317
306
  SnowflakeMLException: If the estimator is not fitted, raise error
318
307
  SnowflakeMLException: If the session is None, raise error
319
308
 
320
- Returns:
321
- A list of available package that exists in the snowflake anaconda channel
322
309
  """
323
310
  if not self._is_fitted:
324
311
  raise exceptions.SnowflakeMLException(
@@ -336,9 +323,7 @@ class TruncatedSVD(BaseTransformer):
336
323
  "Session must not specified for snowpark dataset."
337
324
  ),
338
325
  )
339
- # Validate that key package version in user workspace are supported in snowflake conda channel
340
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
341
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
326
+
342
327
 
343
328
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
344
329
  @telemetry.send_api_usage_telemetry(
@@ -372,7 +357,9 @@ class TruncatedSVD(BaseTransformer):
372
357
  # when it is classifier, infer the datatype from label columns
373
358
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
374
359
  # Batch inference takes a single expected output column type. Use the first columns type for now.
375
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
360
+ label_cols_signatures = [
361
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
362
+ ]
376
363
  if len(label_cols_signatures) == 0:
377
364
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
378
365
  raise exceptions.SnowflakeMLException(
@@ -380,25 +367,23 @@ class TruncatedSVD(BaseTransformer):
380
367
  original_exception=ValueError(error_str),
381
368
  )
382
369
 
383
- expected_type_inferred = convert_sp_to_sf_type(
384
- label_cols_signatures[0].as_snowpark_type()
385
- )
370
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
386
371
 
387
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
388
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
372
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
373
+ self._deps = self._get_dependencies()
374
+ assert isinstance(
375
+ dataset._session, Session
376
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
389
377
 
390
378
  transform_kwargs = dict(
391
- session = dataset._session,
392
- dependencies = self._deps,
393
- drop_input_cols = self._drop_input_cols,
394
- expected_output_cols_type = expected_type_inferred,
379
+ session=dataset._session,
380
+ dependencies=self._deps,
381
+ drop_input_cols=self._drop_input_cols,
382
+ expected_output_cols_type=expected_type_inferred,
395
383
  )
396
384
 
397
385
  elif isinstance(dataset, pd.DataFrame):
398
- transform_kwargs = dict(
399
- snowpark_input_cols = self._snowpark_cols,
400
- drop_input_cols = self._drop_input_cols
401
- )
386
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
402
387
 
403
388
  transform_handlers = ModelTransformerBuilder.build(
404
389
  dataset=dataset,
@@ -440,7 +425,7 @@ class TruncatedSVD(BaseTransformer):
440
425
  Transformed dataset.
441
426
  """
442
427
  super()._check_dataset_type(dataset)
443
- inference_method="transform"
428
+ inference_method = "transform"
444
429
 
445
430
  # This dictionary contains optional kwargs for batch inference. These kwargs
446
431
  # are specific to the type of dataset used.
@@ -470,24 +455,19 @@ class TruncatedSVD(BaseTransformer):
470
455
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
471
456
  expected_dtype = convert_sp_to_sf_type(output_types[0])
472
457
 
473
- self._deps = self._batch_inference_validate_snowpark(
474
- dataset=dataset,
475
- inference_method=inference_method,
476
- )
458
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
459
+ self._deps = self._get_dependencies()
477
460
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
478
461
 
479
462
  transform_kwargs = dict(
480
- session = dataset._session,
481
- dependencies = self._deps,
482
- drop_input_cols = self._drop_input_cols,
483
- expected_output_cols_type = expected_dtype,
463
+ session=dataset._session,
464
+ dependencies=self._deps,
465
+ drop_input_cols=self._drop_input_cols,
466
+ expected_output_cols_type=expected_dtype,
484
467
  )
485
468
 
486
469
  elif isinstance(dataset, pd.DataFrame):
487
- transform_kwargs = dict(
488
- snowpark_input_cols = self._snowpark_cols,
489
- drop_input_cols = self._drop_input_cols
490
- )
470
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
491
471
 
492
472
  transform_handlers = ModelTransformerBuilder.build(
493
473
  dataset=dataset,
@@ -506,7 +486,11 @@ class TruncatedSVD(BaseTransformer):
506
486
  return output_df
507
487
 
508
488
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
509
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
489
+ def fit_predict(
490
+ self,
491
+ dataset: Union[DataFrame, pd.DataFrame],
492
+ output_cols_prefix: str = "fit_predict_",
493
+ ) -> Union[DataFrame, pd.DataFrame]:
510
494
  """ Method not supported for this class.
511
495
 
512
496
 
@@ -531,22 +515,106 @@ class TruncatedSVD(BaseTransformer):
531
515
  )
532
516
  output_result, fitted_estimator = model_trainer.train_fit_predict(
533
517
  drop_input_cols=self._drop_input_cols,
534
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
518
+ expected_output_cols_list=(
519
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
520
+ ),
535
521
  )
536
522
  self._sklearn_object = fitted_estimator
537
523
  self._is_fitted = True
538
524
  return output_result
539
525
 
526
+
527
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
528
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
529
+ """ Fit model to X and perform dimensionality reduction on X
530
+ For more details on this function, see [sklearn.decomposition.TruncatedSVD.fit_transform]
531
+ (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.TruncatedSVD.html#sklearn.decomposition.TruncatedSVD.fit_transform)
532
+
533
+
534
+ Raises:
535
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
540
536
 
541
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
542
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
543
- """
537
+ Args:
538
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
539
+ Snowpark or Pandas DataFrame.
540
+ output_cols_prefix: Prefix for the response columns
544
541
  Returns:
545
542
  Transformed dataset.
546
543
  """
547
- self.fit(dataset)
548
- assert self._sklearn_object is not None
549
- return self._sklearn_object.embedding_
544
+ self._infer_input_output_cols(dataset)
545
+ super()._check_dataset_type(dataset)
546
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
547
+ estimator=self._sklearn_object,
548
+ dataset=dataset,
549
+ input_cols=self.input_cols,
550
+ label_cols=self.label_cols,
551
+ sample_weight_col=self.sample_weight_col,
552
+ autogenerated=self._autogenerated,
553
+ subproject=_SUBPROJECT,
554
+ )
555
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
556
+ drop_input_cols=self._drop_input_cols,
557
+ expected_output_cols_list=self.output_cols,
558
+ )
559
+ self._sklearn_object = fitted_estimator
560
+ self._is_fitted = True
561
+ return output_result
562
+
563
+
564
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
565
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
566
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
567
+ """
568
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
569
+ # The following condition is introduced for kneighbors methods, and not used in other methods
570
+ if output_cols:
571
+ output_cols = [
572
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
573
+ for c in output_cols
574
+ ]
575
+ elif getattr(self._sklearn_object, "classes_", None) is None:
576
+ output_cols = [output_cols_prefix]
577
+ elif self._sklearn_object is not None:
578
+ classes = self._sklearn_object.classes_
579
+ if isinstance(classes, numpy.ndarray):
580
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
581
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
582
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
583
+ output_cols = []
584
+ for i, cl in enumerate(classes):
585
+ # For binary classification, there is only one output column for each class
586
+ # ndarray as the two classes are complementary.
587
+ if len(cl) == 2:
588
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
589
+ else:
590
+ output_cols.extend([
591
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
592
+ ])
593
+ else:
594
+ output_cols = []
595
+
596
+ # Make sure column names are valid snowflake identifiers.
597
+ assert output_cols is not None # Make MyPy happy
598
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
599
+
600
+ return rv
601
+
602
+ def _align_expected_output_names(
603
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
604
+ ) -> List[str]:
605
+ # in case the inferred output column names dimension is different
606
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
607
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
608
+ output_df_columns = list(output_df_pd.columns)
609
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
610
+ if self.sample_weight_col:
611
+ output_df_columns_set -= set(self.sample_weight_col)
612
+ # if the dimension of inferred output column names is correct; use it
613
+ if len(expected_output_cols_list) == len(output_df_columns_set):
614
+ return expected_output_cols_list
615
+ # otherwise, use the sklearn estimator's output
616
+ else:
617
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
550
618
 
551
619
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
552
620
  @telemetry.send_api_usage_telemetry(
@@ -578,24 +646,26 @@ class TruncatedSVD(BaseTransformer):
578
646
  # are specific to the type of dataset used.
579
647
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
580
648
 
649
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
650
+
581
651
  if isinstance(dataset, DataFrame):
582
- self._deps = self._batch_inference_validate_snowpark(
583
- dataset=dataset,
584
- inference_method=inference_method,
585
- )
586
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
652
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
653
+ self._deps = self._get_dependencies()
654
+ assert isinstance(
655
+ dataset._session, Session
656
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
587
657
  transform_kwargs = dict(
588
658
  session=dataset._session,
589
659
  dependencies=self._deps,
590
- drop_input_cols = self._drop_input_cols,
660
+ drop_input_cols=self._drop_input_cols,
591
661
  expected_output_cols_type="float",
592
662
  )
663
+ expected_output_cols = self._align_expected_output_names(
664
+ inference_method, dataset, expected_output_cols, output_cols_prefix
665
+ )
593
666
 
594
667
  elif isinstance(dataset, pd.DataFrame):
595
- transform_kwargs = dict(
596
- snowpark_input_cols = self._snowpark_cols,
597
- drop_input_cols = self._drop_input_cols
598
- )
668
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
599
669
 
600
670
  transform_handlers = ModelTransformerBuilder.build(
601
671
  dataset=dataset,
@@ -607,7 +677,7 @@ class TruncatedSVD(BaseTransformer):
607
677
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
608
678
  inference_method=inference_method,
609
679
  input_cols=self.input_cols,
610
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
680
+ expected_output_cols=expected_output_cols,
611
681
  **transform_kwargs
612
682
  )
613
683
  return output_df
@@ -637,29 +707,30 @@ class TruncatedSVD(BaseTransformer):
637
707
  Output dataset with log probability of the sample for each class in the model.
638
708
  """
639
709
  super()._check_dataset_type(dataset)
640
- inference_method="predict_log_proba"
710
+ inference_method = "predict_log_proba"
711
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
641
712
 
642
713
  # This dictionary contains optional kwargs for batch inference. These kwargs
643
714
  # are specific to the type of dataset used.
644
715
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
645
716
 
646
717
  if isinstance(dataset, DataFrame):
647
- self._deps = self._batch_inference_validate_snowpark(
648
- dataset=dataset,
649
- inference_method=inference_method,
650
- )
651
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
718
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
719
+ self._deps = self._get_dependencies()
720
+ assert isinstance(
721
+ dataset._session, Session
722
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
652
723
  transform_kwargs = dict(
653
724
  session=dataset._session,
654
725
  dependencies=self._deps,
655
- drop_input_cols = self._drop_input_cols,
726
+ drop_input_cols=self._drop_input_cols,
656
727
  expected_output_cols_type="float",
657
728
  )
729
+ expected_output_cols = self._align_expected_output_names(
730
+ inference_method, dataset, expected_output_cols, output_cols_prefix
731
+ )
658
732
  elif isinstance(dataset, pd.DataFrame):
659
- transform_kwargs = dict(
660
- snowpark_input_cols = self._snowpark_cols,
661
- drop_input_cols = self._drop_input_cols
662
- )
733
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
663
734
 
664
735
  transform_handlers = ModelTransformerBuilder.build(
665
736
  dataset=dataset,
@@ -672,7 +743,7 @@ class TruncatedSVD(BaseTransformer):
672
743
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
673
744
  inference_method=inference_method,
674
745
  input_cols=self.input_cols,
675
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
746
+ expected_output_cols=expected_output_cols,
676
747
  **transform_kwargs
677
748
  )
678
749
  return output_df
@@ -698,30 +769,32 @@ class TruncatedSVD(BaseTransformer):
698
769
  Output dataset with results of the decision function for the samples in input dataset.
699
770
  """
700
771
  super()._check_dataset_type(dataset)
701
- inference_method="decision_function"
772
+ inference_method = "decision_function"
702
773
 
703
774
  # This dictionary contains optional kwargs for batch inference. These kwargs
704
775
  # are specific to the type of dataset used.
705
776
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
706
777
 
778
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
779
+
707
780
  if isinstance(dataset, DataFrame):
708
- self._deps = self._batch_inference_validate_snowpark(
709
- dataset=dataset,
710
- inference_method=inference_method,
711
- )
712
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
781
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
782
+ self._deps = self._get_dependencies()
783
+ assert isinstance(
784
+ dataset._session, Session
785
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
713
786
  transform_kwargs = dict(
714
787
  session=dataset._session,
715
788
  dependencies=self._deps,
716
- drop_input_cols = self._drop_input_cols,
789
+ drop_input_cols=self._drop_input_cols,
717
790
  expected_output_cols_type="float",
718
791
  )
792
+ expected_output_cols = self._align_expected_output_names(
793
+ inference_method, dataset, expected_output_cols, output_cols_prefix
794
+ )
719
795
 
720
796
  elif isinstance(dataset, pd.DataFrame):
721
- transform_kwargs = dict(
722
- snowpark_input_cols = self._snowpark_cols,
723
- drop_input_cols = self._drop_input_cols
724
- )
797
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
725
798
 
726
799
  transform_handlers = ModelTransformerBuilder.build(
727
800
  dataset=dataset,
@@ -734,7 +807,7 @@ class TruncatedSVD(BaseTransformer):
734
807
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
735
808
  inference_method=inference_method,
736
809
  input_cols=self.input_cols,
737
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
810
+ expected_output_cols=expected_output_cols,
738
811
  **transform_kwargs
739
812
  )
740
813
  return output_df
@@ -763,17 +836,17 @@ class TruncatedSVD(BaseTransformer):
763
836
  Output dataset with probability of the sample for each class in the model.
764
837
  """
765
838
  super()._check_dataset_type(dataset)
766
- inference_method="score_samples"
839
+ inference_method = "score_samples"
767
840
 
768
841
  # This dictionary contains optional kwargs for batch inference. These kwargs
769
842
  # are specific to the type of dataset used.
770
843
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
771
844
 
845
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
846
+
772
847
  if isinstance(dataset, DataFrame):
773
- self._deps = self._batch_inference_validate_snowpark(
774
- dataset=dataset,
775
- inference_method=inference_method,
776
- )
848
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
849
+ self._deps = self._get_dependencies()
777
850
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
778
851
  transform_kwargs = dict(
779
852
  session=dataset._session,
@@ -781,6 +854,9 @@ class TruncatedSVD(BaseTransformer):
781
854
  drop_input_cols = self._drop_input_cols,
782
855
  expected_output_cols_type="float",
783
856
  )
857
+ expected_output_cols = self._align_expected_output_names(
858
+ inference_method, dataset, expected_output_cols, output_cols_prefix
859
+ )
784
860
 
785
861
  elif isinstance(dataset, pd.DataFrame):
786
862
  transform_kwargs = dict(
@@ -799,7 +875,7 @@ class TruncatedSVD(BaseTransformer):
799
875
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
800
876
  inference_method=inference_method,
801
877
  input_cols=self.input_cols,
802
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
878
+ expected_output_cols=expected_output_cols,
803
879
  **transform_kwargs
804
880
  )
805
881
  return output_df
@@ -832,17 +908,15 @@ class TruncatedSVD(BaseTransformer):
832
908
  transform_kwargs: ScoreKwargsTypedDict = dict()
833
909
 
834
910
  if isinstance(dataset, DataFrame):
835
- self._deps = self._batch_inference_validate_snowpark(
836
- dataset=dataset,
837
- inference_method="score",
838
- )
911
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
912
+ self._deps = self._get_dependencies()
839
913
  selected_cols = self._get_active_columns()
840
914
  if len(selected_cols) > 0:
841
915
  dataset = dataset.select(selected_cols)
842
916
  assert isinstance(dataset._session, Session) # keep mypy happy
843
917
  transform_kwargs = dict(
844
918
  session=dataset._session,
845
- dependencies=["snowflake-snowpark-python"] + self._deps,
919
+ dependencies=self._deps,
846
920
  score_sproc_imports=['sklearn'],
847
921
  )
848
922
  elif isinstance(dataset, pd.DataFrame):
@@ -907,11 +981,8 @@ class TruncatedSVD(BaseTransformer):
907
981
 
908
982
  if isinstance(dataset, DataFrame):
909
983
 
910
- self._deps = self._batch_inference_validate_snowpark(
911
- dataset=dataset,
912
- inference_method=inference_method,
913
-
914
- )
984
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
985
+ self._deps = self._get_dependencies()
915
986
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
916
987
  transform_kwargs = dict(
917
988
  session = dataset._session,
@@ -944,50 +1015,84 @@ class TruncatedSVD(BaseTransformer):
944
1015
  )
945
1016
  return output_df
946
1017
 
1018
+
1019
+
1020
+ def to_sklearn(self) -> Any:
1021
+ """Get sklearn.decomposition.TruncatedSVD object.
1022
+ """
1023
+ if self._sklearn_object is None:
1024
+ self._sklearn_object = self._create_sklearn_object()
1025
+ return self._sklearn_object
1026
+
1027
+ def to_xgboost(self) -> Any:
1028
+ raise exceptions.SnowflakeMLException(
1029
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1030
+ original_exception=AttributeError(
1031
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1032
+ "to_xgboost()",
1033
+ "to_sklearn()"
1034
+ )
1035
+ ),
1036
+ )
947
1037
 
948
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1038
+ def to_lightgbm(self) -> Any:
1039
+ raise exceptions.SnowflakeMLException(
1040
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1041
+ original_exception=AttributeError(
1042
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1043
+ "to_lightgbm()",
1044
+ "to_sklearn()"
1045
+ )
1046
+ ),
1047
+ )
1048
+
1049
+ def _get_dependencies(self) -> List[str]:
1050
+ return self._deps
1051
+
1052
+
1053
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
949
1054
  self._model_signature_dict = dict()
950
1055
 
951
1056
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
952
1057
 
953
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1058
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
954
1059
  outputs: List[BaseFeatureSpec] = []
955
1060
  if hasattr(self, "predict"):
956
1061
  # keep mypy happy
957
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1062
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
958
1063
  # For classifier, the type of predict is the same as the type of label
959
- if self._sklearn_object._estimator_type == 'classifier':
960
- # label columns is the desired type for output
1064
+ if self._sklearn_object._estimator_type == "classifier":
1065
+ # label columns is the desired type for output
961
1066
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
962
1067
  # rename the output columns
963
1068
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
964
- self._model_signature_dict["predict"] = ModelSignature(inputs,
965
- ([] if self._drop_input_cols else inputs)
966
- + outputs)
1069
+ self._model_signature_dict["predict"] = ModelSignature(
1070
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1071
+ )
967
1072
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
968
1073
  # For outlier models, returns -1 for outliers and 1 for inliers.
969
- # Clusterer returns int64 cluster labels.
1074
+ # Clusterer returns int64 cluster labels.
970
1075
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
971
1076
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
972
- self._model_signature_dict["predict"] = ModelSignature(inputs,
973
- ([] if self._drop_input_cols else inputs)
974
- + outputs)
975
-
1077
+ self._model_signature_dict["predict"] = ModelSignature(
1078
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1079
+ )
1080
+
976
1081
  # For regressor, the type of predict is float64
977
- elif self._sklearn_object._estimator_type == 'regressor':
1082
+ elif self._sklearn_object._estimator_type == "regressor":
978
1083
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
979
- self._model_signature_dict["predict"] = ModelSignature(inputs,
980
- ([] if self._drop_input_cols else inputs)
981
- + outputs)
982
-
1084
+ self._model_signature_dict["predict"] = ModelSignature(
1085
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1086
+ )
1087
+
983
1088
  for prob_func in PROB_FUNCTIONS:
984
1089
  if hasattr(self, prob_func):
985
1090
  output_cols_prefix: str = f"{prob_func}_"
986
1091
  output_column_names = self._get_output_column_names(output_cols_prefix)
987
1092
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
988
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
989
- ([] if self._drop_input_cols else inputs)
990
- + outputs)
1093
+ self._model_signature_dict[prob_func] = ModelSignature(
1094
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1095
+ )
991
1096
 
992
1097
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
993
1098
  items = list(self._model_signature_dict.items())
@@ -1000,10 +1105,10 @@ class TruncatedSVD(BaseTransformer):
1000
1105
  """Returns model signature of current class.
1001
1106
 
1002
1107
  Raises:
1003
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1108
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1004
1109
 
1005
1110
  Returns:
1006
- Dict[str, ModelSignature]: each method and its input output signature
1111
+ Dict with each method and its input output signature
1007
1112
  """
1008
1113
  if self._model_signature_dict is None:
1009
1114
  raise exceptions.SnowflakeMLException(
@@ -1011,35 +1116,3 @@ class TruncatedSVD(BaseTransformer):
1011
1116
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1012
1117
  )
1013
1118
  return self._model_signature_dict
1014
-
1015
- def to_sklearn(self) -> Any:
1016
- """Get sklearn.decomposition.TruncatedSVD object.
1017
- """
1018
- if self._sklearn_object is None:
1019
- self._sklearn_object = self._create_sklearn_object()
1020
- return self._sklearn_object
1021
-
1022
- def to_xgboost(self) -> Any:
1023
- raise exceptions.SnowflakeMLException(
1024
- error_code=error_codes.METHOD_NOT_ALLOWED,
1025
- original_exception=AttributeError(
1026
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1027
- "to_xgboost()",
1028
- "to_sklearn()"
1029
- )
1030
- ),
1031
- )
1032
-
1033
- def to_lightgbm(self) -> Any:
1034
- raise exceptions.SnowflakeMLException(
1035
- error_code=error_codes.METHOD_NOT_ALLOWED,
1036
- original_exception=AttributeError(
1037
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1038
- "to_lightgbm()",
1039
- "to_sklearn()"
1040
- )
1041
- ),
1042
- )
1043
-
1044
- def _get_dependencies(self) -> List[str]:
1045
- return self._deps