snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class AffinityPropagation(BaseTransformer):
|
71
64
|
r"""Perform Affinity Propagation Clustering of data
|
72
65
|
For more details on this class, see [sklearn.cluster.AffinityPropagation]
|
@@ -242,12 +235,7 @@ class AffinityPropagation(BaseTransformer):
|
|
242
235
|
)
|
243
236
|
return selected_cols
|
244
237
|
|
245
|
-
|
246
|
-
project=_PROJECT,
|
247
|
-
subproject=_SUBPROJECT,
|
248
|
-
custom_tags=dict([("autogen", True)]),
|
249
|
-
)
|
250
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AffinityPropagation":
|
238
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AffinityPropagation":
|
251
239
|
"""Fit the clustering from features, or affinity matrix
|
252
240
|
For more details on this function, see [sklearn.cluster.AffinityPropagation.fit]
|
253
241
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation.fit)
|
@@ -274,12 +262,14 @@ class AffinityPropagation(BaseTransformer):
|
|
274
262
|
|
275
263
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
276
264
|
|
277
|
-
|
265
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
278
266
|
if SNOWML_SPROC_ENV in os.environ:
|
279
267
|
statement_params = telemetry.get_function_usage_statement_params(
|
280
268
|
project=_PROJECT,
|
281
269
|
subproject=_SUBPROJECT,
|
282
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
270
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
271
|
+
inspect.currentframe(), AffinityPropagation.__class__.__name__
|
272
|
+
),
|
283
273
|
api_calls=[Session.call],
|
284
274
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
285
275
|
)
|
@@ -300,27 +290,24 @@ class AffinityPropagation(BaseTransformer):
|
|
300
290
|
)
|
301
291
|
self._sklearn_object = model_trainer.train()
|
302
292
|
self._is_fitted = True
|
303
|
-
self.
|
293
|
+
self._generate_model_signatures(dataset)
|
304
294
|
return self
|
305
295
|
|
306
296
|
def _batch_inference_validate_snowpark(
|
307
297
|
self,
|
308
298
|
dataset: DataFrame,
|
309
299
|
inference_method: str,
|
310
|
-
) ->
|
311
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
312
|
-
return the available package that exists in the snowflake anaconda channel
|
300
|
+
) -> None:
|
301
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
313
302
|
|
314
303
|
Args:
|
315
304
|
dataset: snowpark dataframe
|
316
305
|
inference_method: the inference method such as predict, score...
|
317
|
-
|
306
|
+
|
318
307
|
Raises:
|
319
308
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
320
309
|
SnowflakeMLException: If the session is None, raise error
|
321
310
|
|
322
|
-
Returns:
|
323
|
-
A list of available package that exists in the snowflake anaconda channel
|
324
311
|
"""
|
325
312
|
if not self._is_fitted:
|
326
313
|
raise exceptions.SnowflakeMLException(
|
@@ -338,9 +325,7 @@ class AffinityPropagation(BaseTransformer):
|
|
338
325
|
"Session must not specified for snowpark dataset."
|
339
326
|
),
|
340
327
|
)
|
341
|
-
|
342
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
343
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
328
|
+
|
344
329
|
|
345
330
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
346
331
|
@telemetry.send_api_usage_telemetry(
|
@@ -376,7 +361,9 @@ class AffinityPropagation(BaseTransformer):
|
|
376
361
|
# when it is classifier, infer the datatype from label columns
|
377
362
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
378
363
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
379
|
-
label_cols_signatures = [
|
364
|
+
label_cols_signatures = [
|
365
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
366
|
+
]
|
380
367
|
if len(label_cols_signatures) == 0:
|
381
368
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
382
369
|
raise exceptions.SnowflakeMLException(
|
@@ -384,25 +371,23 @@ class AffinityPropagation(BaseTransformer):
|
|
384
371
|
original_exception=ValueError(error_str),
|
385
372
|
)
|
386
373
|
|
387
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
388
|
-
label_cols_signatures[0].as_snowpark_type()
|
389
|
-
)
|
374
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
390
375
|
|
391
|
-
self.
|
392
|
-
|
376
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
377
|
+
self._deps = self._get_dependencies()
|
378
|
+
assert isinstance(
|
379
|
+
dataset._session, Session
|
380
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
393
381
|
|
394
382
|
transform_kwargs = dict(
|
395
|
-
session
|
396
|
-
dependencies
|
397
|
-
drop_input_cols
|
398
|
-
expected_output_cols_type
|
383
|
+
session=dataset._session,
|
384
|
+
dependencies=self._deps,
|
385
|
+
drop_input_cols=self._drop_input_cols,
|
386
|
+
expected_output_cols_type=expected_type_inferred,
|
399
387
|
)
|
400
388
|
|
401
389
|
elif isinstance(dataset, pd.DataFrame):
|
402
|
-
transform_kwargs = dict(
|
403
|
-
snowpark_input_cols = self._snowpark_cols,
|
404
|
-
drop_input_cols = self._drop_input_cols
|
405
|
-
)
|
390
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
406
391
|
|
407
392
|
transform_handlers = ModelTransformerBuilder.build(
|
408
393
|
dataset=dataset,
|
@@ -442,7 +427,7 @@ class AffinityPropagation(BaseTransformer):
|
|
442
427
|
Transformed dataset.
|
443
428
|
"""
|
444
429
|
super()._check_dataset_type(dataset)
|
445
|
-
inference_method="transform"
|
430
|
+
inference_method = "transform"
|
446
431
|
|
447
432
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
448
433
|
# are specific to the type of dataset used.
|
@@ -472,24 +457,19 @@ class AffinityPropagation(BaseTransformer):
|
|
472
457
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
473
458
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
474
459
|
|
475
|
-
self.
|
476
|
-
|
477
|
-
inference_method=inference_method,
|
478
|
-
)
|
460
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
461
|
+
self._deps = self._get_dependencies()
|
479
462
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
480
463
|
|
481
464
|
transform_kwargs = dict(
|
482
|
-
session
|
483
|
-
dependencies
|
484
|
-
drop_input_cols
|
485
|
-
expected_output_cols_type
|
465
|
+
session=dataset._session,
|
466
|
+
dependencies=self._deps,
|
467
|
+
drop_input_cols=self._drop_input_cols,
|
468
|
+
expected_output_cols_type=expected_dtype,
|
486
469
|
)
|
487
470
|
|
488
471
|
elif isinstance(dataset, pd.DataFrame):
|
489
|
-
transform_kwargs = dict(
|
490
|
-
snowpark_input_cols = self._snowpark_cols,
|
491
|
-
drop_input_cols = self._drop_input_cols
|
492
|
-
)
|
472
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
493
473
|
|
494
474
|
transform_handlers = ModelTransformerBuilder.build(
|
495
475
|
dataset=dataset,
|
@@ -508,7 +488,11 @@ class AffinityPropagation(BaseTransformer):
|
|
508
488
|
return output_df
|
509
489
|
|
510
490
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
511
|
-
def fit_predict(
|
491
|
+
def fit_predict(
|
492
|
+
self,
|
493
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
494
|
+
output_cols_prefix: str = "fit_predict_",
|
495
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
512
496
|
""" Fit clustering from features/affinity matrix; return cluster labels
|
513
497
|
For more details on this function, see [sklearn.cluster.AffinityPropagation.fit_predict]
|
514
498
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation.fit_predict)
|
@@ -535,22 +519,104 @@ class AffinityPropagation(BaseTransformer):
|
|
535
519
|
)
|
536
520
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
537
521
|
drop_input_cols=self._drop_input_cols,
|
538
|
-
expected_output_cols_list=
|
522
|
+
expected_output_cols_list=(
|
523
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
524
|
+
),
|
539
525
|
)
|
540
526
|
self._sklearn_object = fitted_estimator
|
541
527
|
self._is_fitted = True
|
542
528
|
return output_result
|
543
529
|
|
530
|
+
|
531
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
532
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
533
|
+
""" Method not supported for this class.
|
534
|
+
|
535
|
+
|
536
|
+
Raises:
|
537
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
544
538
|
|
545
|
-
|
546
|
-
|
547
|
-
|
539
|
+
Args:
|
540
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
541
|
+
Snowpark or Pandas DataFrame.
|
542
|
+
output_cols_prefix: Prefix for the response columns
|
548
543
|
Returns:
|
549
544
|
Transformed dataset.
|
550
545
|
"""
|
551
|
-
self.
|
552
|
-
|
553
|
-
|
546
|
+
self._infer_input_output_cols(dataset)
|
547
|
+
super()._check_dataset_type(dataset)
|
548
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
549
|
+
estimator=self._sklearn_object,
|
550
|
+
dataset=dataset,
|
551
|
+
input_cols=self.input_cols,
|
552
|
+
label_cols=self.label_cols,
|
553
|
+
sample_weight_col=self.sample_weight_col,
|
554
|
+
autogenerated=self._autogenerated,
|
555
|
+
subproject=_SUBPROJECT,
|
556
|
+
)
|
557
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
558
|
+
drop_input_cols=self._drop_input_cols,
|
559
|
+
expected_output_cols_list=self.output_cols,
|
560
|
+
)
|
561
|
+
self._sklearn_object = fitted_estimator
|
562
|
+
self._is_fitted = True
|
563
|
+
return output_result
|
564
|
+
|
565
|
+
|
566
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
567
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
568
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
569
|
+
"""
|
570
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
571
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
572
|
+
if output_cols:
|
573
|
+
output_cols = [
|
574
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
575
|
+
for c in output_cols
|
576
|
+
]
|
577
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
578
|
+
output_cols = [output_cols_prefix]
|
579
|
+
elif self._sklearn_object is not None:
|
580
|
+
classes = self._sklearn_object.classes_
|
581
|
+
if isinstance(classes, numpy.ndarray):
|
582
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
583
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
584
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
585
|
+
output_cols = []
|
586
|
+
for i, cl in enumerate(classes):
|
587
|
+
# For binary classification, there is only one output column for each class
|
588
|
+
# ndarray as the two classes are complementary.
|
589
|
+
if len(cl) == 2:
|
590
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
591
|
+
else:
|
592
|
+
output_cols.extend([
|
593
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
594
|
+
])
|
595
|
+
else:
|
596
|
+
output_cols = []
|
597
|
+
|
598
|
+
# Make sure column names are valid snowflake identifiers.
|
599
|
+
assert output_cols is not None # Make MyPy happy
|
600
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
601
|
+
|
602
|
+
return rv
|
603
|
+
|
604
|
+
def _align_expected_output_names(
|
605
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
606
|
+
) -> List[str]:
|
607
|
+
# in case the inferred output column names dimension is different
|
608
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
609
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
610
|
+
output_df_columns = list(output_df_pd.columns)
|
611
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
612
|
+
if self.sample_weight_col:
|
613
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
614
|
+
# if the dimension of inferred output column names is correct; use it
|
615
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
616
|
+
return expected_output_cols_list
|
617
|
+
# otherwise, use the sklearn estimator's output
|
618
|
+
else:
|
619
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
554
620
|
|
555
621
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
556
622
|
@telemetry.send_api_usage_telemetry(
|
@@ -582,24 +648,26 @@ class AffinityPropagation(BaseTransformer):
|
|
582
648
|
# are specific to the type of dataset used.
|
583
649
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
584
650
|
|
651
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
652
|
+
|
585
653
|
if isinstance(dataset, DataFrame):
|
586
|
-
self.
|
587
|
-
|
588
|
-
|
589
|
-
|
590
|
-
|
654
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
655
|
+
self._deps = self._get_dependencies()
|
656
|
+
assert isinstance(
|
657
|
+
dataset._session, Session
|
658
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
591
659
|
transform_kwargs = dict(
|
592
660
|
session=dataset._session,
|
593
661
|
dependencies=self._deps,
|
594
|
-
drop_input_cols
|
662
|
+
drop_input_cols=self._drop_input_cols,
|
595
663
|
expected_output_cols_type="float",
|
596
664
|
)
|
665
|
+
expected_output_cols = self._align_expected_output_names(
|
666
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
667
|
+
)
|
597
668
|
|
598
669
|
elif isinstance(dataset, pd.DataFrame):
|
599
|
-
transform_kwargs = dict(
|
600
|
-
snowpark_input_cols = self._snowpark_cols,
|
601
|
-
drop_input_cols = self._drop_input_cols
|
602
|
-
)
|
670
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
603
671
|
|
604
672
|
transform_handlers = ModelTransformerBuilder.build(
|
605
673
|
dataset=dataset,
|
@@ -611,7 +679,7 @@ class AffinityPropagation(BaseTransformer):
|
|
611
679
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
612
680
|
inference_method=inference_method,
|
613
681
|
input_cols=self.input_cols,
|
614
|
-
expected_output_cols=
|
682
|
+
expected_output_cols=expected_output_cols,
|
615
683
|
**transform_kwargs
|
616
684
|
)
|
617
685
|
return output_df
|
@@ -641,29 +709,30 @@ class AffinityPropagation(BaseTransformer):
|
|
641
709
|
Output dataset with log probability of the sample for each class in the model.
|
642
710
|
"""
|
643
711
|
super()._check_dataset_type(dataset)
|
644
|
-
inference_method="predict_log_proba"
|
712
|
+
inference_method = "predict_log_proba"
|
713
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
645
714
|
|
646
715
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
647
716
|
# are specific to the type of dataset used.
|
648
717
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
649
718
|
|
650
719
|
if isinstance(dataset, DataFrame):
|
651
|
-
self.
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
720
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
721
|
+
self._deps = self._get_dependencies()
|
722
|
+
assert isinstance(
|
723
|
+
dataset._session, Session
|
724
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
656
725
|
transform_kwargs = dict(
|
657
726
|
session=dataset._session,
|
658
727
|
dependencies=self._deps,
|
659
|
-
drop_input_cols
|
728
|
+
drop_input_cols=self._drop_input_cols,
|
660
729
|
expected_output_cols_type="float",
|
661
730
|
)
|
731
|
+
expected_output_cols = self._align_expected_output_names(
|
732
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
733
|
+
)
|
662
734
|
elif isinstance(dataset, pd.DataFrame):
|
663
|
-
transform_kwargs = dict(
|
664
|
-
snowpark_input_cols = self._snowpark_cols,
|
665
|
-
drop_input_cols = self._drop_input_cols
|
666
|
-
)
|
735
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
667
736
|
|
668
737
|
transform_handlers = ModelTransformerBuilder.build(
|
669
738
|
dataset=dataset,
|
@@ -676,7 +745,7 @@ class AffinityPropagation(BaseTransformer):
|
|
676
745
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
677
746
|
inference_method=inference_method,
|
678
747
|
input_cols=self.input_cols,
|
679
|
-
expected_output_cols=
|
748
|
+
expected_output_cols=expected_output_cols,
|
680
749
|
**transform_kwargs
|
681
750
|
)
|
682
751
|
return output_df
|
@@ -702,30 +771,32 @@ class AffinityPropagation(BaseTransformer):
|
|
702
771
|
Output dataset with results of the decision function for the samples in input dataset.
|
703
772
|
"""
|
704
773
|
super()._check_dataset_type(dataset)
|
705
|
-
inference_method="decision_function"
|
774
|
+
inference_method = "decision_function"
|
706
775
|
|
707
776
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
708
777
|
# are specific to the type of dataset used.
|
709
778
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
710
779
|
|
780
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
781
|
+
|
711
782
|
if isinstance(dataset, DataFrame):
|
712
|
-
self.
|
713
|
-
|
714
|
-
|
715
|
-
|
716
|
-
|
783
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
784
|
+
self._deps = self._get_dependencies()
|
785
|
+
assert isinstance(
|
786
|
+
dataset._session, Session
|
787
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
717
788
|
transform_kwargs = dict(
|
718
789
|
session=dataset._session,
|
719
790
|
dependencies=self._deps,
|
720
|
-
drop_input_cols
|
791
|
+
drop_input_cols=self._drop_input_cols,
|
721
792
|
expected_output_cols_type="float",
|
722
793
|
)
|
794
|
+
expected_output_cols = self._align_expected_output_names(
|
795
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
796
|
+
)
|
723
797
|
|
724
798
|
elif isinstance(dataset, pd.DataFrame):
|
725
|
-
transform_kwargs = dict(
|
726
|
-
snowpark_input_cols = self._snowpark_cols,
|
727
|
-
drop_input_cols = self._drop_input_cols
|
728
|
-
)
|
799
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
729
800
|
|
730
801
|
transform_handlers = ModelTransformerBuilder.build(
|
731
802
|
dataset=dataset,
|
@@ -738,7 +809,7 @@ class AffinityPropagation(BaseTransformer):
|
|
738
809
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
739
810
|
inference_method=inference_method,
|
740
811
|
input_cols=self.input_cols,
|
741
|
-
expected_output_cols=
|
812
|
+
expected_output_cols=expected_output_cols,
|
742
813
|
**transform_kwargs
|
743
814
|
)
|
744
815
|
return output_df
|
@@ -767,17 +838,17 @@ class AffinityPropagation(BaseTransformer):
|
|
767
838
|
Output dataset with probability of the sample for each class in the model.
|
768
839
|
"""
|
769
840
|
super()._check_dataset_type(dataset)
|
770
|
-
inference_method="score_samples"
|
841
|
+
inference_method = "score_samples"
|
771
842
|
|
772
843
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
773
844
|
# are specific to the type of dataset used.
|
774
845
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
775
846
|
|
847
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
848
|
+
|
776
849
|
if isinstance(dataset, DataFrame):
|
777
|
-
self.
|
778
|
-
|
779
|
-
inference_method=inference_method,
|
780
|
-
)
|
850
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
851
|
+
self._deps = self._get_dependencies()
|
781
852
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
782
853
|
transform_kwargs = dict(
|
783
854
|
session=dataset._session,
|
@@ -785,6 +856,9 @@ class AffinityPropagation(BaseTransformer):
|
|
785
856
|
drop_input_cols = self._drop_input_cols,
|
786
857
|
expected_output_cols_type="float",
|
787
858
|
)
|
859
|
+
expected_output_cols = self._align_expected_output_names(
|
860
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
861
|
+
)
|
788
862
|
|
789
863
|
elif isinstance(dataset, pd.DataFrame):
|
790
864
|
transform_kwargs = dict(
|
@@ -803,7 +877,7 @@ class AffinityPropagation(BaseTransformer):
|
|
803
877
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
804
878
|
inference_method=inference_method,
|
805
879
|
input_cols=self.input_cols,
|
806
|
-
expected_output_cols=
|
880
|
+
expected_output_cols=expected_output_cols,
|
807
881
|
**transform_kwargs
|
808
882
|
)
|
809
883
|
return output_df
|
@@ -836,17 +910,15 @@ class AffinityPropagation(BaseTransformer):
|
|
836
910
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
837
911
|
|
838
912
|
if isinstance(dataset, DataFrame):
|
839
|
-
self.
|
840
|
-
|
841
|
-
inference_method="score",
|
842
|
-
)
|
913
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
914
|
+
self._deps = self._get_dependencies()
|
843
915
|
selected_cols = self._get_active_columns()
|
844
916
|
if len(selected_cols) > 0:
|
845
917
|
dataset = dataset.select(selected_cols)
|
846
918
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
847
919
|
transform_kwargs = dict(
|
848
920
|
session=dataset._session,
|
849
|
-
dependencies=
|
921
|
+
dependencies=self._deps,
|
850
922
|
score_sproc_imports=['sklearn'],
|
851
923
|
)
|
852
924
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -911,11 +983,8 @@ class AffinityPropagation(BaseTransformer):
|
|
911
983
|
|
912
984
|
if isinstance(dataset, DataFrame):
|
913
985
|
|
914
|
-
self.
|
915
|
-
|
916
|
-
inference_method=inference_method,
|
917
|
-
|
918
|
-
)
|
986
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
987
|
+
self._deps = self._get_dependencies()
|
919
988
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
920
989
|
transform_kwargs = dict(
|
921
990
|
session = dataset._session,
|
@@ -948,50 +1017,84 @@ class AffinityPropagation(BaseTransformer):
|
|
948
1017
|
)
|
949
1018
|
return output_df
|
950
1019
|
|
1020
|
+
|
1021
|
+
|
1022
|
+
def to_sklearn(self) -> Any:
|
1023
|
+
"""Get sklearn.cluster.AffinityPropagation object.
|
1024
|
+
"""
|
1025
|
+
if self._sklearn_object is None:
|
1026
|
+
self._sklearn_object = self._create_sklearn_object()
|
1027
|
+
return self._sklearn_object
|
1028
|
+
|
1029
|
+
def to_xgboost(self) -> Any:
|
1030
|
+
raise exceptions.SnowflakeMLException(
|
1031
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1032
|
+
original_exception=AttributeError(
|
1033
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1034
|
+
"to_xgboost()",
|
1035
|
+
"to_sklearn()"
|
1036
|
+
)
|
1037
|
+
),
|
1038
|
+
)
|
951
1039
|
|
952
|
-
def
|
1040
|
+
def to_lightgbm(self) -> Any:
|
1041
|
+
raise exceptions.SnowflakeMLException(
|
1042
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1043
|
+
original_exception=AttributeError(
|
1044
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1045
|
+
"to_lightgbm()",
|
1046
|
+
"to_sklearn()"
|
1047
|
+
)
|
1048
|
+
),
|
1049
|
+
)
|
1050
|
+
|
1051
|
+
def _get_dependencies(self) -> List[str]:
|
1052
|
+
return self._deps
|
1053
|
+
|
1054
|
+
|
1055
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
953
1056
|
self._model_signature_dict = dict()
|
954
1057
|
|
955
1058
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
956
1059
|
|
957
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1060
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
958
1061
|
outputs: List[BaseFeatureSpec] = []
|
959
1062
|
if hasattr(self, "predict"):
|
960
1063
|
# keep mypy happy
|
961
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1064
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
962
1065
|
# For classifier, the type of predict is the same as the type of label
|
963
|
-
if self._sklearn_object._estimator_type ==
|
964
|
-
|
1066
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1067
|
+
# label columns is the desired type for output
|
965
1068
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
966
1069
|
# rename the output columns
|
967
1070
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
968
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
969
|
-
|
970
|
-
|
1071
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1072
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1073
|
+
)
|
971
1074
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
972
1075
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
973
|
-
# Clusterer returns int64 cluster labels.
|
1076
|
+
# Clusterer returns int64 cluster labels.
|
974
1077
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
975
1078
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
976
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
977
|
-
|
978
|
-
|
979
|
-
|
1079
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1080
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1081
|
+
)
|
1082
|
+
|
980
1083
|
# For regressor, the type of predict is float64
|
981
|
-
elif self._sklearn_object._estimator_type ==
|
1084
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
982
1085
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
983
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
984
|
-
|
985
|
-
|
986
|
-
|
1086
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1087
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1088
|
+
)
|
1089
|
+
|
987
1090
|
for prob_func in PROB_FUNCTIONS:
|
988
1091
|
if hasattr(self, prob_func):
|
989
1092
|
output_cols_prefix: str = f"{prob_func}_"
|
990
1093
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
991
1094
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
992
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
993
|
-
|
994
|
-
|
1095
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1096
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1097
|
+
)
|
995
1098
|
|
996
1099
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
997
1100
|
items = list(self._model_signature_dict.items())
|
@@ -1004,10 +1107,10 @@ class AffinityPropagation(BaseTransformer):
|
|
1004
1107
|
"""Returns model signature of current class.
|
1005
1108
|
|
1006
1109
|
Raises:
|
1007
|
-
|
1110
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1008
1111
|
|
1009
1112
|
Returns:
|
1010
|
-
Dict
|
1113
|
+
Dict with each method and its input output signature
|
1011
1114
|
"""
|
1012
1115
|
if self._model_signature_dict is None:
|
1013
1116
|
raise exceptions.SnowflakeMLException(
|
@@ -1015,35 +1118,3 @@ class AffinityPropagation(BaseTransformer):
|
|
1015
1118
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1016
1119
|
)
|
1017
1120
|
return self._model_signature_dict
|
1018
|
-
|
1019
|
-
def to_sklearn(self) -> Any:
|
1020
|
-
"""Get sklearn.cluster.AffinityPropagation object.
|
1021
|
-
"""
|
1022
|
-
if self._sklearn_object is None:
|
1023
|
-
self._sklearn_object = self._create_sklearn_object()
|
1024
|
-
return self._sklearn_object
|
1025
|
-
|
1026
|
-
def to_xgboost(self) -> Any:
|
1027
|
-
raise exceptions.SnowflakeMLException(
|
1028
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1029
|
-
original_exception=AttributeError(
|
1030
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1031
|
-
"to_xgboost()",
|
1032
|
-
"to_sklearn()"
|
1033
|
-
)
|
1034
|
-
),
|
1035
|
-
)
|
1036
|
-
|
1037
|
-
def to_lightgbm(self) -> Any:
|
1038
|
-
raise exceptions.SnowflakeMLException(
|
1039
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1040
|
-
original_exception=AttributeError(
|
1041
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1042
|
-
"to_lightgbm()",
|
1043
|
-
"to_sklearn()"
|
1044
|
-
)
|
1045
|
-
),
|
1046
|
-
)
|
1047
|
-
|
1048
|
-
def _get_dependencies(self) -> List[str]:
|
1049
|
-
return self._deps
|