snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class AffinityPropagation(BaseTransformer):
71
64
  r"""Perform Affinity Propagation Clustering of data
72
65
  For more details on this class, see [sklearn.cluster.AffinityPropagation]
@@ -242,12 +235,7 @@ class AffinityPropagation(BaseTransformer):
242
235
  )
243
236
  return selected_cols
244
237
 
245
- @telemetry.send_api_usage_telemetry(
246
- project=_PROJECT,
247
- subproject=_SUBPROJECT,
248
- custom_tags=dict([("autogen", True)]),
249
- )
250
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AffinityPropagation":
238
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AffinityPropagation":
251
239
  """Fit the clustering from features, or affinity matrix
252
240
  For more details on this function, see [sklearn.cluster.AffinityPropagation.fit]
253
241
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation.fit)
@@ -274,12 +262,14 @@ class AffinityPropagation(BaseTransformer):
274
262
 
275
263
  self._snowpark_cols = dataset.select(self.input_cols).columns
276
264
 
277
- # If we are already in a stored procedure, no need to kick off another one.
265
+ # If we are already in a stored procedure, no need to kick off another one.
278
266
  if SNOWML_SPROC_ENV in os.environ:
279
267
  statement_params = telemetry.get_function_usage_statement_params(
280
268
  project=_PROJECT,
281
269
  subproject=_SUBPROJECT,
282
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), AffinityPropagation.__class__.__name__),
270
+ function_name=telemetry.get_statement_params_full_func_name(
271
+ inspect.currentframe(), AffinityPropagation.__class__.__name__
272
+ ),
283
273
  api_calls=[Session.call],
284
274
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
285
275
  )
@@ -300,27 +290,24 @@ class AffinityPropagation(BaseTransformer):
300
290
  )
301
291
  self._sklearn_object = model_trainer.train()
302
292
  self._is_fitted = True
303
- self._get_model_signatures(dataset)
293
+ self._generate_model_signatures(dataset)
304
294
  return self
305
295
 
306
296
  def _batch_inference_validate_snowpark(
307
297
  self,
308
298
  dataset: DataFrame,
309
299
  inference_method: str,
310
- ) -> List[str]:
311
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
312
- return the available package that exists in the snowflake anaconda channel
300
+ ) -> None:
301
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
313
302
 
314
303
  Args:
315
304
  dataset: snowpark dataframe
316
305
  inference_method: the inference method such as predict, score...
317
-
306
+
318
307
  Raises:
319
308
  SnowflakeMLException: If the estimator is not fitted, raise error
320
309
  SnowflakeMLException: If the session is None, raise error
321
310
 
322
- Returns:
323
- A list of available package that exists in the snowflake anaconda channel
324
311
  """
325
312
  if not self._is_fitted:
326
313
  raise exceptions.SnowflakeMLException(
@@ -338,9 +325,7 @@ class AffinityPropagation(BaseTransformer):
338
325
  "Session must not specified for snowpark dataset."
339
326
  ),
340
327
  )
341
- # Validate that key package version in user workspace are supported in snowflake conda channel
342
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
343
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
328
+
344
329
 
345
330
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
346
331
  @telemetry.send_api_usage_telemetry(
@@ -376,7 +361,9 @@ class AffinityPropagation(BaseTransformer):
376
361
  # when it is classifier, infer the datatype from label columns
377
362
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
378
363
  # Batch inference takes a single expected output column type. Use the first columns type for now.
379
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
364
+ label_cols_signatures = [
365
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
366
+ ]
380
367
  if len(label_cols_signatures) == 0:
381
368
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
382
369
  raise exceptions.SnowflakeMLException(
@@ -384,25 +371,23 @@ class AffinityPropagation(BaseTransformer):
384
371
  original_exception=ValueError(error_str),
385
372
  )
386
373
 
387
- expected_type_inferred = convert_sp_to_sf_type(
388
- label_cols_signatures[0].as_snowpark_type()
389
- )
374
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
390
375
 
391
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
392
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
376
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
377
+ self._deps = self._get_dependencies()
378
+ assert isinstance(
379
+ dataset._session, Session
380
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
393
381
 
394
382
  transform_kwargs = dict(
395
- session = dataset._session,
396
- dependencies = self._deps,
397
- drop_input_cols = self._drop_input_cols,
398
- expected_output_cols_type = expected_type_inferred,
383
+ session=dataset._session,
384
+ dependencies=self._deps,
385
+ drop_input_cols=self._drop_input_cols,
386
+ expected_output_cols_type=expected_type_inferred,
399
387
  )
400
388
 
401
389
  elif isinstance(dataset, pd.DataFrame):
402
- transform_kwargs = dict(
403
- snowpark_input_cols = self._snowpark_cols,
404
- drop_input_cols = self._drop_input_cols
405
- )
390
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
406
391
 
407
392
  transform_handlers = ModelTransformerBuilder.build(
408
393
  dataset=dataset,
@@ -442,7 +427,7 @@ class AffinityPropagation(BaseTransformer):
442
427
  Transformed dataset.
443
428
  """
444
429
  super()._check_dataset_type(dataset)
445
- inference_method="transform"
430
+ inference_method = "transform"
446
431
 
447
432
  # This dictionary contains optional kwargs for batch inference. These kwargs
448
433
  # are specific to the type of dataset used.
@@ -472,24 +457,19 @@ class AffinityPropagation(BaseTransformer):
472
457
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
473
458
  expected_dtype = convert_sp_to_sf_type(output_types[0])
474
459
 
475
- self._deps = self._batch_inference_validate_snowpark(
476
- dataset=dataset,
477
- inference_method=inference_method,
478
- )
460
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
461
+ self._deps = self._get_dependencies()
479
462
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
480
463
 
481
464
  transform_kwargs = dict(
482
- session = dataset._session,
483
- dependencies = self._deps,
484
- drop_input_cols = self._drop_input_cols,
485
- expected_output_cols_type = expected_dtype,
465
+ session=dataset._session,
466
+ dependencies=self._deps,
467
+ drop_input_cols=self._drop_input_cols,
468
+ expected_output_cols_type=expected_dtype,
486
469
  )
487
470
 
488
471
  elif isinstance(dataset, pd.DataFrame):
489
- transform_kwargs = dict(
490
- snowpark_input_cols = self._snowpark_cols,
491
- drop_input_cols = self._drop_input_cols
492
- )
472
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
493
473
 
494
474
  transform_handlers = ModelTransformerBuilder.build(
495
475
  dataset=dataset,
@@ -508,7 +488,11 @@ class AffinityPropagation(BaseTransformer):
508
488
  return output_df
509
489
 
510
490
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
511
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
491
+ def fit_predict(
492
+ self,
493
+ dataset: Union[DataFrame, pd.DataFrame],
494
+ output_cols_prefix: str = "fit_predict_",
495
+ ) -> Union[DataFrame, pd.DataFrame]:
512
496
  """ Fit clustering from features/affinity matrix; return cluster labels
513
497
  For more details on this function, see [sklearn.cluster.AffinityPropagation.fit_predict]
514
498
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.html#sklearn.cluster.AffinityPropagation.fit_predict)
@@ -535,22 +519,104 @@ class AffinityPropagation(BaseTransformer):
535
519
  )
536
520
  output_result, fitted_estimator = model_trainer.train_fit_predict(
537
521
  drop_input_cols=self._drop_input_cols,
538
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
522
+ expected_output_cols_list=(
523
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
524
+ ),
539
525
  )
540
526
  self._sklearn_object = fitted_estimator
541
527
  self._is_fitted = True
542
528
  return output_result
543
529
 
530
+
531
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
532
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
533
+ """ Method not supported for this class.
534
+
535
+
536
+ Raises:
537
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
544
538
 
545
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
546
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
547
- """
539
+ Args:
540
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
541
+ Snowpark or Pandas DataFrame.
542
+ output_cols_prefix: Prefix for the response columns
548
543
  Returns:
549
544
  Transformed dataset.
550
545
  """
551
- self.fit(dataset)
552
- assert self._sklearn_object is not None
553
- return self._sklearn_object.embedding_
546
+ self._infer_input_output_cols(dataset)
547
+ super()._check_dataset_type(dataset)
548
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
549
+ estimator=self._sklearn_object,
550
+ dataset=dataset,
551
+ input_cols=self.input_cols,
552
+ label_cols=self.label_cols,
553
+ sample_weight_col=self.sample_weight_col,
554
+ autogenerated=self._autogenerated,
555
+ subproject=_SUBPROJECT,
556
+ )
557
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
558
+ drop_input_cols=self._drop_input_cols,
559
+ expected_output_cols_list=self.output_cols,
560
+ )
561
+ self._sklearn_object = fitted_estimator
562
+ self._is_fitted = True
563
+ return output_result
564
+
565
+
566
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
567
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
568
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
569
+ """
570
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
571
+ # The following condition is introduced for kneighbors methods, and not used in other methods
572
+ if output_cols:
573
+ output_cols = [
574
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
575
+ for c in output_cols
576
+ ]
577
+ elif getattr(self._sklearn_object, "classes_", None) is None:
578
+ output_cols = [output_cols_prefix]
579
+ elif self._sklearn_object is not None:
580
+ classes = self._sklearn_object.classes_
581
+ if isinstance(classes, numpy.ndarray):
582
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
583
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
584
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
585
+ output_cols = []
586
+ for i, cl in enumerate(classes):
587
+ # For binary classification, there is only one output column for each class
588
+ # ndarray as the two classes are complementary.
589
+ if len(cl) == 2:
590
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
591
+ else:
592
+ output_cols.extend([
593
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
594
+ ])
595
+ else:
596
+ output_cols = []
597
+
598
+ # Make sure column names are valid snowflake identifiers.
599
+ assert output_cols is not None # Make MyPy happy
600
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
601
+
602
+ return rv
603
+
604
+ def _align_expected_output_names(
605
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
606
+ ) -> List[str]:
607
+ # in case the inferred output column names dimension is different
608
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
609
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
610
+ output_df_columns = list(output_df_pd.columns)
611
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
612
+ if self.sample_weight_col:
613
+ output_df_columns_set -= set(self.sample_weight_col)
614
+ # if the dimension of inferred output column names is correct; use it
615
+ if len(expected_output_cols_list) == len(output_df_columns_set):
616
+ return expected_output_cols_list
617
+ # otherwise, use the sklearn estimator's output
618
+ else:
619
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
554
620
 
555
621
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
556
622
  @telemetry.send_api_usage_telemetry(
@@ -582,24 +648,26 @@ class AffinityPropagation(BaseTransformer):
582
648
  # are specific to the type of dataset used.
583
649
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
584
650
 
651
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
652
+
585
653
  if isinstance(dataset, DataFrame):
586
- self._deps = self._batch_inference_validate_snowpark(
587
- dataset=dataset,
588
- inference_method=inference_method,
589
- )
590
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
654
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
655
+ self._deps = self._get_dependencies()
656
+ assert isinstance(
657
+ dataset._session, Session
658
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
591
659
  transform_kwargs = dict(
592
660
  session=dataset._session,
593
661
  dependencies=self._deps,
594
- drop_input_cols = self._drop_input_cols,
662
+ drop_input_cols=self._drop_input_cols,
595
663
  expected_output_cols_type="float",
596
664
  )
665
+ expected_output_cols = self._align_expected_output_names(
666
+ inference_method, dataset, expected_output_cols, output_cols_prefix
667
+ )
597
668
 
598
669
  elif isinstance(dataset, pd.DataFrame):
599
- transform_kwargs = dict(
600
- snowpark_input_cols = self._snowpark_cols,
601
- drop_input_cols = self._drop_input_cols
602
- )
670
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
603
671
 
604
672
  transform_handlers = ModelTransformerBuilder.build(
605
673
  dataset=dataset,
@@ -611,7 +679,7 @@ class AffinityPropagation(BaseTransformer):
611
679
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
612
680
  inference_method=inference_method,
613
681
  input_cols=self.input_cols,
614
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
682
+ expected_output_cols=expected_output_cols,
615
683
  **transform_kwargs
616
684
  )
617
685
  return output_df
@@ -641,29 +709,30 @@ class AffinityPropagation(BaseTransformer):
641
709
  Output dataset with log probability of the sample for each class in the model.
642
710
  """
643
711
  super()._check_dataset_type(dataset)
644
- inference_method="predict_log_proba"
712
+ inference_method = "predict_log_proba"
713
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
645
714
 
646
715
  # This dictionary contains optional kwargs for batch inference. These kwargs
647
716
  # are specific to the type of dataset used.
648
717
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
649
718
 
650
719
  if isinstance(dataset, DataFrame):
651
- self._deps = self._batch_inference_validate_snowpark(
652
- dataset=dataset,
653
- inference_method=inference_method,
654
- )
655
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
720
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
721
+ self._deps = self._get_dependencies()
722
+ assert isinstance(
723
+ dataset._session, Session
724
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
656
725
  transform_kwargs = dict(
657
726
  session=dataset._session,
658
727
  dependencies=self._deps,
659
- drop_input_cols = self._drop_input_cols,
728
+ drop_input_cols=self._drop_input_cols,
660
729
  expected_output_cols_type="float",
661
730
  )
731
+ expected_output_cols = self._align_expected_output_names(
732
+ inference_method, dataset, expected_output_cols, output_cols_prefix
733
+ )
662
734
  elif isinstance(dataset, pd.DataFrame):
663
- transform_kwargs = dict(
664
- snowpark_input_cols = self._snowpark_cols,
665
- drop_input_cols = self._drop_input_cols
666
- )
735
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
667
736
 
668
737
  transform_handlers = ModelTransformerBuilder.build(
669
738
  dataset=dataset,
@@ -676,7 +745,7 @@ class AffinityPropagation(BaseTransformer):
676
745
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
677
746
  inference_method=inference_method,
678
747
  input_cols=self.input_cols,
679
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
748
+ expected_output_cols=expected_output_cols,
680
749
  **transform_kwargs
681
750
  )
682
751
  return output_df
@@ -702,30 +771,32 @@ class AffinityPropagation(BaseTransformer):
702
771
  Output dataset with results of the decision function for the samples in input dataset.
703
772
  """
704
773
  super()._check_dataset_type(dataset)
705
- inference_method="decision_function"
774
+ inference_method = "decision_function"
706
775
 
707
776
  # This dictionary contains optional kwargs for batch inference. These kwargs
708
777
  # are specific to the type of dataset used.
709
778
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
710
779
 
780
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
781
+
711
782
  if isinstance(dataset, DataFrame):
712
- self._deps = self._batch_inference_validate_snowpark(
713
- dataset=dataset,
714
- inference_method=inference_method,
715
- )
716
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
783
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
784
+ self._deps = self._get_dependencies()
785
+ assert isinstance(
786
+ dataset._session, Session
787
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
717
788
  transform_kwargs = dict(
718
789
  session=dataset._session,
719
790
  dependencies=self._deps,
720
- drop_input_cols = self._drop_input_cols,
791
+ drop_input_cols=self._drop_input_cols,
721
792
  expected_output_cols_type="float",
722
793
  )
794
+ expected_output_cols = self._align_expected_output_names(
795
+ inference_method, dataset, expected_output_cols, output_cols_prefix
796
+ )
723
797
 
724
798
  elif isinstance(dataset, pd.DataFrame):
725
- transform_kwargs = dict(
726
- snowpark_input_cols = self._snowpark_cols,
727
- drop_input_cols = self._drop_input_cols
728
- )
799
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
729
800
 
730
801
  transform_handlers = ModelTransformerBuilder.build(
731
802
  dataset=dataset,
@@ -738,7 +809,7 @@ class AffinityPropagation(BaseTransformer):
738
809
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
739
810
  inference_method=inference_method,
740
811
  input_cols=self.input_cols,
741
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
812
+ expected_output_cols=expected_output_cols,
742
813
  **transform_kwargs
743
814
  )
744
815
  return output_df
@@ -767,17 +838,17 @@ class AffinityPropagation(BaseTransformer):
767
838
  Output dataset with probability of the sample for each class in the model.
768
839
  """
769
840
  super()._check_dataset_type(dataset)
770
- inference_method="score_samples"
841
+ inference_method = "score_samples"
771
842
 
772
843
  # This dictionary contains optional kwargs for batch inference. These kwargs
773
844
  # are specific to the type of dataset used.
774
845
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
775
846
 
847
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
848
+
776
849
  if isinstance(dataset, DataFrame):
777
- self._deps = self._batch_inference_validate_snowpark(
778
- dataset=dataset,
779
- inference_method=inference_method,
780
- )
850
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
851
+ self._deps = self._get_dependencies()
781
852
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
782
853
  transform_kwargs = dict(
783
854
  session=dataset._session,
@@ -785,6 +856,9 @@ class AffinityPropagation(BaseTransformer):
785
856
  drop_input_cols = self._drop_input_cols,
786
857
  expected_output_cols_type="float",
787
858
  )
859
+ expected_output_cols = self._align_expected_output_names(
860
+ inference_method, dataset, expected_output_cols, output_cols_prefix
861
+ )
788
862
 
789
863
  elif isinstance(dataset, pd.DataFrame):
790
864
  transform_kwargs = dict(
@@ -803,7 +877,7 @@ class AffinityPropagation(BaseTransformer):
803
877
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
804
878
  inference_method=inference_method,
805
879
  input_cols=self.input_cols,
806
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
880
+ expected_output_cols=expected_output_cols,
807
881
  **transform_kwargs
808
882
  )
809
883
  return output_df
@@ -836,17 +910,15 @@ class AffinityPropagation(BaseTransformer):
836
910
  transform_kwargs: ScoreKwargsTypedDict = dict()
837
911
 
838
912
  if isinstance(dataset, DataFrame):
839
- self._deps = self._batch_inference_validate_snowpark(
840
- dataset=dataset,
841
- inference_method="score",
842
- )
913
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
914
+ self._deps = self._get_dependencies()
843
915
  selected_cols = self._get_active_columns()
844
916
  if len(selected_cols) > 0:
845
917
  dataset = dataset.select(selected_cols)
846
918
  assert isinstance(dataset._session, Session) # keep mypy happy
847
919
  transform_kwargs = dict(
848
920
  session=dataset._session,
849
- dependencies=["snowflake-snowpark-python"] + self._deps,
921
+ dependencies=self._deps,
850
922
  score_sproc_imports=['sklearn'],
851
923
  )
852
924
  elif isinstance(dataset, pd.DataFrame):
@@ -911,11 +983,8 @@ class AffinityPropagation(BaseTransformer):
911
983
 
912
984
  if isinstance(dataset, DataFrame):
913
985
 
914
- self._deps = self._batch_inference_validate_snowpark(
915
- dataset=dataset,
916
- inference_method=inference_method,
917
-
918
- )
986
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
987
+ self._deps = self._get_dependencies()
919
988
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
920
989
  transform_kwargs = dict(
921
990
  session = dataset._session,
@@ -948,50 +1017,84 @@ class AffinityPropagation(BaseTransformer):
948
1017
  )
949
1018
  return output_df
950
1019
 
1020
+
1021
+
1022
+ def to_sklearn(self) -> Any:
1023
+ """Get sklearn.cluster.AffinityPropagation object.
1024
+ """
1025
+ if self._sklearn_object is None:
1026
+ self._sklearn_object = self._create_sklearn_object()
1027
+ return self._sklearn_object
1028
+
1029
+ def to_xgboost(self) -> Any:
1030
+ raise exceptions.SnowflakeMLException(
1031
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1032
+ original_exception=AttributeError(
1033
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1034
+ "to_xgboost()",
1035
+ "to_sklearn()"
1036
+ )
1037
+ ),
1038
+ )
951
1039
 
952
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1040
+ def to_lightgbm(self) -> Any:
1041
+ raise exceptions.SnowflakeMLException(
1042
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1043
+ original_exception=AttributeError(
1044
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1045
+ "to_lightgbm()",
1046
+ "to_sklearn()"
1047
+ )
1048
+ ),
1049
+ )
1050
+
1051
+ def _get_dependencies(self) -> List[str]:
1052
+ return self._deps
1053
+
1054
+
1055
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
953
1056
  self._model_signature_dict = dict()
954
1057
 
955
1058
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
956
1059
 
957
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1060
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
958
1061
  outputs: List[BaseFeatureSpec] = []
959
1062
  if hasattr(self, "predict"):
960
1063
  # keep mypy happy
961
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1064
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
962
1065
  # For classifier, the type of predict is the same as the type of label
963
- if self._sklearn_object._estimator_type == 'classifier':
964
- # label columns is the desired type for output
1066
+ if self._sklearn_object._estimator_type == "classifier":
1067
+ # label columns is the desired type for output
965
1068
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
966
1069
  # rename the output columns
967
1070
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
968
- self._model_signature_dict["predict"] = ModelSignature(inputs,
969
- ([] if self._drop_input_cols else inputs)
970
- + outputs)
1071
+ self._model_signature_dict["predict"] = ModelSignature(
1072
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1073
+ )
971
1074
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
972
1075
  # For outlier models, returns -1 for outliers and 1 for inliers.
973
- # Clusterer returns int64 cluster labels.
1076
+ # Clusterer returns int64 cluster labels.
974
1077
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
975
1078
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
976
- self._model_signature_dict["predict"] = ModelSignature(inputs,
977
- ([] if self._drop_input_cols else inputs)
978
- + outputs)
979
-
1079
+ self._model_signature_dict["predict"] = ModelSignature(
1080
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1081
+ )
1082
+
980
1083
  # For regressor, the type of predict is float64
981
- elif self._sklearn_object._estimator_type == 'regressor':
1084
+ elif self._sklearn_object._estimator_type == "regressor":
982
1085
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
983
- self._model_signature_dict["predict"] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
986
-
1086
+ self._model_signature_dict["predict"] = ModelSignature(
1087
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1088
+ )
1089
+
987
1090
  for prob_func in PROB_FUNCTIONS:
988
1091
  if hasattr(self, prob_func):
989
1092
  output_cols_prefix: str = f"{prob_func}_"
990
1093
  output_column_names = self._get_output_column_names(output_cols_prefix)
991
1094
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
992
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
993
- ([] if self._drop_input_cols else inputs)
994
- + outputs)
1095
+ self._model_signature_dict[prob_func] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
995
1098
 
996
1099
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
997
1100
  items = list(self._model_signature_dict.items())
@@ -1004,10 +1107,10 @@ class AffinityPropagation(BaseTransformer):
1004
1107
  """Returns model signature of current class.
1005
1108
 
1006
1109
  Raises:
1007
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1110
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1008
1111
 
1009
1112
  Returns:
1010
- Dict[str, ModelSignature]: each method and its input output signature
1113
+ Dict with each method and its input output signature
1011
1114
  """
1012
1115
  if self._model_signature_dict is None:
1013
1116
  raise exceptions.SnowflakeMLException(
@@ -1015,35 +1118,3 @@ class AffinityPropagation(BaseTransformer):
1015
1118
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1016
1119
  )
1017
1120
  return self._model_signature_dict
1018
-
1019
- def to_sklearn(self) -> Any:
1020
- """Get sklearn.cluster.AffinityPropagation object.
1021
- """
1022
- if self._sklearn_object is None:
1023
- self._sklearn_object = self._create_sklearn_object()
1024
- return self._sklearn_object
1025
-
1026
- def to_xgboost(self) -> Any:
1027
- raise exceptions.SnowflakeMLException(
1028
- error_code=error_codes.METHOD_NOT_ALLOWED,
1029
- original_exception=AttributeError(
1030
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1031
- "to_xgboost()",
1032
- "to_sklearn()"
1033
- )
1034
- ),
1035
- )
1036
-
1037
- def to_lightgbm(self) -> Any:
1038
- raise exceptions.SnowflakeMLException(
1039
- error_code=error_codes.METHOD_NOT_ALLOWED,
1040
- original_exception=AttributeError(
1041
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
- "to_lightgbm()",
1043
- "to_sklearn()"
1044
- )
1045
- ),
1046
- )
1047
-
1048
- def _get_dependencies(self) -> List[str]:
1049
- return self._deps