snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class KNeighborsClassifier(BaseTransformer):
71
64
  r"""Classifier implementing the k-nearest neighbors vote
72
65
  For more details on this class, see [sklearn.neighbors.KNeighborsClassifier]
@@ -273,12 +266,7 @@ class KNeighborsClassifier(BaseTransformer):
273
266
  )
274
267
  return selected_cols
275
268
 
276
- @telemetry.send_api_usage_telemetry(
277
- project=_PROJECT,
278
- subproject=_SUBPROJECT,
279
- custom_tags=dict([("autogen", True)]),
280
- )
281
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNeighborsClassifier":
269
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNeighborsClassifier":
282
270
  """Fit the k-nearest neighbors classifier from the training dataset
283
271
  For more details on this function, see [sklearn.neighbors.KNeighborsClassifier.fit]
284
272
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier.fit)
@@ -305,12 +293,14 @@ class KNeighborsClassifier(BaseTransformer):
305
293
 
306
294
  self._snowpark_cols = dataset.select(self.input_cols).columns
307
295
 
308
- # If we are already in a stored procedure, no need to kick off another one.
296
+ # If we are already in a stored procedure, no need to kick off another one.
309
297
  if SNOWML_SPROC_ENV in os.environ:
310
298
  statement_params = telemetry.get_function_usage_statement_params(
311
299
  project=_PROJECT,
312
300
  subproject=_SUBPROJECT,
313
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KNeighborsClassifier.__class__.__name__),
301
+ function_name=telemetry.get_statement_params_full_func_name(
302
+ inspect.currentframe(), KNeighborsClassifier.__class__.__name__
303
+ ),
314
304
  api_calls=[Session.call],
315
305
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
316
306
  )
@@ -331,27 +321,24 @@ class KNeighborsClassifier(BaseTransformer):
331
321
  )
332
322
  self._sklearn_object = model_trainer.train()
333
323
  self._is_fitted = True
334
- self._get_model_signatures(dataset)
324
+ self._generate_model_signatures(dataset)
335
325
  return self
336
326
 
337
327
  def _batch_inference_validate_snowpark(
338
328
  self,
339
329
  dataset: DataFrame,
340
330
  inference_method: str,
341
- ) -> List[str]:
342
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
343
- return the available package that exists in the snowflake anaconda channel
331
+ ) -> None:
332
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
344
333
 
345
334
  Args:
346
335
  dataset: snowpark dataframe
347
336
  inference_method: the inference method such as predict, score...
348
-
337
+
349
338
  Raises:
350
339
  SnowflakeMLException: If the estimator is not fitted, raise error
351
340
  SnowflakeMLException: If the session is None, raise error
352
341
 
353
- Returns:
354
- A list of available package that exists in the snowflake anaconda channel
355
342
  """
356
343
  if not self._is_fitted:
357
344
  raise exceptions.SnowflakeMLException(
@@ -369,9 +356,7 @@ class KNeighborsClassifier(BaseTransformer):
369
356
  "Session must not specified for snowpark dataset."
370
357
  ),
371
358
  )
372
- # Validate that key package version in user workspace are supported in snowflake conda channel
373
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
374
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
359
+
375
360
 
376
361
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
377
362
  @telemetry.send_api_usage_telemetry(
@@ -407,7 +392,9 @@ class KNeighborsClassifier(BaseTransformer):
407
392
  # when it is classifier, infer the datatype from label columns
408
393
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
409
394
  # Batch inference takes a single expected output column type. Use the first columns type for now.
410
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
395
+ label_cols_signatures = [
396
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
397
+ ]
411
398
  if len(label_cols_signatures) == 0:
412
399
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
413
400
  raise exceptions.SnowflakeMLException(
@@ -415,25 +402,23 @@ class KNeighborsClassifier(BaseTransformer):
415
402
  original_exception=ValueError(error_str),
416
403
  )
417
404
 
418
- expected_type_inferred = convert_sp_to_sf_type(
419
- label_cols_signatures[0].as_snowpark_type()
420
- )
405
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
421
406
 
422
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
423
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
407
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
408
+ self._deps = self._get_dependencies()
409
+ assert isinstance(
410
+ dataset._session, Session
411
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
424
412
 
425
413
  transform_kwargs = dict(
426
- session = dataset._session,
427
- dependencies = self._deps,
428
- drop_input_cols = self._drop_input_cols,
429
- expected_output_cols_type = expected_type_inferred,
414
+ session=dataset._session,
415
+ dependencies=self._deps,
416
+ drop_input_cols=self._drop_input_cols,
417
+ expected_output_cols_type=expected_type_inferred,
430
418
  )
431
419
 
432
420
  elif isinstance(dataset, pd.DataFrame):
433
- transform_kwargs = dict(
434
- snowpark_input_cols = self._snowpark_cols,
435
- drop_input_cols = self._drop_input_cols
436
- )
421
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
437
422
 
438
423
  transform_handlers = ModelTransformerBuilder.build(
439
424
  dataset=dataset,
@@ -473,7 +458,7 @@ class KNeighborsClassifier(BaseTransformer):
473
458
  Transformed dataset.
474
459
  """
475
460
  super()._check_dataset_type(dataset)
476
- inference_method="transform"
461
+ inference_method = "transform"
477
462
 
478
463
  # This dictionary contains optional kwargs for batch inference. These kwargs
479
464
  # are specific to the type of dataset used.
@@ -503,24 +488,19 @@ class KNeighborsClassifier(BaseTransformer):
503
488
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
504
489
  expected_dtype = convert_sp_to_sf_type(output_types[0])
505
490
 
506
- self._deps = self._batch_inference_validate_snowpark(
507
- dataset=dataset,
508
- inference_method=inference_method,
509
- )
491
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
492
+ self._deps = self._get_dependencies()
510
493
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
511
494
 
512
495
  transform_kwargs = dict(
513
- session = dataset._session,
514
- dependencies = self._deps,
515
- drop_input_cols = self._drop_input_cols,
516
- expected_output_cols_type = expected_dtype,
496
+ session=dataset._session,
497
+ dependencies=self._deps,
498
+ drop_input_cols=self._drop_input_cols,
499
+ expected_output_cols_type=expected_dtype,
517
500
  )
518
501
 
519
502
  elif isinstance(dataset, pd.DataFrame):
520
- transform_kwargs = dict(
521
- snowpark_input_cols = self._snowpark_cols,
522
- drop_input_cols = self._drop_input_cols
523
- )
503
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
524
504
 
525
505
  transform_handlers = ModelTransformerBuilder.build(
526
506
  dataset=dataset,
@@ -539,7 +519,11 @@ class KNeighborsClassifier(BaseTransformer):
539
519
  return output_df
540
520
 
541
521
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
542
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
522
+ def fit_predict(
523
+ self,
524
+ dataset: Union[DataFrame, pd.DataFrame],
525
+ output_cols_prefix: str = "fit_predict_",
526
+ ) -> Union[DataFrame, pd.DataFrame]:
543
527
  """ Method not supported for this class.
544
528
 
545
529
 
@@ -564,22 +548,104 @@ class KNeighborsClassifier(BaseTransformer):
564
548
  )
565
549
  output_result, fitted_estimator = model_trainer.train_fit_predict(
566
550
  drop_input_cols=self._drop_input_cols,
567
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
551
+ expected_output_cols_list=(
552
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
553
+ ),
568
554
  )
569
555
  self._sklearn_object = fitted_estimator
570
556
  self._is_fitted = True
571
557
  return output_result
572
558
 
559
+
560
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
561
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
562
+ """ Method not supported for this class.
563
+
573
564
 
574
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
575
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
576
- """
565
+ Raises:
566
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
567
+
568
+ Args:
569
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
570
+ Snowpark or Pandas DataFrame.
571
+ output_cols_prefix: Prefix for the response columns
577
572
  Returns:
578
573
  Transformed dataset.
579
574
  """
580
- self.fit(dataset)
581
- assert self._sklearn_object is not None
582
- return self._sklearn_object.embedding_
575
+ self._infer_input_output_cols(dataset)
576
+ super()._check_dataset_type(dataset)
577
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
578
+ estimator=self._sklearn_object,
579
+ dataset=dataset,
580
+ input_cols=self.input_cols,
581
+ label_cols=self.label_cols,
582
+ sample_weight_col=self.sample_weight_col,
583
+ autogenerated=self._autogenerated,
584
+ subproject=_SUBPROJECT,
585
+ )
586
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
587
+ drop_input_cols=self._drop_input_cols,
588
+ expected_output_cols_list=self.output_cols,
589
+ )
590
+ self._sklearn_object = fitted_estimator
591
+ self._is_fitted = True
592
+ return output_result
593
+
594
+
595
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
596
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
597
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
598
+ """
599
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
600
+ # The following condition is introduced for kneighbors methods, and not used in other methods
601
+ if output_cols:
602
+ output_cols = [
603
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
604
+ for c in output_cols
605
+ ]
606
+ elif getattr(self._sklearn_object, "classes_", None) is None:
607
+ output_cols = [output_cols_prefix]
608
+ elif self._sklearn_object is not None:
609
+ classes = self._sklearn_object.classes_
610
+ if isinstance(classes, numpy.ndarray):
611
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
612
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
613
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
614
+ output_cols = []
615
+ for i, cl in enumerate(classes):
616
+ # For binary classification, there is only one output column for each class
617
+ # ndarray as the two classes are complementary.
618
+ if len(cl) == 2:
619
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
620
+ else:
621
+ output_cols.extend([
622
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
623
+ ])
624
+ else:
625
+ output_cols = []
626
+
627
+ # Make sure column names are valid snowflake identifiers.
628
+ assert output_cols is not None # Make MyPy happy
629
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
630
+
631
+ return rv
632
+
633
+ def _align_expected_output_names(
634
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
635
+ ) -> List[str]:
636
+ # in case the inferred output column names dimension is different
637
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
638
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
639
+ output_df_columns = list(output_df_pd.columns)
640
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
641
+ if self.sample_weight_col:
642
+ output_df_columns_set -= set(self.sample_weight_col)
643
+ # if the dimension of inferred output column names is correct; use it
644
+ if len(expected_output_cols_list) == len(output_df_columns_set):
645
+ return expected_output_cols_list
646
+ # otherwise, use the sklearn estimator's output
647
+ else:
648
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
583
649
 
584
650
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
585
651
  @telemetry.send_api_usage_telemetry(
@@ -613,24 +679,26 @@ class KNeighborsClassifier(BaseTransformer):
613
679
  # are specific to the type of dataset used.
614
680
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
615
681
 
682
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
683
+
616
684
  if isinstance(dataset, DataFrame):
617
- self._deps = self._batch_inference_validate_snowpark(
618
- dataset=dataset,
619
- inference_method=inference_method,
620
- )
621
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
685
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
686
+ self._deps = self._get_dependencies()
687
+ assert isinstance(
688
+ dataset._session, Session
689
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
622
690
  transform_kwargs = dict(
623
691
  session=dataset._session,
624
692
  dependencies=self._deps,
625
- drop_input_cols = self._drop_input_cols,
693
+ drop_input_cols=self._drop_input_cols,
626
694
  expected_output_cols_type="float",
627
695
  )
696
+ expected_output_cols = self._align_expected_output_names(
697
+ inference_method, dataset, expected_output_cols, output_cols_prefix
698
+ )
628
699
 
629
700
  elif isinstance(dataset, pd.DataFrame):
630
- transform_kwargs = dict(
631
- snowpark_input_cols = self._snowpark_cols,
632
- drop_input_cols = self._drop_input_cols
633
- )
701
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
634
702
 
635
703
  transform_handlers = ModelTransformerBuilder.build(
636
704
  dataset=dataset,
@@ -642,7 +710,7 @@ class KNeighborsClassifier(BaseTransformer):
642
710
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
643
711
  inference_method=inference_method,
644
712
  input_cols=self.input_cols,
645
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
713
+ expected_output_cols=expected_output_cols,
646
714
  **transform_kwargs
647
715
  )
648
716
  return output_df
@@ -674,29 +742,30 @@ class KNeighborsClassifier(BaseTransformer):
674
742
  Output dataset with log probability of the sample for each class in the model.
675
743
  """
676
744
  super()._check_dataset_type(dataset)
677
- inference_method="predict_log_proba"
745
+ inference_method = "predict_log_proba"
746
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
678
747
 
679
748
  # This dictionary contains optional kwargs for batch inference. These kwargs
680
749
  # are specific to the type of dataset used.
681
750
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
682
751
 
683
752
  if isinstance(dataset, DataFrame):
684
- self._deps = self._batch_inference_validate_snowpark(
685
- dataset=dataset,
686
- inference_method=inference_method,
687
- )
688
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
753
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
754
+ self._deps = self._get_dependencies()
755
+ assert isinstance(
756
+ dataset._session, Session
757
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
689
758
  transform_kwargs = dict(
690
759
  session=dataset._session,
691
760
  dependencies=self._deps,
692
- drop_input_cols = self._drop_input_cols,
761
+ drop_input_cols=self._drop_input_cols,
693
762
  expected_output_cols_type="float",
694
763
  )
764
+ expected_output_cols = self._align_expected_output_names(
765
+ inference_method, dataset, expected_output_cols, output_cols_prefix
766
+ )
695
767
  elif isinstance(dataset, pd.DataFrame):
696
- transform_kwargs = dict(
697
- snowpark_input_cols = self._snowpark_cols,
698
- drop_input_cols = self._drop_input_cols
699
- )
768
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
700
769
 
701
770
  transform_handlers = ModelTransformerBuilder.build(
702
771
  dataset=dataset,
@@ -709,7 +778,7 @@ class KNeighborsClassifier(BaseTransformer):
709
778
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
710
779
  inference_method=inference_method,
711
780
  input_cols=self.input_cols,
712
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
781
+ expected_output_cols=expected_output_cols,
713
782
  **transform_kwargs
714
783
  )
715
784
  return output_df
@@ -735,30 +804,32 @@ class KNeighborsClassifier(BaseTransformer):
735
804
  Output dataset with results of the decision function for the samples in input dataset.
736
805
  """
737
806
  super()._check_dataset_type(dataset)
738
- inference_method="decision_function"
807
+ inference_method = "decision_function"
739
808
 
740
809
  # This dictionary contains optional kwargs for batch inference. These kwargs
741
810
  # are specific to the type of dataset used.
742
811
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
743
812
 
813
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
814
+
744
815
  if isinstance(dataset, DataFrame):
745
- self._deps = self._batch_inference_validate_snowpark(
746
- dataset=dataset,
747
- inference_method=inference_method,
748
- )
749
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
816
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
817
+ self._deps = self._get_dependencies()
818
+ assert isinstance(
819
+ dataset._session, Session
820
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
750
821
  transform_kwargs = dict(
751
822
  session=dataset._session,
752
823
  dependencies=self._deps,
753
- drop_input_cols = self._drop_input_cols,
824
+ drop_input_cols=self._drop_input_cols,
754
825
  expected_output_cols_type="float",
755
826
  )
827
+ expected_output_cols = self._align_expected_output_names(
828
+ inference_method, dataset, expected_output_cols, output_cols_prefix
829
+ )
756
830
 
757
831
  elif isinstance(dataset, pd.DataFrame):
758
- transform_kwargs = dict(
759
- snowpark_input_cols = self._snowpark_cols,
760
- drop_input_cols = self._drop_input_cols
761
- )
832
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
762
833
 
763
834
  transform_handlers = ModelTransformerBuilder.build(
764
835
  dataset=dataset,
@@ -771,7 +842,7 @@ class KNeighborsClassifier(BaseTransformer):
771
842
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
772
843
  inference_method=inference_method,
773
844
  input_cols=self.input_cols,
774
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
845
+ expected_output_cols=expected_output_cols,
775
846
  **transform_kwargs
776
847
  )
777
848
  return output_df
@@ -800,17 +871,17 @@ class KNeighborsClassifier(BaseTransformer):
800
871
  Output dataset with probability of the sample for each class in the model.
801
872
  """
802
873
  super()._check_dataset_type(dataset)
803
- inference_method="score_samples"
874
+ inference_method = "score_samples"
804
875
 
805
876
  # This dictionary contains optional kwargs for batch inference. These kwargs
806
877
  # are specific to the type of dataset used.
807
878
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
808
879
 
880
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
881
+
809
882
  if isinstance(dataset, DataFrame):
810
- self._deps = self._batch_inference_validate_snowpark(
811
- dataset=dataset,
812
- inference_method=inference_method,
813
- )
883
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
884
+ self._deps = self._get_dependencies()
814
885
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
815
886
  transform_kwargs = dict(
816
887
  session=dataset._session,
@@ -818,6 +889,9 @@ class KNeighborsClassifier(BaseTransformer):
818
889
  drop_input_cols = self._drop_input_cols,
819
890
  expected_output_cols_type="float",
820
891
  )
892
+ expected_output_cols = self._align_expected_output_names(
893
+ inference_method, dataset, expected_output_cols, output_cols_prefix
894
+ )
821
895
 
822
896
  elif isinstance(dataset, pd.DataFrame):
823
897
  transform_kwargs = dict(
@@ -836,7 +910,7 @@ class KNeighborsClassifier(BaseTransformer):
836
910
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
837
911
  inference_method=inference_method,
838
912
  input_cols=self.input_cols,
839
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
913
+ expected_output_cols=expected_output_cols,
840
914
  **transform_kwargs
841
915
  )
842
916
  return output_df
@@ -871,17 +945,15 @@ class KNeighborsClassifier(BaseTransformer):
871
945
  transform_kwargs: ScoreKwargsTypedDict = dict()
872
946
 
873
947
  if isinstance(dataset, DataFrame):
874
- self._deps = self._batch_inference_validate_snowpark(
875
- dataset=dataset,
876
- inference_method="score",
877
- )
948
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
949
+ self._deps = self._get_dependencies()
878
950
  selected_cols = self._get_active_columns()
879
951
  if len(selected_cols) > 0:
880
952
  dataset = dataset.select(selected_cols)
881
953
  assert isinstance(dataset._session, Session) # keep mypy happy
882
954
  transform_kwargs = dict(
883
955
  session=dataset._session,
884
- dependencies=["snowflake-snowpark-python"] + self._deps,
956
+ dependencies=self._deps,
885
957
  score_sproc_imports=['sklearn'],
886
958
  )
887
959
  elif isinstance(dataset, pd.DataFrame):
@@ -948,11 +1020,8 @@ class KNeighborsClassifier(BaseTransformer):
948
1020
 
949
1021
  if isinstance(dataset, DataFrame):
950
1022
 
951
- self._deps = self._batch_inference_validate_snowpark(
952
- dataset=dataset,
953
- inference_method=inference_method,
954
-
955
- )
1023
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1024
+ self._deps = self._get_dependencies()
956
1025
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
957
1026
  transform_kwargs = dict(
958
1027
  session = dataset._session,
@@ -985,50 +1054,84 @@ class KNeighborsClassifier(BaseTransformer):
985
1054
  )
986
1055
  return output_df
987
1056
 
1057
+
1058
+
1059
+ def to_sklearn(self) -> Any:
1060
+ """Get sklearn.neighbors.KNeighborsClassifier object.
1061
+ """
1062
+ if self._sklearn_object is None:
1063
+ self._sklearn_object = self._create_sklearn_object()
1064
+ return self._sklearn_object
1065
+
1066
+ def to_xgboost(self) -> Any:
1067
+ raise exceptions.SnowflakeMLException(
1068
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1069
+ original_exception=AttributeError(
1070
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
+ "to_xgboost()",
1072
+ "to_sklearn()"
1073
+ )
1074
+ ),
1075
+ )
1076
+
1077
+ def to_lightgbm(self) -> Any:
1078
+ raise exceptions.SnowflakeMLException(
1079
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1080
+ original_exception=AttributeError(
1081
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
+ "to_lightgbm()",
1083
+ "to_sklearn()"
1084
+ )
1085
+ ),
1086
+ )
1087
+
1088
+ def _get_dependencies(self) -> List[str]:
1089
+ return self._deps
1090
+
988
1091
 
989
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1092
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
990
1093
  self._model_signature_dict = dict()
991
1094
 
992
1095
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
993
1096
 
994
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1097
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
995
1098
  outputs: List[BaseFeatureSpec] = []
996
1099
  if hasattr(self, "predict"):
997
1100
  # keep mypy happy
998
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1101
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
999
1102
  # For classifier, the type of predict is the same as the type of label
1000
- if self._sklearn_object._estimator_type == 'classifier':
1001
- # label columns is the desired type for output
1103
+ if self._sklearn_object._estimator_type == "classifier":
1104
+ # label columns is the desired type for output
1002
1105
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1003
1106
  # rename the output columns
1004
1107
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1005
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1006
- ([] if self._drop_input_cols else inputs)
1007
- + outputs)
1108
+ self._model_signature_dict["predict"] = ModelSignature(
1109
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1110
+ )
1008
1111
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1009
1112
  # For outlier models, returns -1 for outliers and 1 for inliers.
1010
- # Clusterer returns int64 cluster labels.
1113
+ # Clusterer returns int64 cluster labels.
1011
1114
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1012
1115
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1013
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1014
- ([] if self._drop_input_cols else inputs)
1015
- + outputs)
1016
-
1116
+ self._model_signature_dict["predict"] = ModelSignature(
1117
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1118
+ )
1119
+
1017
1120
  # For regressor, the type of predict is float64
1018
- elif self._sklearn_object._estimator_type == 'regressor':
1121
+ elif self._sklearn_object._estimator_type == "regressor":
1019
1122
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1020
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1021
- ([] if self._drop_input_cols else inputs)
1022
- + outputs)
1023
-
1123
+ self._model_signature_dict["predict"] = ModelSignature(
1124
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1125
+ )
1126
+
1024
1127
  for prob_func in PROB_FUNCTIONS:
1025
1128
  if hasattr(self, prob_func):
1026
1129
  output_cols_prefix: str = f"{prob_func}_"
1027
1130
  output_column_names = self._get_output_column_names(output_cols_prefix)
1028
1131
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1029
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1030
- ([] if self._drop_input_cols else inputs)
1031
- + outputs)
1132
+ self._model_signature_dict[prob_func] = ModelSignature(
1133
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1134
+ )
1032
1135
 
1033
1136
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1034
1137
  items = list(self._model_signature_dict.items())
@@ -1041,10 +1144,10 @@ class KNeighborsClassifier(BaseTransformer):
1041
1144
  """Returns model signature of current class.
1042
1145
 
1043
1146
  Raises:
1044
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1147
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1045
1148
 
1046
1149
  Returns:
1047
- Dict[str, ModelSignature]: each method and its input output signature
1150
+ Dict with each method and its input output signature
1048
1151
  """
1049
1152
  if self._model_signature_dict is None:
1050
1153
  raise exceptions.SnowflakeMLException(
@@ -1052,35 +1155,3 @@ class KNeighborsClassifier(BaseTransformer):
1052
1155
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1053
1156
  )
1054
1157
  return self._model_signature_dict
1055
-
1056
- def to_sklearn(self) -> Any:
1057
- """Get sklearn.neighbors.KNeighborsClassifier object.
1058
- """
1059
- if self._sklearn_object is None:
1060
- self._sklearn_object = self._create_sklearn_object()
1061
- return self._sklearn_object
1062
-
1063
- def to_xgboost(self) -> Any:
1064
- raise exceptions.SnowflakeMLException(
1065
- error_code=error_codes.METHOD_NOT_ALLOWED,
1066
- original_exception=AttributeError(
1067
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1068
- "to_xgboost()",
1069
- "to_sklearn()"
1070
- )
1071
- ),
1072
- )
1073
-
1074
- def to_lightgbm(self) -> Any:
1075
- raise exceptions.SnowflakeMLException(
1076
- error_code=error_codes.METHOD_NOT_ALLOWED,
1077
- original_exception=AttributeError(
1078
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
- "to_lightgbm()",
1080
- "to_sklearn()"
1081
- )
1082
- ),
1083
- )
1084
-
1085
- def _get_dependencies(self) -> List[str]:
1086
- return self._deps