snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class KNeighborsClassifier(BaseTransformer):
|
71
64
|
r"""Classifier implementing the k-nearest neighbors vote
|
72
65
|
For more details on this class, see [sklearn.neighbors.KNeighborsClassifier]
|
@@ -273,12 +266,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
273
266
|
)
|
274
267
|
return selected_cols
|
275
268
|
|
276
|
-
|
277
|
-
project=_PROJECT,
|
278
|
-
subproject=_SUBPROJECT,
|
279
|
-
custom_tags=dict([("autogen", True)]),
|
280
|
-
)
|
281
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNeighborsClassifier":
|
269
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNeighborsClassifier":
|
282
270
|
"""Fit the k-nearest neighbors classifier from the training dataset
|
283
271
|
For more details on this function, see [sklearn.neighbors.KNeighborsClassifier.fit]
|
284
272
|
(https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier.fit)
|
@@ -305,12 +293,14 @@ class KNeighborsClassifier(BaseTransformer):
|
|
305
293
|
|
306
294
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
307
295
|
|
308
|
-
|
296
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
309
297
|
if SNOWML_SPROC_ENV in os.environ:
|
310
298
|
statement_params = telemetry.get_function_usage_statement_params(
|
311
299
|
project=_PROJECT,
|
312
300
|
subproject=_SUBPROJECT,
|
313
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
301
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
302
|
+
inspect.currentframe(), KNeighborsClassifier.__class__.__name__
|
303
|
+
),
|
314
304
|
api_calls=[Session.call],
|
315
305
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
316
306
|
)
|
@@ -331,27 +321,24 @@ class KNeighborsClassifier(BaseTransformer):
|
|
331
321
|
)
|
332
322
|
self._sklearn_object = model_trainer.train()
|
333
323
|
self._is_fitted = True
|
334
|
-
self.
|
324
|
+
self._generate_model_signatures(dataset)
|
335
325
|
return self
|
336
326
|
|
337
327
|
def _batch_inference_validate_snowpark(
|
338
328
|
self,
|
339
329
|
dataset: DataFrame,
|
340
330
|
inference_method: str,
|
341
|
-
) ->
|
342
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
343
|
-
return the available package that exists in the snowflake anaconda channel
|
331
|
+
) -> None:
|
332
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
344
333
|
|
345
334
|
Args:
|
346
335
|
dataset: snowpark dataframe
|
347
336
|
inference_method: the inference method such as predict, score...
|
348
|
-
|
337
|
+
|
349
338
|
Raises:
|
350
339
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
351
340
|
SnowflakeMLException: If the session is None, raise error
|
352
341
|
|
353
|
-
Returns:
|
354
|
-
A list of available package that exists in the snowflake anaconda channel
|
355
342
|
"""
|
356
343
|
if not self._is_fitted:
|
357
344
|
raise exceptions.SnowflakeMLException(
|
@@ -369,9 +356,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
369
356
|
"Session must not specified for snowpark dataset."
|
370
357
|
),
|
371
358
|
)
|
372
|
-
|
373
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
374
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
359
|
+
|
375
360
|
|
376
361
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
377
362
|
@telemetry.send_api_usage_telemetry(
|
@@ -407,7 +392,9 @@ class KNeighborsClassifier(BaseTransformer):
|
|
407
392
|
# when it is classifier, infer the datatype from label columns
|
408
393
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
409
394
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
410
|
-
label_cols_signatures = [
|
395
|
+
label_cols_signatures = [
|
396
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
397
|
+
]
|
411
398
|
if len(label_cols_signatures) == 0:
|
412
399
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
413
400
|
raise exceptions.SnowflakeMLException(
|
@@ -415,25 +402,23 @@ class KNeighborsClassifier(BaseTransformer):
|
|
415
402
|
original_exception=ValueError(error_str),
|
416
403
|
)
|
417
404
|
|
418
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
419
|
-
label_cols_signatures[0].as_snowpark_type()
|
420
|
-
)
|
405
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
421
406
|
|
422
|
-
self.
|
423
|
-
|
407
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
408
|
+
self._deps = self._get_dependencies()
|
409
|
+
assert isinstance(
|
410
|
+
dataset._session, Session
|
411
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
424
412
|
|
425
413
|
transform_kwargs = dict(
|
426
|
-
session
|
427
|
-
dependencies
|
428
|
-
drop_input_cols
|
429
|
-
expected_output_cols_type
|
414
|
+
session=dataset._session,
|
415
|
+
dependencies=self._deps,
|
416
|
+
drop_input_cols=self._drop_input_cols,
|
417
|
+
expected_output_cols_type=expected_type_inferred,
|
430
418
|
)
|
431
419
|
|
432
420
|
elif isinstance(dataset, pd.DataFrame):
|
433
|
-
transform_kwargs = dict(
|
434
|
-
snowpark_input_cols = self._snowpark_cols,
|
435
|
-
drop_input_cols = self._drop_input_cols
|
436
|
-
)
|
421
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
437
422
|
|
438
423
|
transform_handlers = ModelTransformerBuilder.build(
|
439
424
|
dataset=dataset,
|
@@ -473,7 +458,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
473
458
|
Transformed dataset.
|
474
459
|
"""
|
475
460
|
super()._check_dataset_type(dataset)
|
476
|
-
inference_method="transform"
|
461
|
+
inference_method = "transform"
|
477
462
|
|
478
463
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
479
464
|
# are specific to the type of dataset used.
|
@@ -503,24 +488,19 @@ class KNeighborsClassifier(BaseTransformer):
|
|
503
488
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
504
489
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
505
490
|
|
506
|
-
self.
|
507
|
-
|
508
|
-
inference_method=inference_method,
|
509
|
-
)
|
491
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
492
|
+
self._deps = self._get_dependencies()
|
510
493
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
511
494
|
|
512
495
|
transform_kwargs = dict(
|
513
|
-
session
|
514
|
-
dependencies
|
515
|
-
drop_input_cols
|
516
|
-
expected_output_cols_type
|
496
|
+
session=dataset._session,
|
497
|
+
dependencies=self._deps,
|
498
|
+
drop_input_cols=self._drop_input_cols,
|
499
|
+
expected_output_cols_type=expected_dtype,
|
517
500
|
)
|
518
501
|
|
519
502
|
elif isinstance(dataset, pd.DataFrame):
|
520
|
-
transform_kwargs = dict(
|
521
|
-
snowpark_input_cols = self._snowpark_cols,
|
522
|
-
drop_input_cols = self._drop_input_cols
|
523
|
-
)
|
503
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
524
504
|
|
525
505
|
transform_handlers = ModelTransformerBuilder.build(
|
526
506
|
dataset=dataset,
|
@@ -539,7 +519,11 @@ class KNeighborsClassifier(BaseTransformer):
|
|
539
519
|
return output_df
|
540
520
|
|
541
521
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
542
|
-
def fit_predict(
|
522
|
+
def fit_predict(
|
523
|
+
self,
|
524
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
525
|
+
output_cols_prefix: str = "fit_predict_",
|
526
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
543
527
|
""" Method not supported for this class.
|
544
528
|
|
545
529
|
|
@@ -564,22 +548,104 @@ class KNeighborsClassifier(BaseTransformer):
|
|
564
548
|
)
|
565
549
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
566
550
|
drop_input_cols=self._drop_input_cols,
|
567
|
-
expected_output_cols_list=
|
551
|
+
expected_output_cols_list=(
|
552
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
553
|
+
),
|
568
554
|
)
|
569
555
|
self._sklearn_object = fitted_estimator
|
570
556
|
self._is_fitted = True
|
571
557
|
return output_result
|
572
558
|
|
559
|
+
|
560
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
561
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
562
|
+
""" Method not supported for this class.
|
563
|
+
|
573
564
|
|
574
|
-
|
575
|
-
|
576
|
-
|
565
|
+
Raises:
|
566
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
567
|
+
|
568
|
+
Args:
|
569
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
570
|
+
Snowpark or Pandas DataFrame.
|
571
|
+
output_cols_prefix: Prefix for the response columns
|
577
572
|
Returns:
|
578
573
|
Transformed dataset.
|
579
574
|
"""
|
580
|
-
self.
|
581
|
-
|
582
|
-
|
575
|
+
self._infer_input_output_cols(dataset)
|
576
|
+
super()._check_dataset_type(dataset)
|
577
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
578
|
+
estimator=self._sklearn_object,
|
579
|
+
dataset=dataset,
|
580
|
+
input_cols=self.input_cols,
|
581
|
+
label_cols=self.label_cols,
|
582
|
+
sample_weight_col=self.sample_weight_col,
|
583
|
+
autogenerated=self._autogenerated,
|
584
|
+
subproject=_SUBPROJECT,
|
585
|
+
)
|
586
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
587
|
+
drop_input_cols=self._drop_input_cols,
|
588
|
+
expected_output_cols_list=self.output_cols,
|
589
|
+
)
|
590
|
+
self._sklearn_object = fitted_estimator
|
591
|
+
self._is_fitted = True
|
592
|
+
return output_result
|
593
|
+
|
594
|
+
|
595
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
596
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
597
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
598
|
+
"""
|
599
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
600
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
601
|
+
if output_cols:
|
602
|
+
output_cols = [
|
603
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
604
|
+
for c in output_cols
|
605
|
+
]
|
606
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
607
|
+
output_cols = [output_cols_prefix]
|
608
|
+
elif self._sklearn_object is not None:
|
609
|
+
classes = self._sklearn_object.classes_
|
610
|
+
if isinstance(classes, numpy.ndarray):
|
611
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
612
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
613
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
614
|
+
output_cols = []
|
615
|
+
for i, cl in enumerate(classes):
|
616
|
+
# For binary classification, there is only one output column for each class
|
617
|
+
# ndarray as the two classes are complementary.
|
618
|
+
if len(cl) == 2:
|
619
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
620
|
+
else:
|
621
|
+
output_cols.extend([
|
622
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
623
|
+
])
|
624
|
+
else:
|
625
|
+
output_cols = []
|
626
|
+
|
627
|
+
# Make sure column names are valid snowflake identifiers.
|
628
|
+
assert output_cols is not None # Make MyPy happy
|
629
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
630
|
+
|
631
|
+
return rv
|
632
|
+
|
633
|
+
def _align_expected_output_names(
|
634
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
635
|
+
) -> List[str]:
|
636
|
+
# in case the inferred output column names dimension is different
|
637
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
638
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
639
|
+
output_df_columns = list(output_df_pd.columns)
|
640
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
641
|
+
if self.sample_weight_col:
|
642
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
643
|
+
# if the dimension of inferred output column names is correct; use it
|
644
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
645
|
+
return expected_output_cols_list
|
646
|
+
# otherwise, use the sklearn estimator's output
|
647
|
+
else:
|
648
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
583
649
|
|
584
650
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
585
651
|
@telemetry.send_api_usage_telemetry(
|
@@ -613,24 +679,26 @@ class KNeighborsClassifier(BaseTransformer):
|
|
613
679
|
# are specific to the type of dataset used.
|
614
680
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
615
681
|
|
682
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
683
|
+
|
616
684
|
if isinstance(dataset, DataFrame):
|
617
|
-
self.
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
|
685
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
686
|
+
self._deps = self._get_dependencies()
|
687
|
+
assert isinstance(
|
688
|
+
dataset._session, Session
|
689
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
622
690
|
transform_kwargs = dict(
|
623
691
|
session=dataset._session,
|
624
692
|
dependencies=self._deps,
|
625
|
-
drop_input_cols
|
693
|
+
drop_input_cols=self._drop_input_cols,
|
626
694
|
expected_output_cols_type="float",
|
627
695
|
)
|
696
|
+
expected_output_cols = self._align_expected_output_names(
|
697
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
698
|
+
)
|
628
699
|
|
629
700
|
elif isinstance(dataset, pd.DataFrame):
|
630
|
-
transform_kwargs = dict(
|
631
|
-
snowpark_input_cols = self._snowpark_cols,
|
632
|
-
drop_input_cols = self._drop_input_cols
|
633
|
-
)
|
701
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
634
702
|
|
635
703
|
transform_handlers = ModelTransformerBuilder.build(
|
636
704
|
dataset=dataset,
|
@@ -642,7 +710,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
642
710
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
643
711
|
inference_method=inference_method,
|
644
712
|
input_cols=self.input_cols,
|
645
|
-
expected_output_cols=
|
713
|
+
expected_output_cols=expected_output_cols,
|
646
714
|
**transform_kwargs
|
647
715
|
)
|
648
716
|
return output_df
|
@@ -674,29 +742,30 @@ class KNeighborsClassifier(BaseTransformer):
|
|
674
742
|
Output dataset with log probability of the sample for each class in the model.
|
675
743
|
"""
|
676
744
|
super()._check_dataset_type(dataset)
|
677
|
-
inference_method="predict_log_proba"
|
745
|
+
inference_method = "predict_log_proba"
|
746
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
678
747
|
|
679
748
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
680
749
|
# are specific to the type of dataset used.
|
681
750
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
682
751
|
|
683
752
|
if isinstance(dataset, DataFrame):
|
684
|
-
self.
|
685
|
-
|
686
|
-
|
687
|
-
|
688
|
-
|
753
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
754
|
+
self._deps = self._get_dependencies()
|
755
|
+
assert isinstance(
|
756
|
+
dataset._session, Session
|
757
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
689
758
|
transform_kwargs = dict(
|
690
759
|
session=dataset._session,
|
691
760
|
dependencies=self._deps,
|
692
|
-
drop_input_cols
|
761
|
+
drop_input_cols=self._drop_input_cols,
|
693
762
|
expected_output_cols_type="float",
|
694
763
|
)
|
764
|
+
expected_output_cols = self._align_expected_output_names(
|
765
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
766
|
+
)
|
695
767
|
elif isinstance(dataset, pd.DataFrame):
|
696
|
-
transform_kwargs = dict(
|
697
|
-
snowpark_input_cols = self._snowpark_cols,
|
698
|
-
drop_input_cols = self._drop_input_cols
|
699
|
-
)
|
768
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
700
769
|
|
701
770
|
transform_handlers = ModelTransformerBuilder.build(
|
702
771
|
dataset=dataset,
|
@@ -709,7 +778,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
709
778
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
710
779
|
inference_method=inference_method,
|
711
780
|
input_cols=self.input_cols,
|
712
|
-
expected_output_cols=
|
781
|
+
expected_output_cols=expected_output_cols,
|
713
782
|
**transform_kwargs
|
714
783
|
)
|
715
784
|
return output_df
|
@@ -735,30 +804,32 @@ class KNeighborsClassifier(BaseTransformer):
|
|
735
804
|
Output dataset with results of the decision function for the samples in input dataset.
|
736
805
|
"""
|
737
806
|
super()._check_dataset_type(dataset)
|
738
|
-
inference_method="decision_function"
|
807
|
+
inference_method = "decision_function"
|
739
808
|
|
740
809
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
741
810
|
# are specific to the type of dataset used.
|
742
811
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
743
812
|
|
813
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
814
|
+
|
744
815
|
if isinstance(dataset, DataFrame):
|
745
|
-
self.
|
746
|
-
|
747
|
-
|
748
|
-
|
749
|
-
|
816
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
817
|
+
self._deps = self._get_dependencies()
|
818
|
+
assert isinstance(
|
819
|
+
dataset._session, Session
|
820
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
750
821
|
transform_kwargs = dict(
|
751
822
|
session=dataset._session,
|
752
823
|
dependencies=self._deps,
|
753
|
-
drop_input_cols
|
824
|
+
drop_input_cols=self._drop_input_cols,
|
754
825
|
expected_output_cols_type="float",
|
755
826
|
)
|
827
|
+
expected_output_cols = self._align_expected_output_names(
|
828
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
829
|
+
)
|
756
830
|
|
757
831
|
elif isinstance(dataset, pd.DataFrame):
|
758
|
-
transform_kwargs = dict(
|
759
|
-
snowpark_input_cols = self._snowpark_cols,
|
760
|
-
drop_input_cols = self._drop_input_cols
|
761
|
-
)
|
832
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
762
833
|
|
763
834
|
transform_handlers = ModelTransformerBuilder.build(
|
764
835
|
dataset=dataset,
|
@@ -771,7 +842,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
771
842
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
772
843
|
inference_method=inference_method,
|
773
844
|
input_cols=self.input_cols,
|
774
|
-
expected_output_cols=
|
845
|
+
expected_output_cols=expected_output_cols,
|
775
846
|
**transform_kwargs
|
776
847
|
)
|
777
848
|
return output_df
|
@@ -800,17 +871,17 @@ class KNeighborsClassifier(BaseTransformer):
|
|
800
871
|
Output dataset with probability of the sample for each class in the model.
|
801
872
|
"""
|
802
873
|
super()._check_dataset_type(dataset)
|
803
|
-
inference_method="score_samples"
|
874
|
+
inference_method = "score_samples"
|
804
875
|
|
805
876
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
806
877
|
# are specific to the type of dataset used.
|
807
878
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
808
879
|
|
880
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
881
|
+
|
809
882
|
if isinstance(dataset, DataFrame):
|
810
|
-
self.
|
811
|
-
|
812
|
-
inference_method=inference_method,
|
813
|
-
)
|
883
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
884
|
+
self._deps = self._get_dependencies()
|
814
885
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
815
886
|
transform_kwargs = dict(
|
816
887
|
session=dataset._session,
|
@@ -818,6 +889,9 @@ class KNeighborsClassifier(BaseTransformer):
|
|
818
889
|
drop_input_cols = self._drop_input_cols,
|
819
890
|
expected_output_cols_type="float",
|
820
891
|
)
|
892
|
+
expected_output_cols = self._align_expected_output_names(
|
893
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
894
|
+
)
|
821
895
|
|
822
896
|
elif isinstance(dataset, pd.DataFrame):
|
823
897
|
transform_kwargs = dict(
|
@@ -836,7 +910,7 @@ class KNeighborsClassifier(BaseTransformer):
|
|
836
910
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
837
911
|
inference_method=inference_method,
|
838
912
|
input_cols=self.input_cols,
|
839
|
-
expected_output_cols=
|
913
|
+
expected_output_cols=expected_output_cols,
|
840
914
|
**transform_kwargs
|
841
915
|
)
|
842
916
|
return output_df
|
@@ -871,17 +945,15 @@ class KNeighborsClassifier(BaseTransformer):
|
|
871
945
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
872
946
|
|
873
947
|
if isinstance(dataset, DataFrame):
|
874
|
-
self.
|
875
|
-
|
876
|
-
inference_method="score",
|
877
|
-
)
|
948
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
949
|
+
self._deps = self._get_dependencies()
|
878
950
|
selected_cols = self._get_active_columns()
|
879
951
|
if len(selected_cols) > 0:
|
880
952
|
dataset = dataset.select(selected_cols)
|
881
953
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
882
954
|
transform_kwargs = dict(
|
883
955
|
session=dataset._session,
|
884
|
-
dependencies=
|
956
|
+
dependencies=self._deps,
|
885
957
|
score_sproc_imports=['sklearn'],
|
886
958
|
)
|
887
959
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -948,11 +1020,8 @@ class KNeighborsClassifier(BaseTransformer):
|
|
948
1020
|
|
949
1021
|
if isinstance(dataset, DataFrame):
|
950
1022
|
|
951
|
-
self.
|
952
|
-
|
953
|
-
inference_method=inference_method,
|
954
|
-
|
955
|
-
)
|
1023
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1024
|
+
self._deps = self._get_dependencies()
|
956
1025
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
957
1026
|
transform_kwargs = dict(
|
958
1027
|
session = dataset._session,
|
@@ -985,50 +1054,84 @@ class KNeighborsClassifier(BaseTransformer):
|
|
985
1054
|
)
|
986
1055
|
return output_df
|
987
1056
|
|
1057
|
+
|
1058
|
+
|
1059
|
+
def to_sklearn(self) -> Any:
|
1060
|
+
"""Get sklearn.neighbors.KNeighborsClassifier object.
|
1061
|
+
"""
|
1062
|
+
if self._sklearn_object is None:
|
1063
|
+
self._sklearn_object = self._create_sklearn_object()
|
1064
|
+
return self._sklearn_object
|
1065
|
+
|
1066
|
+
def to_xgboost(self) -> Any:
|
1067
|
+
raise exceptions.SnowflakeMLException(
|
1068
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1069
|
+
original_exception=AttributeError(
|
1070
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1071
|
+
"to_xgboost()",
|
1072
|
+
"to_sklearn()"
|
1073
|
+
)
|
1074
|
+
),
|
1075
|
+
)
|
1076
|
+
|
1077
|
+
def to_lightgbm(self) -> Any:
|
1078
|
+
raise exceptions.SnowflakeMLException(
|
1079
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1080
|
+
original_exception=AttributeError(
|
1081
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1082
|
+
"to_lightgbm()",
|
1083
|
+
"to_sklearn()"
|
1084
|
+
)
|
1085
|
+
),
|
1086
|
+
)
|
1087
|
+
|
1088
|
+
def _get_dependencies(self) -> List[str]:
|
1089
|
+
return self._deps
|
1090
|
+
|
988
1091
|
|
989
|
-
def
|
1092
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
990
1093
|
self._model_signature_dict = dict()
|
991
1094
|
|
992
1095
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
993
1096
|
|
994
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1097
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
995
1098
|
outputs: List[BaseFeatureSpec] = []
|
996
1099
|
if hasattr(self, "predict"):
|
997
1100
|
# keep mypy happy
|
998
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1101
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
999
1102
|
# For classifier, the type of predict is the same as the type of label
|
1000
|
-
if self._sklearn_object._estimator_type ==
|
1001
|
-
|
1103
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1104
|
+
# label columns is the desired type for output
|
1002
1105
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1003
1106
|
# rename the output columns
|
1004
1107
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1005
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1006
|
-
|
1007
|
-
|
1108
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1109
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1110
|
+
)
|
1008
1111
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1009
1112
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1010
|
-
# Clusterer returns int64 cluster labels.
|
1113
|
+
# Clusterer returns int64 cluster labels.
|
1011
1114
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1012
1115
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1013
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1014
|
-
|
1015
|
-
|
1016
|
-
|
1116
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1117
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1118
|
+
)
|
1119
|
+
|
1017
1120
|
# For regressor, the type of predict is float64
|
1018
|
-
elif self._sklearn_object._estimator_type ==
|
1121
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1019
1122
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1020
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1021
|
-
|
1022
|
-
|
1023
|
-
|
1123
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1124
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1125
|
+
)
|
1126
|
+
|
1024
1127
|
for prob_func in PROB_FUNCTIONS:
|
1025
1128
|
if hasattr(self, prob_func):
|
1026
1129
|
output_cols_prefix: str = f"{prob_func}_"
|
1027
1130
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1028
1131
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1029
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1030
|
-
|
1031
|
-
|
1132
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1133
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1134
|
+
)
|
1032
1135
|
|
1033
1136
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1034
1137
|
items = list(self._model_signature_dict.items())
|
@@ -1041,10 +1144,10 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1041
1144
|
"""Returns model signature of current class.
|
1042
1145
|
|
1043
1146
|
Raises:
|
1044
|
-
|
1147
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1045
1148
|
|
1046
1149
|
Returns:
|
1047
|
-
Dict
|
1150
|
+
Dict with each method and its input output signature
|
1048
1151
|
"""
|
1049
1152
|
if self._model_signature_dict is None:
|
1050
1153
|
raise exceptions.SnowflakeMLException(
|
@@ -1052,35 +1155,3 @@ class KNeighborsClassifier(BaseTransformer):
|
|
1052
1155
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1053
1156
|
)
|
1054
1157
|
return self._model_signature_dict
|
1055
|
-
|
1056
|
-
def to_sklearn(self) -> Any:
|
1057
|
-
"""Get sklearn.neighbors.KNeighborsClassifier object.
|
1058
|
-
"""
|
1059
|
-
if self._sklearn_object is None:
|
1060
|
-
self._sklearn_object = self._create_sklearn_object()
|
1061
|
-
return self._sklearn_object
|
1062
|
-
|
1063
|
-
def to_xgboost(self) -> Any:
|
1064
|
-
raise exceptions.SnowflakeMLException(
|
1065
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1066
|
-
original_exception=AttributeError(
|
1067
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1068
|
-
"to_xgboost()",
|
1069
|
-
"to_sklearn()"
|
1070
|
-
)
|
1071
|
-
),
|
1072
|
-
)
|
1073
|
-
|
1074
|
-
def to_lightgbm(self) -> Any:
|
1075
|
-
raise exceptions.SnowflakeMLException(
|
1076
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1077
|
-
original_exception=AttributeError(
|
1078
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1079
|
-
"to_lightgbm()",
|
1080
|
-
"to_sklearn()"
|
1081
|
-
)
|
1082
|
-
),
|
1083
|
-
)
|
1084
|
-
|
1085
|
-
def _get_dependencies(self) -> List[str]:
|
1086
|
-
return self._deps
|