snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class HistGradientBoostingRegressor(BaseTransformer):
71
64
  r"""Histogram-based Gradient Boosting Regression Tree
72
65
  For more details on this class, see [sklearn.ensemble.HistGradientBoostingRegressor]
@@ -363,12 +356,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
363
356
  )
364
357
  return selected_cols
365
358
 
366
- @telemetry.send_api_usage_telemetry(
367
- project=_PROJECT,
368
- subproject=_SUBPROJECT,
369
- custom_tags=dict([("autogen", True)]),
370
- )
371
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingRegressor":
359
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "HistGradientBoostingRegressor":
372
360
  """Fit the gradient boosting model
373
361
  For more details on this function, see [sklearn.ensemble.HistGradientBoostingRegressor.fit]
374
362
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html#sklearn.ensemble.HistGradientBoostingRegressor.fit)
@@ -395,12 +383,14 @@ class HistGradientBoostingRegressor(BaseTransformer):
395
383
 
396
384
  self._snowpark_cols = dataset.select(self.input_cols).columns
397
385
 
398
- # If we are already in a stored procedure, no need to kick off another one.
386
+ # If we are already in a stored procedure, no need to kick off another one.
399
387
  if SNOWML_SPROC_ENV in os.environ:
400
388
  statement_params = telemetry.get_function_usage_statement_params(
401
389
  project=_PROJECT,
402
390
  subproject=_SUBPROJECT,
403
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__),
391
+ function_name=telemetry.get_statement_params_full_func_name(
392
+ inspect.currentframe(), HistGradientBoostingRegressor.__class__.__name__
393
+ ),
404
394
  api_calls=[Session.call],
405
395
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
406
396
  )
@@ -421,27 +411,24 @@ class HistGradientBoostingRegressor(BaseTransformer):
421
411
  )
422
412
  self._sklearn_object = model_trainer.train()
423
413
  self._is_fitted = True
424
- self._get_model_signatures(dataset)
414
+ self._generate_model_signatures(dataset)
425
415
  return self
426
416
 
427
417
  def _batch_inference_validate_snowpark(
428
418
  self,
429
419
  dataset: DataFrame,
430
420
  inference_method: str,
431
- ) -> List[str]:
432
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
433
- return the available package that exists in the snowflake anaconda channel
421
+ ) -> None:
422
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
434
423
 
435
424
  Args:
436
425
  dataset: snowpark dataframe
437
426
  inference_method: the inference method such as predict, score...
438
-
427
+
439
428
  Raises:
440
429
  SnowflakeMLException: If the estimator is not fitted, raise error
441
430
  SnowflakeMLException: If the session is None, raise error
442
431
 
443
- Returns:
444
- A list of available package that exists in the snowflake anaconda channel
445
432
  """
446
433
  if not self._is_fitted:
447
434
  raise exceptions.SnowflakeMLException(
@@ -459,9 +446,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
459
446
  "Session must not specified for snowpark dataset."
460
447
  ),
461
448
  )
462
- # Validate that key package version in user workspace are supported in snowflake conda channel
463
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
464
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
449
+
465
450
 
466
451
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
467
452
  @telemetry.send_api_usage_telemetry(
@@ -497,7 +482,9 @@ class HistGradientBoostingRegressor(BaseTransformer):
497
482
  # when it is classifier, infer the datatype from label columns
498
483
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
499
484
  # Batch inference takes a single expected output column type. Use the first columns type for now.
500
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
485
+ label_cols_signatures = [
486
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
487
+ ]
501
488
  if len(label_cols_signatures) == 0:
502
489
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
503
490
  raise exceptions.SnowflakeMLException(
@@ -505,25 +492,23 @@ class HistGradientBoostingRegressor(BaseTransformer):
505
492
  original_exception=ValueError(error_str),
506
493
  )
507
494
 
508
- expected_type_inferred = convert_sp_to_sf_type(
509
- label_cols_signatures[0].as_snowpark_type()
510
- )
495
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
511
496
 
512
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
513
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
497
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
498
+ self._deps = self._get_dependencies()
499
+ assert isinstance(
500
+ dataset._session, Session
501
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
514
502
 
515
503
  transform_kwargs = dict(
516
- session = dataset._session,
517
- dependencies = self._deps,
518
- drop_input_cols = self._drop_input_cols,
519
- expected_output_cols_type = expected_type_inferred,
504
+ session=dataset._session,
505
+ dependencies=self._deps,
506
+ drop_input_cols=self._drop_input_cols,
507
+ expected_output_cols_type=expected_type_inferred,
520
508
  )
521
509
 
522
510
  elif isinstance(dataset, pd.DataFrame):
523
- transform_kwargs = dict(
524
- snowpark_input_cols = self._snowpark_cols,
525
- drop_input_cols = self._drop_input_cols
526
- )
511
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
527
512
 
528
513
  transform_handlers = ModelTransformerBuilder.build(
529
514
  dataset=dataset,
@@ -563,7 +548,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
563
548
  Transformed dataset.
564
549
  """
565
550
  super()._check_dataset_type(dataset)
566
- inference_method="transform"
551
+ inference_method = "transform"
567
552
 
568
553
  # This dictionary contains optional kwargs for batch inference. These kwargs
569
554
  # are specific to the type of dataset used.
@@ -593,24 +578,19 @@ class HistGradientBoostingRegressor(BaseTransformer):
593
578
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
594
579
  expected_dtype = convert_sp_to_sf_type(output_types[0])
595
580
 
596
- self._deps = self._batch_inference_validate_snowpark(
597
- dataset=dataset,
598
- inference_method=inference_method,
599
- )
581
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
582
+ self._deps = self._get_dependencies()
600
583
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
601
584
 
602
585
  transform_kwargs = dict(
603
- session = dataset._session,
604
- dependencies = self._deps,
605
- drop_input_cols = self._drop_input_cols,
606
- expected_output_cols_type = expected_dtype,
586
+ session=dataset._session,
587
+ dependencies=self._deps,
588
+ drop_input_cols=self._drop_input_cols,
589
+ expected_output_cols_type=expected_dtype,
607
590
  )
608
591
 
609
592
  elif isinstance(dataset, pd.DataFrame):
610
- transform_kwargs = dict(
611
- snowpark_input_cols = self._snowpark_cols,
612
- drop_input_cols = self._drop_input_cols
613
- )
593
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
614
594
 
615
595
  transform_handlers = ModelTransformerBuilder.build(
616
596
  dataset=dataset,
@@ -629,7 +609,11 @@ class HistGradientBoostingRegressor(BaseTransformer):
629
609
  return output_df
630
610
 
631
611
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
632
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
612
+ def fit_predict(
613
+ self,
614
+ dataset: Union[DataFrame, pd.DataFrame],
615
+ output_cols_prefix: str = "fit_predict_",
616
+ ) -> Union[DataFrame, pd.DataFrame]:
633
617
  """ Method not supported for this class.
634
618
 
635
619
 
@@ -654,22 +638,104 @@ class HistGradientBoostingRegressor(BaseTransformer):
654
638
  )
655
639
  output_result, fitted_estimator = model_trainer.train_fit_predict(
656
640
  drop_input_cols=self._drop_input_cols,
657
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
641
+ expected_output_cols_list=(
642
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
643
+ ),
658
644
  )
659
645
  self._sklearn_object = fitted_estimator
660
646
  self._is_fitted = True
661
647
  return output_result
662
648
 
649
+
650
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
651
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
652
+ """ Method not supported for this class.
653
+
663
654
 
664
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
665
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
666
- """
655
+ Raises:
656
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
657
+
658
+ Args:
659
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
660
+ Snowpark or Pandas DataFrame.
661
+ output_cols_prefix: Prefix for the response columns
667
662
  Returns:
668
663
  Transformed dataset.
669
664
  """
670
- self.fit(dataset)
671
- assert self._sklearn_object is not None
672
- return self._sklearn_object.embedding_
665
+ self._infer_input_output_cols(dataset)
666
+ super()._check_dataset_type(dataset)
667
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
668
+ estimator=self._sklearn_object,
669
+ dataset=dataset,
670
+ input_cols=self.input_cols,
671
+ label_cols=self.label_cols,
672
+ sample_weight_col=self.sample_weight_col,
673
+ autogenerated=self._autogenerated,
674
+ subproject=_SUBPROJECT,
675
+ )
676
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
677
+ drop_input_cols=self._drop_input_cols,
678
+ expected_output_cols_list=self.output_cols,
679
+ )
680
+ self._sklearn_object = fitted_estimator
681
+ self._is_fitted = True
682
+ return output_result
683
+
684
+
685
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
686
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
687
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
688
+ """
689
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
690
+ # The following condition is introduced for kneighbors methods, and not used in other methods
691
+ if output_cols:
692
+ output_cols = [
693
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
694
+ for c in output_cols
695
+ ]
696
+ elif getattr(self._sklearn_object, "classes_", None) is None:
697
+ output_cols = [output_cols_prefix]
698
+ elif self._sklearn_object is not None:
699
+ classes = self._sklearn_object.classes_
700
+ if isinstance(classes, numpy.ndarray):
701
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
702
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
703
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
704
+ output_cols = []
705
+ for i, cl in enumerate(classes):
706
+ # For binary classification, there is only one output column for each class
707
+ # ndarray as the two classes are complementary.
708
+ if len(cl) == 2:
709
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
710
+ else:
711
+ output_cols.extend([
712
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
713
+ ])
714
+ else:
715
+ output_cols = []
716
+
717
+ # Make sure column names are valid snowflake identifiers.
718
+ assert output_cols is not None # Make MyPy happy
719
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
720
+
721
+ return rv
722
+
723
+ def _align_expected_output_names(
724
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
725
+ ) -> List[str]:
726
+ # in case the inferred output column names dimension is different
727
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
728
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
729
+ output_df_columns = list(output_df_pd.columns)
730
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
731
+ if self.sample_weight_col:
732
+ output_df_columns_set -= set(self.sample_weight_col)
733
+ # if the dimension of inferred output column names is correct; use it
734
+ if len(expected_output_cols_list) == len(output_df_columns_set):
735
+ return expected_output_cols_list
736
+ # otherwise, use the sklearn estimator's output
737
+ else:
738
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
673
739
 
674
740
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
675
741
  @telemetry.send_api_usage_telemetry(
@@ -701,24 +767,26 @@ class HistGradientBoostingRegressor(BaseTransformer):
701
767
  # are specific to the type of dataset used.
702
768
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
703
769
 
770
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
771
+
704
772
  if isinstance(dataset, DataFrame):
705
- self._deps = self._batch_inference_validate_snowpark(
706
- dataset=dataset,
707
- inference_method=inference_method,
708
- )
709
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
773
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
774
+ self._deps = self._get_dependencies()
775
+ assert isinstance(
776
+ dataset._session, Session
777
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
710
778
  transform_kwargs = dict(
711
779
  session=dataset._session,
712
780
  dependencies=self._deps,
713
- drop_input_cols = self._drop_input_cols,
781
+ drop_input_cols=self._drop_input_cols,
714
782
  expected_output_cols_type="float",
715
783
  )
784
+ expected_output_cols = self._align_expected_output_names(
785
+ inference_method, dataset, expected_output_cols, output_cols_prefix
786
+ )
716
787
 
717
788
  elif isinstance(dataset, pd.DataFrame):
718
- transform_kwargs = dict(
719
- snowpark_input_cols = self._snowpark_cols,
720
- drop_input_cols = self._drop_input_cols
721
- )
789
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
722
790
 
723
791
  transform_handlers = ModelTransformerBuilder.build(
724
792
  dataset=dataset,
@@ -730,7 +798,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
730
798
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
731
799
  inference_method=inference_method,
732
800
  input_cols=self.input_cols,
733
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
801
+ expected_output_cols=expected_output_cols,
734
802
  **transform_kwargs
735
803
  )
736
804
  return output_df
@@ -760,29 +828,30 @@ class HistGradientBoostingRegressor(BaseTransformer):
760
828
  Output dataset with log probability of the sample for each class in the model.
761
829
  """
762
830
  super()._check_dataset_type(dataset)
763
- inference_method="predict_log_proba"
831
+ inference_method = "predict_log_proba"
832
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
764
833
 
765
834
  # This dictionary contains optional kwargs for batch inference. These kwargs
766
835
  # are specific to the type of dataset used.
767
836
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
768
837
 
769
838
  if isinstance(dataset, DataFrame):
770
- self._deps = self._batch_inference_validate_snowpark(
771
- dataset=dataset,
772
- inference_method=inference_method,
773
- )
774
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
839
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
840
+ self._deps = self._get_dependencies()
841
+ assert isinstance(
842
+ dataset._session, Session
843
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
775
844
  transform_kwargs = dict(
776
845
  session=dataset._session,
777
846
  dependencies=self._deps,
778
- drop_input_cols = self._drop_input_cols,
847
+ drop_input_cols=self._drop_input_cols,
779
848
  expected_output_cols_type="float",
780
849
  )
850
+ expected_output_cols = self._align_expected_output_names(
851
+ inference_method, dataset, expected_output_cols, output_cols_prefix
852
+ )
781
853
  elif isinstance(dataset, pd.DataFrame):
782
- transform_kwargs = dict(
783
- snowpark_input_cols = self._snowpark_cols,
784
- drop_input_cols = self._drop_input_cols
785
- )
854
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
786
855
 
787
856
  transform_handlers = ModelTransformerBuilder.build(
788
857
  dataset=dataset,
@@ -795,7 +864,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
795
864
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
796
865
  inference_method=inference_method,
797
866
  input_cols=self.input_cols,
798
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
867
+ expected_output_cols=expected_output_cols,
799
868
  **transform_kwargs
800
869
  )
801
870
  return output_df
@@ -821,30 +890,32 @@ class HistGradientBoostingRegressor(BaseTransformer):
821
890
  Output dataset with results of the decision function for the samples in input dataset.
822
891
  """
823
892
  super()._check_dataset_type(dataset)
824
- inference_method="decision_function"
893
+ inference_method = "decision_function"
825
894
 
826
895
  # This dictionary contains optional kwargs for batch inference. These kwargs
827
896
  # are specific to the type of dataset used.
828
897
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
829
898
 
899
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
900
+
830
901
  if isinstance(dataset, DataFrame):
831
- self._deps = self._batch_inference_validate_snowpark(
832
- dataset=dataset,
833
- inference_method=inference_method,
834
- )
835
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
902
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
903
+ self._deps = self._get_dependencies()
904
+ assert isinstance(
905
+ dataset._session, Session
906
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
836
907
  transform_kwargs = dict(
837
908
  session=dataset._session,
838
909
  dependencies=self._deps,
839
- drop_input_cols = self._drop_input_cols,
910
+ drop_input_cols=self._drop_input_cols,
840
911
  expected_output_cols_type="float",
841
912
  )
913
+ expected_output_cols = self._align_expected_output_names(
914
+ inference_method, dataset, expected_output_cols, output_cols_prefix
915
+ )
842
916
 
843
917
  elif isinstance(dataset, pd.DataFrame):
844
- transform_kwargs = dict(
845
- snowpark_input_cols = self._snowpark_cols,
846
- drop_input_cols = self._drop_input_cols
847
- )
918
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
848
919
 
849
920
  transform_handlers = ModelTransformerBuilder.build(
850
921
  dataset=dataset,
@@ -857,7 +928,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
857
928
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
858
929
  inference_method=inference_method,
859
930
  input_cols=self.input_cols,
860
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
931
+ expected_output_cols=expected_output_cols,
861
932
  **transform_kwargs
862
933
  )
863
934
  return output_df
@@ -886,17 +957,17 @@ class HistGradientBoostingRegressor(BaseTransformer):
886
957
  Output dataset with probability of the sample for each class in the model.
887
958
  """
888
959
  super()._check_dataset_type(dataset)
889
- inference_method="score_samples"
960
+ inference_method = "score_samples"
890
961
 
891
962
  # This dictionary contains optional kwargs for batch inference. These kwargs
892
963
  # are specific to the type of dataset used.
893
964
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
894
965
 
966
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
967
+
895
968
  if isinstance(dataset, DataFrame):
896
- self._deps = self._batch_inference_validate_snowpark(
897
- dataset=dataset,
898
- inference_method=inference_method,
899
- )
969
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
970
+ self._deps = self._get_dependencies()
900
971
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
901
972
  transform_kwargs = dict(
902
973
  session=dataset._session,
@@ -904,6 +975,9 @@ class HistGradientBoostingRegressor(BaseTransformer):
904
975
  drop_input_cols = self._drop_input_cols,
905
976
  expected_output_cols_type="float",
906
977
  )
978
+ expected_output_cols = self._align_expected_output_names(
979
+ inference_method, dataset, expected_output_cols, output_cols_prefix
980
+ )
907
981
 
908
982
  elif isinstance(dataset, pd.DataFrame):
909
983
  transform_kwargs = dict(
@@ -922,7 +996,7 @@ class HistGradientBoostingRegressor(BaseTransformer):
922
996
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
923
997
  inference_method=inference_method,
924
998
  input_cols=self.input_cols,
925
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
999
+ expected_output_cols=expected_output_cols,
926
1000
  **transform_kwargs
927
1001
  )
928
1002
  return output_df
@@ -957,17 +1031,15 @@ class HistGradientBoostingRegressor(BaseTransformer):
957
1031
  transform_kwargs: ScoreKwargsTypedDict = dict()
958
1032
 
959
1033
  if isinstance(dataset, DataFrame):
960
- self._deps = self._batch_inference_validate_snowpark(
961
- dataset=dataset,
962
- inference_method="score",
963
- )
1034
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1035
+ self._deps = self._get_dependencies()
964
1036
  selected_cols = self._get_active_columns()
965
1037
  if len(selected_cols) > 0:
966
1038
  dataset = dataset.select(selected_cols)
967
1039
  assert isinstance(dataset._session, Session) # keep mypy happy
968
1040
  transform_kwargs = dict(
969
1041
  session=dataset._session,
970
- dependencies=["snowflake-snowpark-python"] + self._deps,
1042
+ dependencies=self._deps,
971
1043
  score_sproc_imports=['sklearn'],
972
1044
  )
973
1045
  elif isinstance(dataset, pd.DataFrame):
@@ -1032,11 +1104,8 @@ class HistGradientBoostingRegressor(BaseTransformer):
1032
1104
 
1033
1105
  if isinstance(dataset, DataFrame):
1034
1106
 
1035
- self._deps = self._batch_inference_validate_snowpark(
1036
- dataset=dataset,
1037
- inference_method=inference_method,
1038
-
1039
- )
1107
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1108
+ self._deps = self._get_dependencies()
1040
1109
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1041
1110
  transform_kwargs = dict(
1042
1111
  session = dataset._session,
@@ -1069,50 +1138,84 @@ class HistGradientBoostingRegressor(BaseTransformer):
1069
1138
  )
1070
1139
  return output_df
1071
1140
 
1141
+
1142
+
1143
+ def to_sklearn(self) -> Any:
1144
+ """Get sklearn.ensemble.HistGradientBoostingRegressor object.
1145
+ """
1146
+ if self._sklearn_object is None:
1147
+ self._sklearn_object = self._create_sklearn_object()
1148
+ return self._sklearn_object
1149
+
1150
+ def to_xgboost(self) -> Any:
1151
+ raise exceptions.SnowflakeMLException(
1152
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1153
+ original_exception=AttributeError(
1154
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1155
+ "to_xgboost()",
1156
+ "to_sklearn()"
1157
+ )
1158
+ ),
1159
+ )
1160
+
1161
+ def to_lightgbm(self) -> Any:
1162
+ raise exceptions.SnowflakeMLException(
1163
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1164
+ original_exception=AttributeError(
1165
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1166
+ "to_lightgbm()",
1167
+ "to_sklearn()"
1168
+ )
1169
+ ),
1170
+ )
1171
+
1172
+ def _get_dependencies(self) -> List[str]:
1173
+ return self._deps
1174
+
1072
1175
 
1073
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1176
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1074
1177
  self._model_signature_dict = dict()
1075
1178
 
1076
1179
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1077
1180
 
1078
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1181
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1079
1182
  outputs: List[BaseFeatureSpec] = []
1080
1183
  if hasattr(self, "predict"):
1081
1184
  # keep mypy happy
1082
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1185
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1083
1186
  # For classifier, the type of predict is the same as the type of label
1084
- if self._sklearn_object._estimator_type == 'classifier':
1085
- # label columns is the desired type for output
1187
+ if self._sklearn_object._estimator_type == "classifier":
1188
+ # label columns is the desired type for output
1086
1189
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1087
1190
  # rename the output columns
1088
1191
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1089
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1090
- ([] if self._drop_input_cols else inputs)
1091
- + outputs)
1192
+ self._model_signature_dict["predict"] = ModelSignature(
1193
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1194
+ )
1092
1195
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1093
1196
  # For outlier models, returns -1 for outliers and 1 for inliers.
1094
- # Clusterer returns int64 cluster labels.
1197
+ # Clusterer returns int64 cluster labels.
1095
1198
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1096
1199
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1097
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1098
- ([] if self._drop_input_cols else inputs)
1099
- + outputs)
1100
-
1200
+ self._model_signature_dict["predict"] = ModelSignature(
1201
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1202
+ )
1203
+
1101
1204
  # For regressor, the type of predict is float64
1102
- elif self._sklearn_object._estimator_type == 'regressor':
1205
+ elif self._sklearn_object._estimator_type == "regressor":
1103
1206
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1104
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1105
- ([] if self._drop_input_cols else inputs)
1106
- + outputs)
1107
-
1207
+ self._model_signature_dict["predict"] = ModelSignature(
1208
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1209
+ )
1210
+
1108
1211
  for prob_func in PROB_FUNCTIONS:
1109
1212
  if hasattr(self, prob_func):
1110
1213
  output_cols_prefix: str = f"{prob_func}_"
1111
1214
  output_column_names = self._get_output_column_names(output_cols_prefix)
1112
1215
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1113
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1114
- ([] if self._drop_input_cols else inputs)
1115
- + outputs)
1216
+ self._model_signature_dict[prob_func] = ModelSignature(
1217
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1218
+ )
1116
1219
 
1117
1220
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1118
1221
  items = list(self._model_signature_dict.items())
@@ -1125,10 +1228,10 @@ class HistGradientBoostingRegressor(BaseTransformer):
1125
1228
  """Returns model signature of current class.
1126
1229
 
1127
1230
  Raises:
1128
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1231
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1129
1232
 
1130
1233
  Returns:
1131
- Dict[str, ModelSignature]: each method and its input output signature
1234
+ Dict with each method and its input output signature
1132
1235
  """
1133
1236
  if self._model_signature_dict is None:
1134
1237
  raise exceptions.SnowflakeMLException(
@@ -1136,35 +1239,3 @@ class HistGradientBoostingRegressor(BaseTransformer):
1136
1239
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1137
1240
  )
1138
1241
  return self._model_signature_dict
1139
-
1140
- def to_sklearn(self) -> Any:
1141
- """Get sklearn.ensemble.HistGradientBoostingRegressor object.
1142
- """
1143
- if self._sklearn_object is None:
1144
- self._sklearn_object = self._create_sklearn_object()
1145
- return self._sklearn_object
1146
-
1147
- def to_xgboost(self) -> Any:
1148
- raise exceptions.SnowflakeMLException(
1149
- error_code=error_codes.METHOD_NOT_ALLOWED,
1150
- original_exception=AttributeError(
1151
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1152
- "to_xgboost()",
1153
- "to_sklearn()"
1154
- )
1155
- ),
1156
- )
1157
-
1158
- def to_lightgbm(self) -> Any:
1159
- raise exceptions.SnowflakeMLException(
1160
- error_code=error_codes.METHOD_NOT_ALLOWED,
1161
- original_exception=AttributeError(
1162
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1163
- "to_lightgbm()",
1164
- "to_sklearn()"
1165
- )
1166
- ),
1167
- )
1168
-
1169
- def _get_dependencies(self) -> List[str]:
1170
- return self._deps