snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class OPTICS(BaseTransformer):
|
71
64
|
r"""Estimate clustering structure from vector array
|
72
65
|
For more details on this class, see [sklearn.cluster.OPTICS]
|
@@ -323,12 +316,7 @@ class OPTICS(BaseTransformer):
|
|
323
316
|
)
|
324
317
|
return selected_cols
|
325
318
|
|
326
|
-
|
327
|
-
project=_PROJECT,
|
328
|
-
subproject=_SUBPROJECT,
|
329
|
-
custom_tags=dict([("autogen", True)]),
|
330
|
-
)
|
331
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OPTICS":
|
319
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OPTICS":
|
332
320
|
"""Perform OPTICS clustering
|
333
321
|
For more details on this function, see [sklearn.cluster.OPTICS.fit]
|
334
322
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS.fit)
|
@@ -355,12 +343,14 @@ class OPTICS(BaseTransformer):
|
|
355
343
|
|
356
344
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
357
345
|
|
358
|
-
|
346
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
359
347
|
if SNOWML_SPROC_ENV in os.environ:
|
360
348
|
statement_params = telemetry.get_function_usage_statement_params(
|
361
349
|
project=_PROJECT,
|
362
350
|
subproject=_SUBPROJECT,
|
363
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
351
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
352
|
+
inspect.currentframe(), OPTICS.__class__.__name__
|
353
|
+
),
|
364
354
|
api_calls=[Session.call],
|
365
355
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
366
356
|
)
|
@@ -381,27 +371,24 @@ class OPTICS(BaseTransformer):
|
|
381
371
|
)
|
382
372
|
self._sklearn_object = model_trainer.train()
|
383
373
|
self._is_fitted = True
|
384
|
-
self.
|
374
|
+
self._generate_model_signatures(dataset)
|
385
375
|
return self
|
386
376
|
|
387
377
|
def _batch_inference_validate_snowpark(
|
388
378
|
self,
|
389
379
|
dataset: DataFrame,
|
390
380
|
inference_method: str,
|
391
|
-
) ->
|
392
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
393
|
-
return the available package that exists in the snowflake anaconda channel
|
381
|
+
) -> None:
|
382
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
394
383
|
|
395
384
|
Args:
|
396
385
|
dataset: snowpark dataframe
|
397
386
|
inference_method: the inference method such as predict, score...
|
398
|
-
|
387
|
+
|
399
388
|
Raises:
|
400
389
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
401
390
|
SnowflakeMLException: If the session is None, raise error
|
402
391
|
|
403
|
-
Returns:
|
404
|
-
A list of available package that exists in the snowflake anaconda channel
|
405
392
|
"""
|
406
393
|
if not self._is_fitted:
|
407
394
|
raise exceptions.SnowflakeMLException(
|
@@ -419,9 +406,7 @@ class OPTICS(BaseTransformer):
|
|
419
406
|
"Session must not specified for snowpark dataset."
|
420
407
|
),
|
421
408
|
)
|
422
|
-
|
423
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
424
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
409
|
+
|
425
410
|
|
426
411
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
427
412
|
@telemetry.send_api_usage_telemetry(
|
@@ -455,7 +440,9 @@ class OPTICS(BaseTransformer):
|
|
455
440
|
# when it is classifier, infer the datatype from label columns
|
456
441
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
457
442
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
458
|
-
label_cols_signatures = [
|
443
|
+
label_cols_signatures = [
|
444
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
445
|
+
]
|
459
446
|
if len(label_cols_signatures) == 0:
|
460
447
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
461
448
|
raise exceptions.SnowflakeMLException(
|
@@ -463,25 +450,23 @@ class OPTICS(BaseTransformer):
|
|
463
450
|
original_exception=ValueError(error_str),
|
464
451
|
)
|
465
452
|
|
466
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
467
|
-
label_cols_signatures[0].as_snowpark_type()
|
468
|
-
)
|
453
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
469
454
|
|
470
|
-
self.
|
471
|
-
|
455
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
456
|
+
self._deps = self._get_dependencies()
|
457
|
+
assert isinstance(
|
458
|
+
dataset._session, Session
|
459
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
472
460
|
|
473
461
|
transform_kwargs = dict(
|
474
|
-
session
|
475
|
-
dependencies
|
476
|
-
drop_input_cols
|
477
|
-
expected_output_cols_type
|
462
|
+
session=dataset._session,
|
463
|
+
dependencies=self._deps,
|
464
|
+
drop_input_cols=self._drop_input_cols,
|
465
|
+
expected_output_cols_type=expected_type_inferred,
|
478
466
|
)
|
479
467
|
|
480
468
|
elif isinstance(dataset, pd.DataFrame):
|
481
|
-
transform_kwargs = dict(
|
482
|
-
snowpark_input_cols = self._snowpark_cols,
|
483
|
-
drop_input_cols = self._drop_input_cols
|
484
|
-
)
|
469
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
485
470
|
|
486
471
|
transform_handlers = ModelTransformerBuilder.build(
|
487
472
|
dataset=dataset,
|
@@ -521,7 +506,7 @@ class OPTICS(BaseTransformer):
|
|
521
506
|
Transformed dataset.
|
522
507
|
"""
|
523
508
|
super()._check_dataset_type(dataset)
|
524
|
-
inference_method="transform"
|
509
|
+
inference_method = "transform"
|
525
510
|
|
526
511
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
527
512
|
# are specific to the type of dataset used.
|
@@ -551,24 +536,19 @@ class OPTICS(BaseTransformer):
|
|
551
536
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
552
537
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
553
538
|
|
554
|
-
self.
|
555
|
-
|
556
|
-
inference_method=inference_method,
|
557
|
-
)
|
539
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
540
|
+
self._deps = self._get_dependencies()
|
558
541
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
559
542
|
|
560
543
|
transform_kwargs = dict(
|
561
|
-
session
|
562
|
-
dependencies
|
563
|
-
drop_input_cols
|
564
|
-
expected_output_cols_type
|
544
|
+
session=dataset._session,
|
545
|
+
dependencies=self._deps,
|
546
|
+
drop_input_cols=self._drop_input_cols,
|
547
|
+
expected_output_cols_type=expected_dtype,
|
565
548
|
)
|
566
549
|
|
567
550
|
elif isinstance(dataset, pd.DataFrame):
|
568
|
-
transform_kwargs = dict(
|
569
|
-
snowpark_input_cols = self._snowpark_cols,
|
570
|
-
drop_input_cols = self._drop_input_cols
|
571
|
-
)
|
551
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
572
552
|
|
573
553
|
transform_handlers = ModelTransformerBuilder.build(
|
574
554
|
dataset=dataset,
|
@@ -587,7 +567,11 @@ class OPTICS(BaseTransformer):
|
|
587
567
|
return output_df
|
588
568
|
|
589
569
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
590
|
-
def fit_predict(
|
570
|
+
def fit_predict(
|
571
|
+
self,
|
572
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
573
|
+
output_cols_prefix: str = "fit_predict_",
|
574
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
591
575
|
""" Perform clustering on `X` and returns cluster labels
|
592
576
|
For more details on this function, see [sklearn.cluster.OPTICS.fit_predict]
|
593
577
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS.fit_predict)
|
@@ -614,22 +598,104 @@ class OPTICS(BaseTransformer):
|
|
614
598
|
)
|
615
599
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
616
600
|
drop_input_cols=self._drop_input_cols,
|
617
|
-
expected_output_cols_list=
|
601
|
+
expected_output_cols_list=(
|
602
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
603
|
+
),
|
618
604
|
)
|
619
605
|
self._sklearn_object = fitted_estimator
|
620
606
|
self._is_fitted = True
|
621
607
|
return output_result
|
622
608
|
|
609
|
+
|
610
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
611
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
612
|
+
""" Method not supported for this class.
|
613
|
+
|
614
|
+
|
615
|
+
Raises:
|
616
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
623
617
|
|
624
|
-
|
625
|
-
|
626
|
-
|
618
|
+
Args:
|
619
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
620
|
+
Snowpark or Pandas DataFrame.
|
621
|
+
output_cols_prefix: Prefix for the response columns
|
627
622
|
Returns:
|
628
623
|
Transformed dataset.
|
629
624
|
"""
|
630
|
-
self.
|
631
|
-
|
632
|
-
|
625
|
+
self._infer_input_output_cols(dataset)
|
626
|
+
super()._check_dataset_type(dataset)
|
627
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
628
|
+
estimator=self._sklearn_object,
|
629
|
+
dataset=dataset,
|
630
|
+
input_cols=self.input_cols,
|
631
|
+
label_cols=self.label_cols,
|
632
|
+
sample_weight_col=self.sample_weight_col,
|
633
|
+
autogenerated=self._autogenerated,
|
634
|
+
subproject=_SUBPROJECT,
|
635
|
+
)
|
636
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
637
|
+
drop_input_cols=self._drop_input_cols,
|
638
|
+
expected_output_cols_list=self.output_cols,
|
639
|
+
)
|
640
|
+
self._sklearn_object = fitted_estimator
|
641
|
+
self._is_fitted = True
|
642
|
+
return output_result
|
643
|
+
|
644
|
+
|
645
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
646
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
647
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
648
|
+
"""
|
649
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
650
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
651
|
+
if output_cols:
|
652
|
+
output_cols = [
|
653
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
654
|
+
for c in output_cols
|
655
|
+
]
|
656
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
657
|
+
output_cols = [output_cols_prefix]
|
658
|
+
elif self._sklearn_object is not None:
|
659
|
+
classes = self._sklearn_object.classes_
|
660
|
+
if isinstance(classes, numpy.ndarray):
|
661
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
662
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
663
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
664
|
+
output_cols = []
|
665
|
+
for i, cl in enumerate(classes):
|
666
|
+
# For binary classification, there is only one output column for each class
|
667
|
+
# ndarray as the two classes are complementary.
|
668
|
+
if len(cl) == 2:
|
669
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
670
|
+
else:
|
671
|
+
output_cols.extend([
|
672
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
673
|
+
])
|
674
|
+
else:
|
675
|
+
output_cols = []
|
676
|
+
|
677
|
+
# Make sure column names are valid snowflake identifiers.
|
678
|
+
assert output_cols is not None # Make MyPy happy
|
679
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
680
|
+
|
681
|
+
return rv
|
682
|
+
|
683
|
+
def _align_expected_output_names(
|
684
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
685
|
+
) -> List[str]:
|
686
|
+
# in case the inferred output column names dimension is different
|
687
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
688
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
689
|
+
output_df_columns = list(output_df_pd.columns)
|
690
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
691
|
+
if self.sample_weight_col:
|
692
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
693
|
+
# if the dimension of inferred output column names is correct; use it
|
694
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
695
|
+
return expected_output_cols_list
|
696
|
+
# otherwise, use the sklearn estimator's output
|
697
|
+
else:
|
698
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
633
699
|
|
634
700
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
635
701
|
@telemetry.send_api_usage_telemetry(
|
@@ -661,24 +727,26 @@ class OPTICS(BaseTransformer):
|
|
661
727
|
# are specific to the type of dataset used.
|
662
728
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
663
729
|
|
730
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
731
|
+
|
664
732
|
if isinstance(dataset, DataFrame):
|
665
|
-
self.
|
666
|
-
|
667
|
-
|
668
|
-
|
669
|
-
|
733
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
734
|
+
self._deps = self._get_dependencies()
|
735
|
+
assert isinstance(
|
736
|
+
dataset._session, Session
|
737
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
670
738
|
transform_kwargs = dict(
|
671
739
|
session=dataset._session,
|
672
740
|
dependencies=self._deps,
|
673
|
-
drop_input_cols
|
741
|
+
drop_input_cols=self._drop_input_cols,
|
674
742
|
expected_output_cols_type="float",
|
675
743
|
)
|
744
|
+
expected_output_cols = self._align_expected_output_names(
|
745
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
746
|
+
)
|
676
747
|
|
677
748
|
elif isinstance(dataset, pd.DataFrame):
|
678
|
-
transform_kwargs = dict(
|
679
|
-
snowpark_input_cols = self._snowpark_cols,
|
680
|
-
drop_input_cols = self._drop_input_cols
|
681
|
-
)
|
749
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
682
750
|
|
683
751
|
transform_handlers = ModelTransformerBuilder.build(
|
684
752
|
dataset=dataset,
|
@@ -690,7 +758,7 @@ class OPTICS(BaseTransformer):
|
|
690
758
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
691
759
|
inference_method=inference_method,
|
692
760
|
input_cols=self.input_cols,
|
693
|
-
expected_output_cols=
|
761
|
+
expected_output_cols=expected_output_cols,
|
694
762
|
**transform_kwargs
|
695
763
|
)
|
696
764
|
return output_df
|
@@ -720,29 +788,30 @@ class OPTICS(BaseTransformer):
|
|
720
788
|
Output dataset with log probability of the sample for each class in the model.
|
721
789
|
"""
|
722
790
|
super()._check_dataset_type(dataset)
|
723
|
-
inference_method="predict_log_proba"
|
791
|
+
inference_method = "predict_log_proba"
|
792
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
724
793
|
|
725
794
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
726
795
|
# are specific to the type of dataset used.
|
727
796
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
728
797
|
|
729
798
|
if isinstance(dataset, DataFrame):
|
730
|
-
self.
|
731
|
-
|
732
|
-
|
733
|
-
|
734
|
-
|
799
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
800
|
+
self._deps = self._get_dependencies()
|
801
|
+
assert isinstance(
|
802
|
+
dataset._session, Session
|
803
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
735
804
|
transform_kwargs = dict(
|
736
805
|
session=dataset._session,
|
737
806
|
dependencies=self._deps,
|
738
|
-
drop_input_cols
|
807
|
+
drop_input_cols=self._drop_input_cols,
|
739
808
|
expected_output_cols_type="float",
|
740
809
|
)
|
810
|
+
expected_output_cols = self._align_expected_output_names(
|
811
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
812
|
+
)
|
741
813
|
elif isinstance(dataset, pd.DataFrame):
|
742
|
-
transform_kwargs = dict(
|
743
|
-
snowpark_input_cols = self._snowpark_cols,
|
744
|
-
drop_input_cols = self._drop_input_cols
|
745
|
-
)
|
814
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
746
815
|
|
747
816
|
transform_handlers = ModelTransformerBuilder.build(
|
748
817
|
dataset=dataset,
|
@@ -755,7 +824,7 @@ class OPTICS(BaseTransformer):
|
|
755
824
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
756
825
|
inference_method=inference_method,
|
757
826
|
input_cols=self.input_cols,
|
758
|
-
expected_output_cols=
|
827
|
+
expected_output_cols=expected_output_cols,
|
759
828
|
**transform_kwargs
|
760
829
|
)
|
761
830
|
return output_df
|
@@ -781,30 +850,32 @@ class OPTICS(BaseTransformer):
|
|
781
850
|
Output dataset with results of the decision function for the samples in input dataset.
|
782
851
|
"""
|
783
852
|
super()._check_dataset_type(dataset)
|
784
|
-
inference_method="decision_function"
|
853
|
+
inference_method = "decision_function"
|
785
854
|
|
786
855
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
787
856
|
# are specific to the type of dataset used.
|
788
857
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
789
858
|
|
859
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
860
|
+
|
790
861
|
if isinstance(dataset, DataFrame):
|
791
|
-
self.
|
792
|
-
|
793
|
-
|
794
|
-
|
795
|
-
|
862
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
863
|
+
self._deps = self._get_dependencies()
|
864
|
+
assert isinstance(
|
865
|
+
dataset._session, Session
|
866
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
796
867
|
transform_kwargs = dict(
|
797
868
|
session=dataset._session,
|
798
869
|
dependencies=self._deps,
|
799
|
-
drop_input_cols
|
870
|
+
drop_input_cols=self._drop_input_cols,
|
800
871
|
expected_output_cols_type="float",
|
801
872
|
)
|
873
|
+
expected_output_cols = self._align_expected_output_names(
|
874
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
875
|
+
)
|
802
876
|
|
803
877
|
elif isinstance(dataset, pd.DataFrame):
|
804
|
-
transform_kwargs = dict(
|
805
|
-
snowpark_input_cols = self._snowpark_cols,
|
806
|
-
drop_input_cols = self._drop_input_cols
|
807
|
-
)
|
878
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
808
879
|
|
809
880
|
transform_handlers = ModelTransformerBuilder.build(
|
810
881
|
dataset=dataset,
|
@@ -817,7 +888,7 @@ class OPTICS(BaseTransformer):
|
|
817
888
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
818
889
|
inference_method=inference_method,
|
819
890
|
input_cols=self.input_cols,
|
820
|
-
expected_output_cols=
|
891
|
+
expected_output_cols=expected_output_cols,
|
821
892
|
**transform_kwargs
|
822
893
|
)
|
823
894
|
return output_df
|
@@ -846,17 +917,17 @@ class OPTICS(BaseTransformer):
|
|
846
917
|
Output dataset with probability of the sample for each class in the model.
|
847
918
|
"""
|
848
919
|
super()._check_dataset_type(dataset)
|
849
|
-
inference_method="score_samples"
|
920
|
+
inference_method = "score_samples"
|
850
921
|
|
851
922
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
852
923
|
# are specific to the type of dataset used.
|
853
924
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
854
925
|
|
926
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
927
|
+
|
855
928
|
if isinstance(dataset, DataFrame):
|
856
|
-
self.
|
857
|
-
|
858
|
-
inference_method=inference_method,
|
859
|
-
)
|
929
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
930
|
+
self._deps = self._get_dependencies()
|
860
931
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
861
932
|
transform_kwargs = dict(
|
862
933
|
session=dataset._session,
|
@@ -864,6 +935,9 @@ class OPTICS(BaseTransformer):
|
|
864
935
|
drop_input_cols = self._drop_input_cols,
|
865
936
|
expected_output_cols_type="float",
|
866
937
|
)
|
938
|
+
expected_output_cols = self._align_expected_output_names(
|
939
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
940
|
+
)
|
867
941
|
|
868
942
|
elif isinstance(dataset, pd.DataFrame):
|
869
943
|
transform_kwargs = dict(
|
@@ -882,7 +956,7 @@ class OPTICS(BaseTransformer):
|
|
882
956
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
883
957
|
inference_method=inference_method,
|
884
958
|
input_cols=self.input_cols,
|
885
|
-
expected_output_cols=
|
959
|
+
expected_output_cols=expected_output_cols,
|
886
960
|
**transform_kwargs
|
887
961
|
)
|
888
962
|
return output_df
|
@@ -915,17 +989,15 @@ class OPTICS(BaseTransformer):
|
|
915
989
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
916
990
|
|
917
991
|
if isinstance(dataset, DataFrame):
|
918
|
-
self.
|
919
|
-
|
920
|
-
inference_method="score",
|
921
|
-
)
|
992
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
993
|
+
self._deps = self._get_dependencies()
|
922
994
|
selected_cols = self._get_active_columns()
|
923
995
|
if len(selected_cols) > 0:
|
924
996
|
dataset = dataset.select(selected_cols)
|
925
997
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
926
998
|
transform_kwargs = dict(
|
927
999
|
session=dataset._session,
|
928
|
-
dependencies=
|
1000
|
+
dependencies=self._deps,
|
929
1001
|
score_sproc_imports=['sklearn'],
|
930
1002
|
)
|
931
1003
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -990,11 +1062,8 @@ class OPTICS(BaseTransformer):
|
|
990
1062
|
|
991
1063
|
if isinstance(dataset, DataFrame):
|
992
1064
|
|
993
|
-
self.
|
994
|
-
|
995
|
-
inference_method=inference_method,
|
996
|
-
|
997
|
-
)
|
1065
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1066
|
+
self._deps = self._get_dependencies()
|
998
1067
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
999
1068
|
transform_kwargs = dict(
|
1000
1069
|
session = dataset._session,
|
@@ -1027,50 +1096,84 @@ class OPTICS(BaseTransformer):
|
|
1027
1096
|
)
|
1028
1097
|
return output_df
|
1029
1098
|
|
1099
|
+
|
1100
|
+
|
1101
|
+
def to_sklearn(self) -> Any:
|
1102
|
+
"""Get sklearn.cluster.OPTICS object.
|
1103
|
+
"""
|
1104
|
+
if self._sklearn_object is None:
|
1105
|
+
self._sklearn_object = self._create_sklearn_object()
|
1106
|
+
return self._sklearn_object
|
1107
|
+
|
1108
|
+
def to_xgboost(self) -> Any:
|
1109
|
+
raise exceptions.SnowflakeMLException(
|
1110
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1111
|
+
original_exception=AttributeError(
|
1112
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1113
|
+
"to_xgboost()",
|
1114
|
+
"to_sklearn()"
|
1115
|
+
)
|
1116
|
+
),
|
1117
|
+
)
|
1030
1118
|
|
1031
|
-
def
|
1119
|
+
def to_lightgbm(self) -> Any:
|
1120
|
+
raise exceptions.SnowflakeMLException(
|
1121
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1122
|
+
original_exception=AttributeError(
|
1123
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1124
|
+
"to_lightgbm()",
|
1125
|
+
"to_sklearn()"
|
1126
|
+
)
|
1127
|
+
),
|
1128
|
+
)
|
1129
|
+
|
1130
|
+
def _get_dependencies(self) -> List[str]:
|
1131
|
+
return self._deps
|
1132
|
+
|
1133
|
+
|
1134
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1032
1135
|
self._model_signature_dict = dict()
|
1033
1136
|
|
1034
1137
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1035
1138
|
|
1036
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1139
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1037
1140
|
outputs: List[BaseFeatureSpec] = []
|
1038
1141
|
if hasattr(self, "predict"):
|
1039
1142
|
# keep mypy happy
|
1040
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1143
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1041
1144
|
# For classifier, the type of predict is the same as the type of label
|
1042
|
-
if self._sklearn_object._estimator_type ==
|
1043
|
-
|
1145
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1146
|
+
# label columns is the desired type for output
|
1044
1147
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1045
1148
|
# rename the output columns
|
1046
1149
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1047
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1048
|
-
|
1049
|
-
|
1150
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1151
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1152
|
+
)
|
1050
1153
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1051
1154
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1052
|
-
# Clusterer returns int64 cluster labels.
|
1155
|
+
# Clusterer returns int64 cluster labels.
|
1053
1156
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1054
1157
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1055
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1056
|
-
|
1057
|
-
|
1058
|
-
|
1158
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1159
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1160
|
+
)
|
1161
|
+
|
1059
1162
|
# For regressor, the type of predict is float64
|
1060
|
-
elif self._sklearn_object._estimator_type ==
|
1163
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1061
1164
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1062
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1063
|
-
|
1064
|
-
|
1065
|
-
|
1165
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1166
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1167
|
+
)
|
1168
|
+
|
1066
1169
|
for prob_func in PROB_FUNCTIONS:
|
1067
1170
|
if hasattr(self, prob_func):
|
1068
1171
|
output_cols_prefix: str = f"{prob_func}_"
|
1069
1172
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1070
1173
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1071
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1072
|
-
|
1073
|
-
|
1174
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1175
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1176
|
+
)
|
1074
1177
|
|
1075
1178
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1076
1179
|
items = list(self._model_signature_dict.items())
|
@@ -1083,10 +1186,10 @@ class OPTICS(BaseTransformer):
|
|
1083
1186
|
"""Returns model signature of current class.
|
1084
1187
|
|
1085
1188
|
Raises:
|
1086
|
-
|
1189
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1087
1190
|
|
1088
1191
|
Returns:
|
1089
|
-
Dict
|
1192
|
+
Dict with each method and its input output signature
|
1090
1193
|
"""
|
1091
1194
|
if self._model_signature_dict is None:
|
1092
1195
|
raise exceptions.SnowflakeMLException(
|
@@ -1094,35 +1197,3 @@ class OPTICS(BaseTransformer):
|
|
1094
1197
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1095
1198
|
)
|
1096
1199
|
return self._model_signature_dict
|
1097
|
-
|
1098
|
-
def to_sklearn(self) -> Any:
|
1099
|
-
"""Get sklearn.cluster.OPTICS object.
|
1100
|
-
"""
|
1101
|
-
if self._sklearn_object is None:
|
1102
|
-
self._sklearn_object = self._create_sklearn_object()
|
1103
|
-
return self._sklearn_object
|
1104
|
-
|
1105
|
-
def to_xgboost(self) -> Any:
|
1106
|
-
raise exceptions.SnowflakeMLException(
|
1107
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1108
|
-
original_exception=AttributeError(
|
1109
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1110
|
-
"to_xgboost()",
|
1111
|
-
"to_sklearn()"
|
1112
|
-
)
|
1113
|
-
),
|
1114
|
-
)
|
1115
|
-
|
1116
|
-
def to_lightgbm(self) -> Any:
|
1117
|
-
raise exceptions.SnowflakeMLException(
|
1118
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1119
|
-
original_exception=AttributeError(
|
1120
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1121
|
-
"to_lightgbm()",
|
1122
|
-
"to_sklearn()"
|
1123
|
-
)
|
1124
|
-
),
|
1125
|
-
)
|
1126
|
-
|
1127
|
-
def _get_dependencies(self) -> List[str]:
|
1128
|
-
return self._deps
|