snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class OPTICS(BaseTransformer):
71
64
  r"""Estimate clustering structure from vector array
72
65
  For more details on this class, see [sklearn.cluster.OPTICS]
@@ -323,12 +316,7 @@ class OPTICS(BaseTransformer):
323
316
  )
324
317
  return selected_cols
325
318
 
326
- @telemetry.send_api_usage_telemetry(
327
- project=_PROJECT,
328
- subproject=_SUBPROJECT,
329
- custom_tags=dict([("autogen", True)]),
330
- )
331
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OPTICS":
319
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OPTICS":
332
320
  """Perform OPTICS clustering
333
321
  For more details on this function, see [sklearn.cluster.OPTICS.fit]
334
322
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS.fit)
@@ -355,12 +343,14 @@ class OPTICS(BaseTransformer):
355
343
 
356
344
  self._snowpark_cols = dataset.select(self.input_cols).columns
357
345
 
358
- # If we are already in a stored procedure, no need to kick off another one.
346
+ # If we are already in a stored procedure, no need to kick off another one.
359
347
  if SNOWML_SPROC_ENV in os.environ:
360
348
  statement_params = telemetry.get_function_usage_statement_params(
361
349
  project=_PROJECT,
362
350
  subproject=_SUBPROJECT,
363
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OPTICS.__class__.__name__),
351
+ function_name=telemetry.get_statement_params_full_func_name(
352
+ inspect.currentframe(), OPTICS.__class__.__name__
353
+ ),
364
354
  api_calls=[Session.call],
365
355
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
366
356
  )
@@ -381,27 +371,24 @@ class OPTICS(BaseTransformer):
381
371
  )
382
372
  self._sklearn_object = model_trainer.train()
383
373
  self._is_fitted = True
384
- self._get_model_signatures(dataset)
374
+ self._generate_model_signatures(dataset)
385
375
  return self
386
376
 
387
377
  def _batch_inference_validate_snowpark(
388
378
  self,
389
379
  dataset: DataFrame,
390
380
  inference_method: str,
391
- ) -> List[str]:
392
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
393
- return the available package that exists in the snowflake anaconda channel
381
+ ) -> None:
382
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
394
383
 
395
384
  Args:
396
385
  dataset: snowpark dataframe
397
386
  inference_method: the inference method such as predict, score...
398
-
387
+
399
388
  Raises:
400
389
  SnowflakeMLException: If the estimator is not fitted, raise error
401
390
  SnowflakeMLException: If the session is None, raise error
402
391
 
403
- Returns:
404
- A list of available package that exists in the snowflake anaconda channel
405
392
  """
406
393
  if not self._is_fitted:
407
394
  raise exceptions.SnowflakeMLException(
@@ -419,9 +406,7 @@ class OPTICS(BaseTransformer):
419
406
  "Session must not specified for snowpark dataset."
420
407
  ),
421
408
  )
422
- # Validate that key package version in user workspace are supported in snowflake conda channel
423
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
424
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
409
+
425
410
 
426
411
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
427
412
  @telemetry.send_api_usage_telemetry(
@@ -455,7 +440,9 @@ class OPTICS(BaseTransformer):
455
440
  # when it is classifier, infer the datatype from label columns
456
441
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
457
442
  # Batch inference takes a single expected output column type. Use the first columns type for now.
458
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
443
+ label_cols_signatures = [
444
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
445
+ ]
459
446
  if len(label_cols_signatures) == 0:
460
447
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
461
448
  raise exceptions.SnowflakeMLException(
@@ -463,25 +450,23 @@ class OPTICS(BaseTransformer):
463
450
  original_exception=ValueError(error_str),
464
451
  )
465
452
 
466
- expected_type_inferred = convert_sp_to_sf_type(
467
- label_cols_signatures[0].as_snowpark_type()
468
- )
453
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
469
454
 
470
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
471
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
455
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
456
+ self._deps = self._get_dependencies()
457
+ assert isinstance(
458
+ dataset._session, Session
459
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
472
460
 
473
461
  transform_kwargs = dict(
474
- session = dataset._session,
475
- dependencies = self._deps,
476
- drop_input_cols = self._drop_input_cols,
477
- expected_output_cols_type = expected_type_inferred,
462
+ session=dataset._session,
463
+ dependencies=self._deps,
464
+ drop_input_cols=self._drop_input_cols,
465
+ expected_output_cols_type=expected_type_inferred,
478
466
  )
479
467
 
480
468
  elif isinstance(dataset, pd.DataFrame):
481
- transform_kwargs = dict(
482
- snowpark_input_cols = self._snowpark_cols,
483
- drop_input_cols = self._drop_input_cols
484
- )
469
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
485
470
 
486
471
  transform_handlers = ModelTransformerBuilder.build(
487
472
  dataset=dataset,
@@ -521,7 +506,7 @@ class OPTICS(BaseTransformer):
521
506
  Transformed dataset.
522
507
  """
523
508
  super()._check_dataset_type(dataset)
524
- inference_method="transform"
509
+ inference_method = "transform"
525
510
 
526
511
  # This dictionary contains optional kwargs for batch inference. These kwargs
527
512
  # are specific to the type of dataset used.
@@ -551,24 +536,19 @@ class OPTICS(BaseTransformer):
551
536
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
552
537
  expected_dtype = convert_sp_to_sf_type(output_types[0])
553
538
 
554
- self._deps = self._batch_inference_validate_snowpark(
555
- dataset=dataset,
556
- inference_method=inference_method,
557
- )
539
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
540
+ self._deps = self._get_dependencies()
558
541
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
559
542
 
560
543
  transform_kwargs = dict(
561
- session = dataset._session,
562
- dependencies = self._deps,
563
- drop_input_cols = self._drop_input_cols,
564
- expected_output_cols_type = expected_dtype,
544
+ session=dataset._session,
545
+ dependencies=self._deps,
546
+ drop_input_cols=self._drop_input_cols,
547
+ expected_output_cols_type=expected_dtype,
565
548
  )
566
549
 
567
550
  elif isinstance(dataset, pd.DataFrame):
568
- transform_kwargs = dict(
569
- snowpark_input_cols = self._snowpark_cols,
570
- drop_input_cols = self._drop_input_cols
571
- )
551
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
572
552
 
573
553
  transform_handlers = ModelTransformerBuilder.build(
574
554
  dataset=dataset,
@@ -587,7 +567,11 @@ class OPTICS(BaseTransformer):
587
567
  return output_df
588
568
 
589
569
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
590
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
570
+ def fit_predict(
571
+ self,
572
+ dataset: Union[DataFrame, pd.DataFrame],
573
+ output_cols_prefix: str = "fit_predict_",
574
+ ) -> Union[DataFrame, pd.DataFrame]:
591
575
  """ Perform clustering on `X` and returns cluster labels
592
576
  For more details on this function, see [sklearn.cluster.OPTICS.fit_predict]
593
577
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.OPTICS.html#sklearn.cluster.OPTICS.fit_predict)
@@ -614,22 +598,104 @@ class OPTICS(BaseTransformer):
614
598
  )
615
599
  output_result, fitted_estimator = model_trainer.train_fit_predict(
616
600
  drop_input_cols=self._drop_input_cols,
617
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
601
+ expected_output_cols_list=(
602
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
603
+ ),
618
604
  )
619
605
  self._sklearn_object = fitted_estimator
620
606
  self._is_fitted = True
621
607
  return output_result
622
608
 
609
+
610
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
611
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
612
+ """ Method not supported for this class.
613
+
614
+
615
+ Raises:
616
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
623
617
 
624
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
625
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
626
- """
618
+ Args:
619
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
620
+ Snowpark or Pandas DataFrame.
621
+ output_cols_prefix: Prefix for the response columns
627
622
  Returns:
628
623
  Transformed dataset.
629
624
  """
630
- self.fit(dataset)
631
- assert self._sklearn_object is not None
632
- return self._sklearn_object.embedding_
625
+ self._infer_input_output_cols(dataset)
626
+ super()._check_dataset_type(dataset)
627
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
628
+ estimator=self._sklearn_object,
629
+ dataset=dataset,
630
+ input_cols=self.input_cols,
631
+ label_cols=self.label_cols,
632
+ sample_weight_col=self.sample_weight_col,
633
+ autogenerated=self._autogenerated,
634
+ subproject=_SUBPROJECT,
635
+ )
636
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
637
+ drop_input_cols=self._drop_input_cols,
638
+ expected_output_cols_list=self.output_cols,
639
+ )
640
+ self._sklearn_object = fitted_estimator
641
+ self._is_fitted = True
642
+ return output_result
643
+
644
+
645
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
646
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
647
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
648
+ """
649
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
650
+ # The following condition is introduced for kneighbors methods, and not used in other methods
651
+ if output_cols:
652
+ output_cols = [
653
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
654
+ for c in output_cols
655
+ ]
656
+ elif getattr(self._sklearn_object, "classes_", None) is None:
657
+ output_cols = [output_cols_prefix]
658
+ elif self._sklearn_object is not None:
659
+ classes = self._sklearn_object.classes_
660
+ if isinstance(classes, numpy.ndarray):
661
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
662
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
663
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
664
+ output_cols = []
665
+ for i, cl in enumerate(classes):
666
+ # For binary classification, there is only one output column for each class
667
+ # ndarray as the two classes are complementary.
668
+ if len(cl) == 2:
669
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
670
+ else:
671
+ output_cols.extend([
672
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
673
+ ])
674
+ else:
675
+ output_cols = []
676
+
677
+ # Make sure column names are valid snowflake identifiers.
678
+ assert output_cols is not None # Make MyPy happy
679
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
680
+
681
+ return rv
682
+
683
+ def _align_expected_output_names(
684
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
685
+ ) -> List[str]:
686
+ # in case the inferred output column names dimension is different
687
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
688
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
689
+ output_df_columns = list(output_df_pd.columns)
690
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
691
+ if self.sample_weight_col:
692
+ output_df_columns_set -= set(self.sample_weight_col)
693
+ # if the dimension of inferred output column names is correct; use it
694
+ if len(expected_output_cols_list) == len(output_df_columns_set):
695
+ return expected_output_cols_list
696
+ # otherwise, use the sklearn estimator's output
697
+ else:
698
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
633
699
 
634
700
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
635
701
  @telemetry.send_api_usage_telemetry(
@@ -661,24 +727,26 @@ class OPTICS(BaseTransformer):
661
727
  # are specific to the type of dataset used.
662
728
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
663
729
 
730
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
731
+
664
732
  if isinstance(dataset, DataFrame):
665
- self._deps = self._batch_inference_validate_snowpark(
666
- dataset=dataset,
667
- inference_method=inference_method,
668
- )
669
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
733
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
734
+ self._deps = self._get_dependencies()
735
+ assert isinstance(
736
+ dataset._session, Session
737
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
670
738
  transform_kwargs = dict(
671
739
  session=dataset._session,
672
740
  dependencies=self._deps,
673
- drop_input_cols = self._drop_input_cols,
741
+ drop_input_cols=self._drop_input_cols,
674
742
  expected_output_cols_type="float",
675
743
  )
744
+ expected_output_cols = self._align_expected_output_names(
745
+ inference_method, dataset, expected_output_cols, output_cols_prefix
746
+ )
676
747
 
677
748
  elif isinstance(dataset, pd.DataFrame):
678
- transform_kwargs = dict(
679
- snowpark_input_cols = self._snowpark_cols,
680
- drop_input_cols = self._drop_input_cols
681
- )
749
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
682
750
 
683
751
  transform_handlers = ModelTransformerBuilder.build(
684
752
  dataset=dataset,
@@ -690,7 +758,7 @@ class OPTICS(BaseTransformer):
690
758
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
691
759
  inference_method=inference_method,
692
760
  input_cols=self.input_cols,
693
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
761
+ expected_output_cols=expected_output_cols,
694
762
  **transform_kwargs
695
763
  )
696
764
  return output_df
@@ -720,29 +788,30 @@ class OPTICS(BaseTransformer):
720
788
  Output dataset with log probability of the sample for each class in the model.
721
789
  """
722
790
  super()._check_dataset_type(dataset)
723
- inference_method="predict_log_proba"
791
+ inference_method = "predict_log_proba"
792
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
724
793
 
725
794
  # This dictionary contains optional kwargs for batch inference. These kwargs
726
795
  # are specific to the type of dataset used.
727
796
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
728
797
 
729
798
  if isinstance(dataset, DataFrame):
730
- self._deps = self._batch_inference_validate_snowpark(
731
- dataset=dataset,
732
- inference_method=inference_method,
733
- )
734
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
799
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
800
+ self._deps = self._get_dependencies()
801
+ assert isinstance(
802
+ dataset._session, Session
803
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
735
804
  transform_kwargs = dict(
736
805
  session=dataset._session,
737
806
  dependencies=self._deps,
738
- drop_input_cols = self._drop_input_cols,
807
+ drop_input_cols=self._drop_input_cols,
739
808
  expected_output_cols_type="float",
740
809
  )
810
+ expected_output_cols = self._align_expected_output_names(
811
+ inference_method, dataset, expected_output_cols, output_cols_prefix
812
+ )
741
813
  elif isinstance(dataset, pd.DataFrame):
742
- transform_kwargs = dict(
743
- snowpark_input_cols = self._snowpark_cols,
744
- drop_input_cols = self._drop_input_cols
745
- )
814
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
746
815
 
747
816
  transform_handlers = ModelTransformerBuilder.build(
748
817
  dataset=dataset,
@@ -755,7 +824,7 @@ class OPTICS(BaseTransformer):
755
824
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
756
825
  inference_method=inference_method,
757
826
  input_cols=self.input_cols,
758
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
827
+ expected_output_cols=expected_output_cols,
759
828
  **transform_kwargs
760
829
  )
761
830
  return output_df
@@ -781,30 +850,32 @@ class OPTICS(BaseTransformer):
781
850
  Output dataset with results of the decision function for the samples in input dataset.
782
851
  """
783
852
  super()._check_dataset_type(dataset)
784
- inference_method="decision_function"
853
+ inference_method = "decision_function"
785
854
 
786
855
  # This dictionary contains optional kwargs for batch inference. These kwargs
787
856
  # are specific to the type of dataset used.
788
857
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
789
858
 
859
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
860
+
790
861
  if isinstance(dataset, DataFrame):
791
- self._deps = self._batch_inference_validate_snowpark(
792
- dataset=dataset,
793
- inference_method=inference_method,
794
- )
795
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
862
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
863
+ self._deps = self._get_dependencies()
864
+ assert isinstance(
865
+ dataset._session, Session
866
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
796
867
  transform_kwargs = dict(
797
868
  session=dataset._session,
798
869
  dependencies=self._deps,
799
- drop_input_cols = self._drop_input_cols,
870
+ drop_input_cols=self._drop_input_cols,
800
871
  expected_output_cols_type="float",
801
872
  )
873
+ expected_output_cols = self._align_expected_output_names(
874
+ inference_method, dataset, expected_output_cols, output_cols_prefix
875
+ )
802
876
 
803
877
  elif isinstance(dataset, pd.DataFrame):
804
- transform_kwargs = dict(
805
- snowpark_input_cols = self._snowpark_cols,
806
- drop_input_cols = self._drop_input_cols
807
- )
878
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
808
879
 
809
880
  transform_handlers = ModelTransformerBuilder.build(
810
881
  dataset=dataset,
@@ -817,7 +888,7 @@ class OPTICS(BaseTransformer):
817
888
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
818
889
  inference_method=inference_method,
819
890
  input_cols=self.input_cols,
820
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
891
+ expected_output_cols=expected_output_cols,
821
892
  **transform_kwargs
822
893
  )
823
894
  return output_df
@@ -846,17 +917,17 @@ class OPTICS(BaseTransformer):
846
917
  Output dataset with probability of the sample for each class in the model.
847
918
  """
848
919
  super()._check_dataset_type(dataset)
849
- inference_method="score_samples"
920
+ inference_method = "score_samples"
850
921
 
851
922
  # This dictionary contains optional kwargs for batch inference. These kwargs
852
923
  # are specific to the type of dataset used.
853
924
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
854
925
 
926
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
927
+
855
928
  if isinstance(dataset, DataFrame):
856
- self._deps = self._batch_inference_validate_snowpark(
857
- dataset=dataset,
858
- inference_method=inference_method,
859
- )
929
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
930
+ self._deps = self._get_dependencies()
860
931
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
861
932
  transform_kwargs = dict(
862
933
  session=dataset._session,
@@ -864,6 +935,9 @@ class OPTICS(BaseTransformer):
864
935
  drop_input_cols = self._drop_input_cols,
865
936
  expected_output_cols_type="float",
866
937
  )
938
+ expected_output_cols = self._align_expected_output_names(
939
+ inference_method, dataset, expected_output_cols, output_cols_prefix
940
+ )
867
941
 
868
942
  elif isinstance(dataset, pd.DataFrame):
869
943
  transform_kwargs = dict(
@@ -882,7 +956,7 @@ class OPTICS(BaseTransformer):
882
956
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
883
957
  inference_method=inference_method,
884
958
  input_cols=self.input_cols,
885
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
959
+ expected_output_cols=expected_output_cols,
886
960
  **transform_kwargs
887
961
  )
888
962
  return output_df
@@ -915,17 +989,15 @@ class OPTICS(BaseTransformer):
915
989
  transform_kwargs: ScoreKwargsTypedDict = dict()
916
990
 
917
991
  if isinstance(dataset, DataFrame):
918
- self._deps = self._batch_inference_validate_snowpark(
919
- dataset=dataset,
920
- inference_method="score",
921
- )
992
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
993
+ self._deps = self._get_dependencies()
922
994
  selected_cols = self._get_active_columns()
923
995
  if len(selected_cols) > 0:
924
996
  dataset = dataset.select(selected_cols)
925
997
  assert isinstance(dataset._session, Session) # keep mypy happy
926
998
  transform_kwargs = dict(
927
999
  session=dataset._session,
928
- dependencies=["snowflake-snowpark-python"] + self._deps,
1000
+ dependencies=self._deps,
929
1001
  score_sproc_imports=['sklearn'],
930
1002
  )
931
1003
  elif isinstance(dataset, pd.DataFrame):
@@ -990,11 +1062,8 @@ class OPTICS(BaseTransformer):
990
1062
 
991
1063
  if isinstance(dataset, DataFrame):
992
1064
 
993
- self._deps = self._batch_inference_validate_snowpark(
994
- dataset=dataset,
995
- inference_method=inference_method,
996
-
997
- )
1065
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1066
+ self._deps = self._get_dependencies()
998
1067
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
999
1068
  transform_kwargs = dict(
1000
1069
  session = dataset._session,
@@ -1027,50 +1096,84 @@ class OPTICS(BaseTransformer):
1027
1096
  )
1028
1097
  return output_df
1029
1098
 
1099
+
1100
+
1101
+ def to_sklearn(self) -> Any:
1102
+ """Get sklearn.cluster.OPTICS object.
1103
+ """
1104
+ if self._sklearn_object is None:
1105
+ self._sklearn_object = self._create_sklearn_object()
1106
+ return self._sklearn_object
1107
+
1108
+ def to_xgboost(self) -> Any:
1109
+ raise exceptions.SnowflakeMLException(
1110
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1111
+ original_exception=AttributeError(
1112
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1113
+ "to_xgboost()",
1114
+ "to_sklearn()"
1115
+ )
1116
+ ),
1117
+ )
1030
1118
 
1031
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1119
+ def to_lightgbm(self) -> Any:
1120
+ raise exceptions.SnowflakeMLException(
1121
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1122
+ original_exception=AttributeError(
1123
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1124
+ "to_lightgbm()",
1125
+ "to_sklearn()"
1126
+ )
1127
+ ),
1128
+ )
1129
+
1130
+ def _get_dependencies(self) -> List[str]:
1131
+ return self._deps
1132
+
1133
+
1134
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1032
1135
  self._model_signature_dict = dict()
1033
1136
 
1034
1137
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1035
1138
 
1036
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1139
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1037
1140
  outputs: List[BaseFeatureSpec] = []
1038
1141
  if hasattr(self, "predict"):
1039
1142
  # keep mypy happy
1040
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1143
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1041
1144
  # For classifier, the type of predict is the same as the type of label
1042
- if self._sklearn_object._estimator_type == 'classifier':
1043
- # label columns is the desired type for output
1145
+ if self._sklearn_object._estimator_type == "classifier":
1146
+ # label columns is the desired type for output
1044
1147
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1045
1148
  # rename the output columns
1046
1149
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1047
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1048
- ([] if self._drop_input_cols else inputs)
1049
- + outputs)
1150
+ self._model_signature_dict["predict"] = ModelSignature(
1151
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1152
+ )
1050
1153
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1051
1154
  # For outlier models, returns -1 for outliers and 1 for inliers.
1052
- # Clusterer returns int64 cluster labels.
1155
+ # Clusterer returns int64 cluster labels.
1053
1156
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1054
1157
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1055
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1056
- ([] if self._drop_input_cols else inputs)
1057
- + outputs)
1058
-
1158
+ self._model_signature_dict["predict"] = ModelSignature(
1159
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1160
+ )
1161
+
1059
1162
  # For regressor, the type of predict is float64
1060
- elif self._sklearn_object._estimator_type == 'regressor':
1163
+ elif self._sklearn_object._estimator_type == "regressor":
1061
1164
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1062
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1063
- ([] if self._drop_input_cols else inputs)
1064
- + outputs)
1065
-
1165
+ self._model_signature_dict["predict"] = ModelSignature(
1166
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1167
+ )
1168
+
1066
1169
  for prob_func in PROB_FUNCTIONS:
1067
1170
  if hasattr(self, prob_func):
1068
1171
  output_cols_prefix: str = f"{prob_func}_"
1069
1172
  output_column_names = self._get_output_column_names(output_cols_prefix)
1070
1173
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1071
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1072
- ([] if self._drop_input_cols else inputs)
1073
- + outputs)
1174
+ self._model_signature_dict[prob_func] = ModelSignature(
1175
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1176
+ )
1074
1177
 
1075
1178
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1076
1179
  items = list(self._model_signature_dict.items())
@@ -1083,10 +1186,10 @@ class OPTICS(BaseTransformer):
1083
1186
  """Returns model signature of current class.
1084
1187
 
1085
1188
  Raises:
1086
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1189
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1087
1190
 
1088
1191
  Returns:
1089
- Dict[str, ModelSignature]: each method and its input output signature
1192
+ Dict with each method and its input output signature
1090
1193
  """
1091
1194
  if self._model_signature_dict is None:
1092
1195
  raise exceptions.SnowflakeMLException(
@@ -1094,35 +1197,3 @@ class OPTICS(BaseTransformer):
1094
1197
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1095
1198
  )
1096
1199
  return self._model_signature_dict
1097
-
1098
- def to_sklearn(self) -> Any:
1099
- """Get sklearn.cluster.OPTICS object.
1100
- """
1101
- if self._sklearn_object is None:
1102
- self._sklearn_object = self._create_sklearn_object()
1103
- return self._sklearn_object
1104
-
1105
- def to_xgboost(self) -> Any:
1106
- raise exceptions.SnowflakeMLException(
1107
- error_code=error_codes.METHOD_NOT_ALLOWED,
1108
- original_exception=AttributeError(
1109
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1110
- "to_xgboost()",
1111
- "to_sklearn()"
1112
- )
1113
- ),
1114
- )
1115
-
1116
- def to_lightgbm(self) -> Any:
1117
- raise exceptions.SnowflakeMLException(
1118
- error_code=error_codes.METHOD_NOT_ALLOWED,
1119
- original_exception=AttributeError(
1120
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1121
- "to_lightgbm()",
1122
- "to_sklearn()"
1123
- )
1124
- ),
1125
- )
1126
-
1127
- def _get_dependencies(self) -> List[str]:
1128
- return self._deps