snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.mixture".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class GaussianMixture(BaseTransformer):
71
64
  r"""Gaussian Mixture
72
65
  For more details on this class, see [sklearn.mixture.GaussianMixture]
@@ -298,12 +291,7 @@ class GaussianMixture(BaseTransformer):
298
291
  )
299
292
  return selected_cols
300
293
 
301
- @telemetry.send_api_usage_telemetry(
302
- project=_PROJECT,
303
- subproject=_SUBPROJECT,
304
- custom_tags=dict([("autogen", True)]),
305
- )
306
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianMixture":
294
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianMixture":
307
295
  """Estimate model parameters with the EM algorithm
308
296
  For more details on this function, see [sklearn.mixture.GaussianMixture.fit]
309
297
  (https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.fit)
@@ -330,12 +318,14 @@ class GaussianMixture(BaseTransformer):
330
318
 
331
319
  self._snowpark_cols = dataset.select(self.input_cols).columns
332
320
 
333
- # If we are already in a stored procedure, no need to kick off another one.
321
+ # If we are already in a stored procedure, no need to kick off another one.
334
322
  if SNOWML_SPROC_ENV in os.environ:
335
323
  statement_params = telemetry.get_function_usage_statement_params(
336
324
  project=_PROJECT,
337
325
  subproject=_SUBPROJECT,
338
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), GaussianMixture.__class__.__name__),
326
+ function_name=telemetry.get_statement_params_full_func_name(
327
+ inspect.currentframe(), GaussianMixture.__class__.__name__
328
+ ),
339
329
  api_calls=[Session.call],
340
330
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
341
331
  )
@@ -356,27 +346,24 @@ class GaussianMixture(BaseTransformer):
356
346
  )
357
347
  self._sklearn_object = model_trainer.train()
358
348
  self._is_fitted = True
359
- self._get_model_signatures(dataset)
349
+ self._generate_model_signatures(dataset)
360
350
  return self
361
351
 
362
352
  def _batch_inference_validate_snowpark(
363
353
  self,
364
354
  dataset: DataFrame,
365
355
  inference_method: str,
366
- ) -> List[str]:
367
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
368
- return the available package that exists in the snowflake anaconda channel
356
+ ) -> None:
357
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
369
358
 
370
359
  Args:
371
360
  dataset: snowpark dataframe
372
361
  inference_method: the inference method such as predict, score...
373
-
362
+
374
363
  Raises:
375
364
  SnowflakeMLException: If the estimator is not fitted, raise error
376
365
  SnowflakeMLException: If the session is None, raise error
377
366
 
378
- Returns:
379
- A list of available package that exists in the snowflake anaconda channel
380
367
  """
381
368
  if not self._is_fitted:
382
369
  raise exceptions.SnowflakeMLException(
@@ -394,9 +381,7 @@ class GaussianMixture(BaseTransformer):
394
381
  "Session must not specified for snowpark dataset."
395
382
  ),
396
383
  )
397
- # Validate that key package version in user workspace are supported in snowflake conda channel
398
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
399
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
384
+
400
385
 
401
386
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
402
387
  @telemetry.send_api_usage_telemetry(
@@ -432,7 +417,9 @@ class GaussianMixture(BaseTransformer):
432
417
  # when it is classifier, infer the datatype from label columns
433
418
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
434
419
  # Batch inference takes a single expected output column type. Use the first columns type for now.
435
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
420
+ label_cols_signatures = [
421
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
422
+ ]
436
423
  if len(label_cols_signatures) == 0:
437
424
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
438
425
  raise exceptions.SnowflakeMLException(
@@ -440,25 +427,23 @@ class GaussianMixture(BaseTransformer):
440
427
  original_exception=ValueError(error_str),
441
428
  )
442
429
 
443
- expected_type_inferred = convert_sp_to_sf_type(
444
- label_cols_signatures[0].as_snowpark_type()
445
- )
430
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
446
431
 
447
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
448
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
432
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
433
+ self._deps = self._get_dependencies()
434
+ assert isinstance(
435
+ dataset._session, Session
436
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
449
437
 
450
438
  transform_kwargs = dict(
451
- session = dataset._session,
452
- dependencies = self._deps,
453
- drop_input_cols = self._drop_input_cols,
454
- expected_output_cols_type = expected_type_inferred,
439
+ session=dataset._session,
440
+ dependencies=self._deps,
441
+ drop_input_cols=self._drop_input_cols,
442
+ expected_output_cols_type=expected_type_inferred,
455
443
  )
456
444
 
457
445
  elif isinstance(dataset, pd.DataFrame):
458
- transform_kwargs = dict(
459
- snowpark_input_cols = self._snowpark_cols,
460
- drop_input_cols = self._drop_input_cols
461
- )
446
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
462
447
 
463
448
  transform_handlers = ModelTransformerBuilder.build(
464
449
  dataset=dataset,
@@ -498,7 +483,7 @@ class GaussianMixture(BaseTransformer):
498
483
  Transformed dataset.
499
484
  """
500
485
  super()._check_dataset_type(dataset)
501
- inference_method="transform"
486
+ inference_method = "transform"
502
487
 
503
488
  # This dictionary contains optional kwargs for batch inference. These kwargs
504
489
  # are specific to the type of dataset used.
@@ -528,24 +513,19 @@ class GaussianMixture(BaseTransformer):
528
513
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
529
514
  expected_dtype = convert_sp_to_sf_type(output_types[0])
530
515
 
531
- self._deps = self._batch_inference_validate_snowpark(
532
- dataset=dataset,
533
- inference_method=inference_method,
534
- )
516
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
517
+ self._deps = self._get_dependencies()
535
518
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
536
519
 
537
520
  transform_kwargs = dict(
538
- session = dataset._session,
539
- dependencies = self._deps,
540
- drop_input_cols = self._drop_input_cols,
541
- expected_output_cols_type = expected_dtype,
521
+ session=dataset._session,
522
+ dependencies=self._deps,
523
+ drop_input_cols=self._drop_input_cols,
524
+ expected_output_cols_type=expected_dtype,
542
525
  )
543
526
 
544
527
  elif isinstance(dataset, pd.DataFrame):
545
- transform_kwargs = dict(
546
- snowpark_input_cols = self._snowpark_cols,
547
- drop_input_cols = self._drop_input_cols
548
- )
528
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
549
529
 
550
530
  transform_handlers = ModelTransformerBuilder.build(
551
531
  dataset=dataset,
@@ -564,7 +544,11 @@ class GaussianMixture(BaseTransformer):
564
544
  return output_df
565
545
 
566
546
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
567
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
547
+ def fit_predict(
548
+ self,
549
+ dataset: Union[DataFrame, pd.DataFrame],
550
+ output_cols_prefix: str = "fit_predict_",
551
+ ) -> Union[DataFrame, pd.DataFrame]:
568
552
  """ Estimate model parameters using X and predict the labels for X
569
553
  For more details on this function, see [sklearn.mixture.GaussianMixture.fit_predict]
570
554
  (https://scikit-learn.org/stable/modules/generated/sklearn.mixture.GaussianMixture.html#sklearn.mixture.GaussianMixture.fit_predict)
@@ -591,22 +575,104 @@ class GaussianMixture(BaseTransformer):
591
575
  )
592
576
  output_result, fitted_estimator = model_trainer.train_fit_predict(
593
577
  drop_input_cols=self._drop_input_cols,
594
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
578
+ expected_output_cols_list=(
579
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
580
+ ),
595
581
  )
596
582
  self._sklearn_object = fitted_estimator
597
583
  self._is_fitted = True
598
584
  return output_result
599
585
 
586
+
587
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
588
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
589
+ """ Method not supported for this class.
590
+
591
+
592
+ Raises:
593
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
600
594
 
601
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
602
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
603
- """
595
+ Args:
596
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
597
+ Snowpark or Pandas DataFrame.
598
+ output_cols_prefix: Prefix for the response columns
604
599
  Returns:
605
600
  Transformed dataset.
606
601
  """
607
- self.fit(dataset)
608
- assert self._sklearn_object is not None
609
- return self._sklearn_object.embedding_
602
+ self._infer_input_output_cols(dataset)
603
+ super()._check_dataset_type(dataset)
604
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
605
+ estimator=self._sklearn_object,
606
+ dataset=dataset,
607
+ input_cols=self.input_cols,
608
+ label_cols=self.label_cols,
609
+ sample_weight_col=self.sample_weight_col,
610
+ autogenerated=self._autogenerated,
611
+ subproject=_SUBPROJECT,
612
+ )
613
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
614
+ drop_input_cols=self._drop_input_cols,
615
+ expected_output_cols_list=self.output_cols,
616
+ )
617
+ self._sklearn_object = fitted_estimator
618
+ self._is_fitted = True
619
+ return output_result
620
+
621
+
622
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
623
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
624
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
625
+ """
626
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
627
+ # The following condition is introduced for kneighbors methods, and not used in other methods
628
+ if output_cols:
629
+ output_cols = [
630
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
631
+ for c in output_cols
632
+ ]
633
+ elif getattr(self._sklearn_object, "classes_", None) is None:
634
+ output_cols = [output_cols_prefix]
635
+ elif self._sklearn_object is not None:
636
+ classes = self._sklearn_object.classes_
637
+ if isinstance(classes, numpy.ndarray):
638
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
639
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
640
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
641
+ output_cols = []
642
+ for i, cl in enumerate(classes):
643
+ # For binary classification, there is only one output column for each class
644
+ # ndarray as the two classes are complementary.
645
+ if len(cl) == 2:
646
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
647
+ else:
648
+ output_cols.extend([
649
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
650
+ ])
651
+ else:
652
+ output_cols = []
653
+
654
+ # Make sure column names are valid snowflake identifiers.
655
+ assert output_cols is not None # Make MyPy happy
656
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
657
+
658
+ return rv
659
+
660
+ def _align_expected_output_names(
661
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
662
+ ) -> List[str]:
663
+ # in case the inferred output column names dimension is different
664
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
665
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
666
+ output_df_columns = list(output_df_pd.columns)
667
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
668
+ if self.sample_weight_col:
669
+ output_df_columns_set -= set(self.sample_weight_col)
670
+ # if the dimension of inferred output column names is correct; use it
671
+ if len(expected_output_cols_list) == len(output_df_columns_set):
672
+ return expected_output_cols_list
673
+ # otherwise, use the sklearn estimator's output
674
+ else:
675
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
610
676
 
611
677
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
612
678
  @telemetry.send_api_usage_telemetry(
@@ -640,24 +706,26 @@ class GaussianMixture(BaseTransformer):
640
706
  # are specific to the type of dataset used.
641
707
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
642
708
 
709
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
710
+
643
711
  if isinstance(dataset, DataFrame):
644
- self._deps = self._batch_inference_validate_snowpark(
645
- dataset=dataset,
646
- inference_method=inference_method,
647
- )
648
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
712
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
713
+ self._deps = self._get_dependencies()
714
+ assert isinstance(
715
+ dataset._session, Session
716
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
649
717
  transform_kwargs = dict(
650
718
  session=dataset._session,
651
719
  dependencies=self._deps,
652
- drop_input_cols = self._drop_input_cols,
720
+ drop_input_cols=self._drop_input_cols,
653
721
  expected_output_cols_type="float",
654
722
  )
723
+ expected_output_cols = self._align_expected_output_names(
724
+ inference_method, dataset, expected_output_cols, output_cols_prefix
725
+ )
655
726
 
656
727
  elif isinstance(dataset, pd.DataFrame):
657
- transform_kwargs = dict(
658
- snowpark_input_cols = self._snowpark_cols,
659
- drop_input_cols = self._drop_input_cols
660
- )
728
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
661
729
 
662
730
  transform_handlers = ModelTransformerBuilder.build(
663
731
  dataset=dataset,
@@ -669,7 +737,7 @@ class GaussianMixture(BaseTransformer):
669
737
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
670
738
  inference_method=inference_method,
671
739
  input_cols=self.input_cols,
672
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
740
+ expected_output_cols=expected_output_cols,
673
741
  **transform_kwargs
674
742
  )
675
743
  return output_df
@@ -701,29 +769,30 @@ class GaussianMixture(BaseTransformer):
701
769
  Output dataset with log probability of the sample for each class in the model.
702
770
  """
703
771
  super()._check_dataset_type(dataset)
704
- inference_method="predict_log_proba"
772
+ inference_method = "predict_log_proba"
773
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
705
774
 
706
775
  # This dictionary contains optional kwargs for batch inference. These kwargs
707
776
  # are specific to the type of dataset used.
708
777
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
709
778
 
710
779
  if isinstance(dataset, DataFrame):
711
- self._deps = self._batch_inference_validate_snowpark(
712
- dataset=dataset,
713
- inference_method=inference_method,
714
- )
715
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
780
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
781
+ self._deps = self._get_dependencies()
782
+ assert isinstance(
783
+ dataset._session, Session
784
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
716
785
  transform_kwargs = dict(
717
786
  session=dataset._session,
718
787
  dependencies=self._deps,
719
- drop_input_cols = self._drop_input_cols,
788
+ drop_input_cols=self._drop_input_cols,
720
789
  expected_output_cols_type="float",
721
790
  )
791
+ expected_output_cols = self._align_expected_output_names(
792
+ inference_method, dataset, expected_output_cols, output_cols_prefix
793
+ )
722
794
  elif isinstance(dataset, pd.DataFrame):
723
- transform_kwargs = dict(
724
- snowpark_input_cols = self._snowpark_cols,
725
- drop_input_cols = self._drop_input_cols
726
- )
795
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
727
796
 
728
797
  transform_handlers = ModelTransformerBuilder.build(
729
798
  dataset=dataset,
@@ -736,7 +805,7 @@ class GaussianMixture(BaseTransformer):
736
805
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
737
806
  inference_method=inference_method,
738
807
  input_cols=self.input_cols,
739
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
808
+ expected_output_cols=expected_output_cols,
740
809
  **transform_kwargs
741
810
  )
742
811
  return output_df
@@ -762,30 +831,32 @@ class GaussianMixture(BaseTransformer):
762
831
  Output dataset with results of the decision function for the samples in input dataset.
763
832
  """
764
833
  super()._check_dataset_type(dataset)
765
- inference_method="decision_function"
834
+ inference_method = "decision_function"
766
835
 
767
836
  # This dictionary contains optional kwargs for batch inference. These kwargs
768
837
  # are specific to the type of dataset used.
769
838
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
770
839
 
840
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
841
+
771
842
  if isinstance(dataset, DataFrame):
772
- self._deps = self._batch_inference_validate_snowpark(
773
- dataset=dataset,
774
- inference_method=inference_method,
775
- )
776
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
843
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
844
+ self._deps = self._get_dependencies()
845
+ assert isinstance(
846
+ dataset._session, Session
847
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
777
848
  transform_kwargs = dict(
778
849
  session=dataset._session,
779
850
  dependencies=self._deps,
780
- drop_input_cols = self._drop_input_cols,
851
+ drop_input_cols=self._drop_input_cols,
781
852
  expected_output_cols_type="float",
782
853
  )
854
+ expected_output_cols = self._align_expected_output_names(
855
+ inference_method, dataset, expected_output_cols, output_cols_prefix
856
+ )
783
857
 
784
858
  elif isinstance(dataset, pd.DataFrame):
785
- transform_kwargs = dict(
786
- snowpark_input_cols = self._snowpark_cols,
787
- drop_input_cols = self._drop_input_cols
788
- )
859
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
789
860
 
790
861
  transform_handlers = ModelTransformerBuilder.build(
791
862
  dataset=dataset,
@@ -798,7 +869,7 @@ class GaussianMixture(BaseTransformer):
798
869
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
799
870
  inference_method=inference_method,
800
871
  input_cols=self.input_cols,
801
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
872
+ expected_output_cols=expected_output_cols,
802
873
  **transform_kwargs
803
874
  )
804
875
  return output_df
@@ -829,17 +900,17 @@ class GaussianMixture(BaseTransformer):
829
900
  Output dataset with probability of the sample for each class in the model.
830
901
  """
831
902
  super()._check_dataset_type(dataset)
832
- inference_method="score_samples"
903
+ inference_method = "score_samples"
833
904
 
834
905
  # This dictionary contains optional kwargs for batch inference. These kwargs
835
906
  # are specific to the type of dataset used.
836
907
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
837
908
 
909
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
910
+
838
911
  if isinstance(dataset, DataFrame):
839
- self._deps = self._batch_inference_validate_snowpark(
840
- dataset=dataset,
841
- inference_method=inference_method,
842
- )
912
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
913
+ self._deps = self._get_dependencies()
843
914
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
844
915
  transform_kwargs = dict(
845
916
  session=dataset._session,
@@ -847,6 +918,9 @@ class GaussianMixture(BaseTransformer):
847
918
  drop_input_cols = self._drop_input_cols,
848
919
  expected_output_cols_type="float",
849
920
  )
921
+ expected_output_cols = self._align_expected_output_names(
922
+ inference_method, dataset, expected_output_cols, output_cols_prefix
923
+ )
850
924
 
851
925
  elif isinstance(dataset, pd.DataFrame):
852
926
  transform_kwargs = dict(
@@ -865,7 +939,7 @@ class GaussianMixture(BaseTransformer):
865
939
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
866
940
  inference_method=inference_method,
867
941
  input_cols=self.input_cols,
868
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
942
+ expected_output_cols=expected_output_cols,
869
943
  **transform_kwargs
870
944
  )
871
945
  return output_df
@@ -900,17 +974,15 @@ class GaussianMixture(BaseTransformer):
900
974
  transform_kwargs: ScoreKwargsTypedDict = dict()
901
975
 
902
976
  if isinstance(dataset, DataFrame):
903
- self._deps = self._batch_inference_validate_snowpark(
904
- dataset=dataset,
905
- inference_method="score",
906
- )
977
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
978
+ self._deps = self._get_dependencies()
907
979
  selected_cols = self._get_active_columns()
908
980
  if len(selected_cols) > 0:
909
981
  dataset = dataset.select(selected_cols)
910
982
  assert isinstance(dataset._session, Session) # keep mypy happy
911
983
  transform_kwargs = dict(
912
984
  session=dataset._session,
913
- dependencies=["snowflake-snowpark-python"] + self._deps,
985
+ dependencies=self._deps,
914
986
  score_sproc_imports=['sklearn'],
915
987
  )
916
988
  elif isinstance(dataset, pd.DataFrame):
@@ -975,11 +1047,8 @@ class GaussianMixture(BaseTransformer):
975
1047
 
976
1048
  if isinstance(dataset, DataFrame):
977
1049
 
978
- self._deps = self._batch_inference_validate_snowpark(
979
- dataset=dataset,
980
- inference_method=inference_method,
981
-
982
- )
1050
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1051
+ self._deps = self._get_dependencies()
983
1052
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
984
1053
  transform_kwargs = dict(
985
1054
  session = dataset._session,
@@ -1012,50 +1081,84 @@ class GaussianMixture(BaseTransformer):
1012
1081
  )
1013
1082
  return output_df
1014
1083
 
1084
+
1085
+
1086
+ def to_sklearn(self) -> Any:
1087
+ """Get sklearn.mixture.GaussianMixture object.
1088
+ """
1089
+ if self._sklearn_object is None:
1090
+ self._sklearn_object = self._create_sklearn_object()
1091
+ return self._sklearn_object
1092
+
1093
+ def to_xgboost(self) -> Any:
1094
+ raise exceptions.SnowflakeMLException(
1095
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1096
+ original_exception=AttributeError(
1097
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1098
+ "to_xgboost()",
1099
+ "to_sklearn()"
1100
+ )
1101
+ ),
1102
+ )
1015
1103
 
1016
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1104
+ def to_lightgbm(self) -> Any:
1105
+ raise exceptions.SnowflakeMLException(
1106
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1107
+ original_exception=AttributeError(
1108
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1109
+ "to_lightgbm()",
1110
+ "to_sklearn()"
1111
+ )
1112
+ ),
1113
+ )
1114
+
1115
+ def _get_dependencies(self) -> List[str]:
1116
+ return self._deps
1117
+
1118
+
1119
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1017
1120
  self._model_signature_dict = dict()
1018
1121
 
1019
1122
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1020
1123
 
1021
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1124
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1022
1125
  outputs: List[BaseFeatureSpec] = []
1023
1126
  if hasattr(self, "predict"):
1024
1127
  # keep mypy happy
1025
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1128
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1026
1129
  # For classifier, the type of predict is the same as the type of label
1027
- if self._sklearn_object._estimator_type == 'classifier':
1028
- # label columns is the desired type for output
1130
+ if self._sklearn_object._estimator_type == "classifier":
1131
+ # label columns is the desired type for output
1029
1132
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1030
1133
  # rename the output columns
1031
1134
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1032
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1033
- ([] if self._drop_input_cols else inputs)
1034
- + outputs)
1135
+ self._model_signature_dict["predict"] = ModelSignature(
1136
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1137
+ )
1035
1138
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1036
1139
  # For outlier models, returns -1 for outliers and 1 for inliers.
1037
- # Clusterer returns int64 cluster labels.
1140
+ # Clusterer returns int64 cluster labels.
1038
1141
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1039
1142
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1040
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1041
- ([] if self._drop_input_cols else inputs)
1042
- + outputs)
1043
-
1143
+ self._model_signature_dict["predict"] = ModelSignature(
1144
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1145
+ )
1146
+
1044
1147
  # For regressor, the type of predict is float64
1045
- elif self._sklearn_object._estimator_type == 'regressor':
1148
+ elif self._sklearn_object._estimator_type == "regressor":
1046
1149
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1047
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1048
- ([] if self._drop_input_cols else inputs)
1049
- + outputs)
1050
-
1150
+ self._model_signature_dict["predict"] = ModelSignature(
1151
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1152
+ )
1153
+
1051
1154
  for prob_func in PROB_FUNCTIONS:
1052
1155
  if hasattr(self, prob_func):
1053
1156
  output_cols_prefix: str = f"{prob_func}_"
1054
1157
  output_column_names = self._get_output_column_names(output_cols_prefix)
1055
1158
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1056
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1057
- ([] if self._drop_input_cols else inputs)
1058
- + outputs)
1159
+ self._model_signature_dict[prob_func] = ModelSignature(
1160
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1161
+ )
1059
1162
 
1060
1163
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1061
1164
  items = list(self._model_signature_dict.items())
@@ -1068,10 +1171,10 @@ class GaussianMixture(BaseTransformer):
1068
1171
  """Returns model signature of current class.
1069
1172
 
1070
1173
  Raises:
1071
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1174
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1072
1175
 
1073
1176
  Returns:
1074
- Dict[str, ModelSignature]: each method and its input output signature
1177
+ Dict with each method and its input output signature
1075
1178
  """
1076
1179
  if self._model_signature_dict is None:
1077
1180
  raise exceptions.SnowflakeMLException(
@@ -1079,35 +1182,3 @@ class GaussianMixture(BaseTransformer):
1079
1182
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1080
1183
  )
1081
1184
  return self._model_signature_dict
1082
-
1083
- def to_sklearn(self) -> Any:
1084
- """Get sklearn.mixture.GaussianMixture object.
1085
- """
1086
- if self._sklearn_object is None:
1087
- self._sklearn_object = self._create_sklearn_object()
1088
- return self._sklearn_object
1089
-
1090
- def to_xgboost(self) -> Any:
1091
- raise exceptions.SnowflakeMLException(
1092
- error_code=error_codes.METHOD_NOT_ALLOWED,
1093
- original_exception=AttributeError(
1094
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1095
- "to_xgboost()",
1096
- "to_sklearn()"
1097
- )
1098
- ),
1099
- )
1100
-
1101
- def to_lightgbm(self) -> Any:
1102
- raise exceptions.SnowflakeMLException(
1103
- error_code=error_codes.METHOD_NOT_ALLOWED,
1104
- original_exception=AttributeError(
1105
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1106
- "to_lightgbm()",
1107
- "to_sklearn()"
1108
- )
1109
- ),
1110
- )
1111
-
1112
- def _get_dependencies(self) -> List[str]:
1113
- return self._deps