snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklea
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return True and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class MDS(BaseTransformer):
|
71
64
|
r"""Multidimensional scaling
|
72
65
|
For more details on this class, see [sklearn.manifold.MDS]
|
@@ -261,12 +254,7 @@ class MDS(BaseTransformer):
|
|
261
254
|
)
|
262
255
|
return selected_cols
|
263
256
|
|
264
|
-
|
265
|
-
project=_PROJECT,
|
266
|
-
subproject=_SUBPROJECT,
|
267
|
-
custom_tags=dict([("autogen", True)]),
|
268
|
-
)
|
269
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MDS":
|
257
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MDS":
|
270
258
|
"""Compute the position of the points in the embedding space
|
271
259
|
For more details on this function, see [sklearn.manifold.MDS.fit]
|
272
260
|
(https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html#sklearn.manifold.MDS.fit)
|
@@ -293,12 +281,14 @@ class MDS(BaseTransformer):
|
|
293
281
|
|
294
282
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
295
283
|
|
296
|
-
|
284
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
297
285
|
if SNOWML_SPROC_ENV in os.environ:
|
298
286
|
statement_params = telemetry.get_function_usage_statement_params(
|
299
287
|
project=_PROJECT,
|
300
288
|
subproject=_SUBPROJECT,
|
301
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
289
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
290
|
+
inspect.currentframe(), MDS.__class__.__name__
|
291
|
+
),
|
302
292
|
api_calls=[Session.call],
|
303
293
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
304
294
|
)
|
@@ -319,27 +309,24 @@ class MDS(BaseTransformer):
|
|
319
309
|
)
|
320
310
|
self._sklearn_object = model_trainer.train()
|
321
311
|
self._is_fitted = True
|
322
|
-
self.
|
312
|
+
self._generate_model_signatures(dataset)
|
323
313
|
return self
|
324
314
|
|
325
315
|
def _batch_inference_validate_snowpark(
|
326
316
|
self,
|
327
317
|
dataset: DataFrame,
|
328
318
|
inference_method: str,
|
329
|
-
) ->
|
330
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
331
|
-
return the available package that exists in the snowflake anaconda channel
|
319
|
+
) -> None:
|
320
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
332
321
|
|
333
322
|
Args:
|
334
323
|
dataset: snowpark dataframe
|
335
324
|
inference_method: the inference method such as predict, score...
|
336
|
-
|
325
|
+
|
337
326
|
Raises:
|
338
327
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
339
328
|
SnowflakeMLException: If the session is None, raise error
|
340
329
|
|
341
|
-
Returns:
|
342
|
-
A list of available package that exists in the snowflake anaconda channel
|
343
330
|
"""
|
344
331
|
if not self._is_fitted:
|
345
332
|
raise exceptions.SnowflakeMLException(
|
@@ -357,9 +344,7 @@ class MDS(BaseTransformer):
|
|
357
344
|
"Session must not specified for snowpark dataset."
|
358
345
|
),
|
359
346
|
)
|
360
|
-
|
361
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
362
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
347
|
+
|
363
348
|
|
364
349
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
365
350
|
@telemetry.send_api_usage_telemetry(
|
@@ -393,7 +378,9 @@ class MDS(BaseTransformer):
|
|
393
378
|
# when it is classifier, infer the datatype from label columns
|
394
379
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
395
380
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
396
|
-
label_cols_signatures = [
|
381
|
+
label_cols_signatures = [
|
382
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
383
|
+
]
|
397
384
|
if len(label_cols_signatures) == 0:
|
398
385
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
399
386
|
raise exceptions.SnowflakeMLException(
|
@@ -401,25 +388,23 @@ class MDS(BaseTransformer):
|
|
401
388
|
original_exception=ValueError(error_str),
|
402
389
|
)
|
403
390
|
|
404
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
405
|
-
label_cols_signatures[0].as_snowpark_type()
|
406
|
-
)
|
391
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
407
392
|
|
408
|
-
self.
|
409
|
-
|
393
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
394
|
+
self._deps = self._get_dependencies()
|
395
|
+
assert isinstance(
|
396
|
+
dataset._session, Session
|
397
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
410
398
|
|
411
399
|
transform_kwargs = dict(
|
412
|
-
session
|
413
|
-
dependencies
|
414
|
-
drop_input_cols
|
415
|
-
expected_output_cols_type
|
400
|
+
session=dataset._session,
|
401
|
+
dependencies=self._deps,
|
402
|
+
drop_input_cols=self._drop_input_cols,
|
403
|
+
expected_output_cols_type=expected_type_inferred,
|
416
404
|
)
|
417
405
|
|
418
406
|
elif isinstance(dataset, pd.DataFrame):
|
419
|
-
transform_kwargs = dict(
|
420
|
-
snowpark_input_cols = self._snowpark_cols,
|
421
|
-
drop_input_cols = self._drop_input_cols
|
422
|
-
)
|
407
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
423
408
|
|
424
409
|
transform_handlers = ModelTransformerBuilder.build(
|
425
410
|
dataset=dataset,
|
@@ -459,7 +444,7 @@ class MDS(BaseTransformer):
|
|
459
444
|
Transformed dataset.
|
460
445
|
"""
|
461
446
|
super()._check_dataset_type(dataset)
|
462
|
-
inference_method="transform"
|
447
|
+
inference_method = "transform"
|
463
448
|
|
464
449
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
465
450
|
# are specific to the type of dataset used.
|
@@ -489,24 +474,19 @@ class MDS(BaseTransformer):
|
|
489
474
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
490
475
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
491
476
|
|
492
|
-
self.
|
493
|
-
|
494
|
-
inference_method=inference_method,
|
495
|
-
)
|
477
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
478
|
+
self._deps = self._get_dependencies()
|
496
479
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
497
480
|
|
498
481
|
transform_kwargs = dict(
|
499
|
-
session
|
500
|
-
dependencies
|
501
|
-
drop_input_cols
|
502
|
-
expected_output_cols_type
|
482
|
+
session=dataset._session,
|
483
|
+
dependencies=self._deps,
|
484
|
+
drop_input_cols=self._drop_input_cols,
|
485
|
+
expected_output_cols_type=expected_dtype,
|
503
486
|
)
|
504
487
|
|
505
488
|
elif isinstance(dataset, pd.DataFrame):
|
506
|
-
transform_kwargs = dict(
|
507
|
-
snowpark_input_cols = self._snowpark_cols,
|
508
|
-
drop_input_cols = self._drop_input_cols
|
509
|
-
)
|
489
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
510
490
|
|
511
491
|
transform_handlers = ModelTransformerBuilder.build(
|
512
492
|
dataset=dataset,
|
@@ -525,7 +505,11 @@ class MDS(BaseTransformer):
|
|
525
505
|
return output_df
|
526
506
|
|
527
507
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
528
|
-
def fit_predict(
|
508
|
+
def fit_predict(
|
509
|
+
self,
|
510
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
511
|
+
output_cols_prefix: str = "fit_predict_",
|
512
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
529
513
|
""" Method not supported for this class.
|
530
514
|
|
531
515
|
|
@@ -550,22 +534,106 @@ class MDS(BaseTransformer):
|
|
550
534
|
)
|
551
535
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
552
536
|
drop_input_cols=self._drop_input_cols,
|
553
|
-
expected_output_cols_list=
|
537
|
+
expected_output_cols_list=(
|
538
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
539
|
+
),
|
554
540
|
)
|
555
541
|
self._sklearn_object = fitted_estimator
|
556
542
|
self._is_fitted = True
|
557
543
|
return output_result
|
558
544
|
|
545
|
+
|
546
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
547
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
548
|
+
""" Fit the data from `X`, and returns the embedded coordinates
|
549
|
+
For more details on this function, see [sklearn.manifold.MDS.fit_transform]
|
550
|
+
(https://scikit-learn.org/stable/modules/generated/sklearn.manifold.MDS.html#sklearn.manifold.MDS.fit_transform)
|
551
|
+
|
552
|
+
|
553
|
+
Raises:
|
554
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
559
555
|
|
560
|
-
|
561
|
-
|
562
|
-
|
556
|
+
Args:
|
557
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
558
|
+
Snowpark or Pandas DataFrame.
|
559
|
+
output_cols_prefix: Prefix for the response columns
|
563
560
|
Returns:
|
564
561
|
Transformed dataset.
|
565
562
|
"""
|
566
|
-
self.
|
567
|
-
|
568
|
-
|
563
|
+
self._infer_input_output_cols(dataset)
|
564
|
+
super()._check_dataset_type(dataset)
|
565
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
566
|
+
estimator=self._sklearn_object,
|
567
|
+
dataset=dataset,
|
568
|
+
input_cols=self.input_cols,
|
569
|
+
label_cols=self.label_cols,
|
570
|
+
sample_weight_col=self.sample_weight_col,
|
571
|
+
autogenerated=self._autogenerated,
|
572
|
+
subproject=_SUBPROJECT,
|
573
|
+
)
|
574
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
575
|
+
drop_input_cols=self._drop_input_cols,
|
576
|
+
expected_output_cols_list=self.output_cols,
|
577
|
+
)
|
578
|
+
self._sklearn_object = fitted_estimator
|
579
|
+
self._is_fitted = True
|
580
|
+
return output_result
|
581
|
+
|
582
|
+
|
583
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
584
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
585
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
586
|
+
"""
|
587
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
588
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
589
|
+
if output_cols:
|
590
|
+
output_cols = [
|
591
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
592
|
+
for c in output_cols
|
593
|
+
]
|
594
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
595
|
+
output_cols = [output_cols_prefix]
|
596
|
+
elif self._sklearn_object is not None:
|
597
|
+
classes = self._sklearn_object.classes_
|
598
|
+
if isinstance(classes, numpy.ndarray):
|
599
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
600
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
601
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
602
|
+
output_cols = []
|
603
|
+
for i, cl in enumerate(classes):
|
604
|
+
# For binary classification, there is only one output column for each class
|
605
|
+
# ndarray as the two classes are complementary.
|
606
|
+
if len(cl) == 2:
|
607
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
608
|
+
else:
|
609
|
+
output_cols.extend([
|
610
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
611
|
+
])
|
612
|
+
else:
|
613
|
+
output_cols = []
|
614
|
+
|
615
|
+
# Make sure column names are valid snowflake identifiers.
|
616
|
+
assert output_cols is not None # Make MyPy happy
|
617
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
618
|
+
|
619
|
+
return rv
|
620
|
+
|
621
|
+
def _align_expected_output_names(
|
622
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
623
|
+
) -> List[str]:
|
624
|
+
# in case the inferred output column names dimension is different
|
625
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
626
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
627
|
+
output_df_columns = list(output_df_pd.columns)
|
628
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
629
|
+
if self.sample_weight_col:
|
630
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
631
|
+
# if the dimension of inferred output column names is correct; use it
|
632
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
633
|
+
return expected_output_cols_list
|
634
|
+
# otherwise, use the sklearn estimator's output
|
635
|
+
else:
|
636
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
569
637
|
|
570
638
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
571
639
|
@telemetry.send_api_usage_telemetry(
|
@@ -597,24 +665,26 @@ class MDS(BaseTransformer):
|
|
597
665
|
# are specific to the type of dataset used.
|
598
666
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
599
667
|
|
668
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
669
|
+
|
600
670
|
if isinstance(dataset, DataFrame):
|
601
|
-
self.
|
602
|
-
|
603
|
-
|
604
|
-
|
605
|
-
|
671
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
672
|
+
self._deps = self._get_dependencies()
|
673
|
+
assert isinstance(
|
674
|
+
dataset._session, Session
|
675
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
606
676
|
transform_kwargs = dict(
|
607
677
|
session=dataset._session,
|
608
678
|
dependencies=self._deps,
|
609
|
-
drop_input_cols
|
679
|
+
drop_input_cols=self._drop_input_cols,
|
610
680
|
expected_output_cols_type="float",
|
611
681
|
)
|
682
|
+
expected_output_cols = self._align_expected_output_names(
|
683
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
684
|
+
)
|
612
685
|
|
613
686
|
elif isinstance(dataset, pd.DataFrame):
|
614
|
-
transform_kwargs = dict(
|
615
|
-
snowpark_input_cols = self._snowpark_cols,
|
616
|
-
drop_input_cols = self._drop_input_cols
|
617
|
-
)
|
687
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
618
688
|
|
619
689
|
transform_handlers = ModelTransformerBuilder.build(
|
620
690
|
dataset=dataset,
|
@@ -626,7 +696,7 @@ class MDS(BaseTransformer):
|
|
626
696
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
627
697
|
inference_method=inference_method,
|
628
698
|
input_cols=self.input_cols,
|
629
|
-
expected_output_cols=
|
699
|
+
expected_output_cols=expected_output_cols,
|
630
700
|
**transform_kwargs
|
631
701
|
)
|
632
702
|
return output_df
|
@@ -656,29 +726,30 @@ class MDS(BaseTransformer):
|
|
656
726
|
Output dataset with log probability of the sample for each class in the model.
|
657
727
|
"""
|
658
728
|
super()._check_dataset_type(dataset)
|
659
|
-
inference_method="predict_log_proba"
|
729
|
+
inference_method = "predict_log_proba"
|
730
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
660
731
|
|
661
732
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
662
733
|
# are specific to the type of dataset used.
|
663
734
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
664
735
|
|
665
736
|
if isinstance(dataset, DataFrame):
|
666
|
-
self.
|
667
|
-
|
668
|
-
|
669
|
-
|
670
|
-
|
737
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
738
|
+
self._deps = self._get_dependencies()
|
739
|
+
assert isinstance(
|
740
|
+
dataset._session, Session
|
741
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
671
742
|
transform_kwargs = dict(
|
672
743
|
session=dataset._session,
|
673
744
|
dependencies=self._deps,
|
674
|
-
drop_input_cols
|
745
|
+
drop_input_cols=self._drop_input_cols,
|
675
746
|
expected_output_cols_type="float",
|
676
747
|
)
|
748
|
+
expected_output_cols = self._align_expected_output_names(
|
749
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
750
|
+
)
|
677
751
|
elif isinstance(dataset, pd.DataFrame):
|
678
|
-
transform_kwargs = dict(
|
679
|
-
snowpark_input_cols = self._snowpark_cols,
|
680
|
-
drop_input_cols = self._drop_input_cols
|
681
|
-
)
|
752
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
682
753
|
|
683
754
|
transform_handlers = ModelTransformerBuilder.build(
|
684
755
|
dataset=dataset,
|
@@ -691,7 +762,7 @@ class MDS(BaseTransformer):
|
|
691
762
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
692
763
|
inference_method=inference_method,
|
693
764
|
input_cols=self.input_cols,
|
694
|
-
expected_output_cols=
|
765
|
+
expected_output_cols=expected_output_cols,
|
695
766
|
**transform_kwargs
|
696
767
|
)
|
697
768
|
return output_df
|
@@ -717,30 +788,32 @@ class MDS(BaseTransformer):
|
|
717
788
|
Output dataset with results of the decision function for the samples in input dataset.
|
718
789
|
"""
|
719
790
|
super()._check_dataset_type(dataset)
|
720
|
-
inference_method="decision_function"
|
791
|
+
inference_method = "decision_function"
|
721
792
|
|
722
793
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
723
794
|
# are specific to the type of dataset used.
|
724
795
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
725
796
|
|
797
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
798
|
+
|
726
799
|
if isinstance(dataset, DataFrame):
|
727
|
-
self.
|
728
|
-
|
729
|
-
|
730
|
-
|
731
|
-
|
800
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
801
|
+
self._deps = self._get_dependencies()
|
802
|
+
assert isinstance(
|
803
|
+
dataset._session, Session
|
804
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
732
805
|
transform_kwargs = dict(
|
733
806
|
session=dataset._session,
|
734
807
|
dependencies=self._deps,
|
735
|
-
drop_input_cols
|
808
|
+
drop_input_cols=self._drop_input_cols,
|
736
809
|
expected_output_cols_type="float",
|
737
810
|
)
|
811
|
+
expected_output_cols = self._align_expected_output_names(
|
812
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
813
|
+
)
|
738
814
|
|
739
815
|
elif isinstance(dataset, pd.DataFrame):
|
740
|
-
transform_kwargs = dict(
|
741
|
-
snowpark_input_cols = self._snowpark_cols,
|
742
|
-
drop_input_cols = self._drop_input_cols
|
743
|
-
)
|
816
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
744
817
|
|
745
818
|
transform_handlers = ModelTransformerBuilder.build(
|
746
819
|
dataset=dataset,
|
@@ -753,7 +826,7 @@ class MDS(BaseTransformer):
|
|
753
826
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
754
827
|
inference_method=inference_method,
|
755
828
|
input_cols=self.input_cols,
|
756
|
-
expected_output_cols=
|
829
|
+
expected_output_cols=expected_output_cols,
|
757
830
|
**transform_kwargs
|
758
831
|
)
|
759
832
|
return output_df
|
@@ -782,17 +855,17 @@ class MDS(BaseTransformer):
|
|
782
855
|
Output dataset with probability of the sample for each class in the model.
|
783
856
|
"""
|
784
857
|
super()._check_dataset_type(dataset)
|
785
|
-
inference_method="score_samples"
|
858
|
+
inference_method = "score_samples"
|
786
859
|
|
787
860
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
788
861
|
# are specific to the type of dataset used.
|
789
862
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
790
863
|
|
864
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
865
|
+
|
791
866
|
if isinstance(dataset, DataFrame):
|
792
|
-
self.
|
793
|
-
|
794
|
-
inference_method=inference_method,
|
795
|
-
)
|
867
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
868
|
+
self._deps = self._get_dependencies()
|
796
869
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
797
870
|
transform_kwargs = dict(
|
798
871
|
session=dataset._session,
|
@@ -800,6 +873,9 @@ class MDS(BaseTransformer):
|
|
800
873
|
drop_input_cols = self._drop_input_cols,
|
801
874
|
expected_output_cols_type="float",
|
802
875
|
)
|
876
|
+
expected_output_cols = self._align_expected_output_names(
|
877
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
878
|
+
)
|
803
879
|
|
804
880
|
elif isinstance(dataset, pd.DataFrame):
|
805
881
|
transform_kwargs = dict(
|
@@ -818,7 +894,7 @@ class MDS(BaseTransformer):
|
|
818
894
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
819
895
|
inference_method=inference_method,
|
820
896
|
input_cols=self.input_cols,
|
821
|
-
expected_output_cols=
|
897
|
+
expected_output_cols=expected_output_cols,
|
822
898
|
**transform_kwargs
|
823
899
|
)
|
824
900
|
return output_df
|
@@ -851,17 +927,15 @@ class MDS(BaseTransformer):
|
|
851
927
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
852
928
|
|
853
929
|
if isinstance(dataset, DataFrame):
|
854
|
-
self.
|
855
|
-
|
856
|
-
inference_method="score",
|
857
|
-
)
|
930
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
931
|
+
self._deps = self._get_dependencies()
|
858
932
|
selected_cols = self._get_active_columns()
|
859
933
|
if len(selected_cols) > 0:
|
860
934
|
dataset = dataset.select(selected_cols)
|
861
935
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
862
936
|
transform_kwargs = dict(
|
863
937
|
session=dataset._session,
|
864
|
-
dependencies=
|
938
|
+
dependencies=self._deps,
|
865
939
|
score_sproc_imports=['sklearn'],
|
866
940
|
)
|
867
941
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -926,11 +1000,8 @@ class MDS(BaseTransformer):
|
|
926
1000
|
|
927
1001
|
if isinstance(dataset, DataFrame):
|
928
1002
|
|
929
|
-
self.
|
930
|
-
|
931
|
-
inference_method=inference_method,
|
932
|
-
|
933
|
-
)
|
1003
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1004
|
+
self._deps = self._get_dependencies()
|
934
1005
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
935
1006
|
transform_kwargs = dict(
|
936
1007
|
session = dataset._session,
|
@@ -963,50 +1034,84 @@ class MDS(BaseTransformer):
|
|
963
1034
|
)
|
964
1035
|
return output_df
|
965
1036
|
|
1037
|
+
|
1038
|
+
|
1039
|
+
def to_sklearn(self) -> Any:
|
1040
|
+
"""Get sklearn.manifold.MDS object.
|
1041
|
+
"""
|
1042
|
+
if self._sklearn_object is None:
|
1043
|
+
self._sklearn_object = self._create_sklearn_object()
|
1044
|
+
return self._sklearn_object
|
1045
|
+
|
1046
|
+
def to_xgboost(self) -> Any:
|
1047
|
+
raise exceptions.SnowflakeMLException(
|
1048
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1049
|
+
original_exception=AttributeError(
|
1050
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1051
|
+
"to_xgboost()",
|
1052
|
+
"to_sklearn()"
|
1053
|
+
)
|
1054
|
+
),
|
1055
|
+
)
|
966
1056
|
|
967
|
-
def
|
1057
|
+
def to_lightgbm(self) -> Any:
|
1058
|
+
raise exceptions.SnowflakeMLException(
|
1059
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1060
|
+
original_exception=AttributeError(
|
1061
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1062
|
+
"to_lightgbm()",
|
1063
|
+
"to_sklearn()"
|
1064
|
+
)
|
1065
|
+
),
|
1066
|
+
)
|
1067
|
+
|
1068
|
+
def _get_dependencies(self) -> List[str]:
|
1069
|
+
return self._deps
|
1070
|
+
|
1071
|
+
|
1072
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
968
1073
|
self._model_signature_dict = dict()
|
969
1074
|
|
970
1075
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
971
1076
|
|
972
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1077
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
973
1078
|
outputs: List[BaseFeatureSpec] = []
|
974
1079
|
if hasattr(self, "predict"):
|
975
1080
|
# keep mypy happy
|
976
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1081
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
977
1082
|
# For classifier, the type of predict is the same as the type of label
|
978
|
-
if self._sklearn_object._estimator_type ==
|
979
|
-
|
1083
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1084
|
+
# label columns is the desired type for output
|
980
1085
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
981
1086
|
# rename the output columns
|
982
1087
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
983
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
984
|
-
|
985
|
-
|
1088
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1089
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1090
|
+
)
|
986
1091
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
987
1092
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
988
|
-
# Clusterer returns int64 cluster labels.
|
1093
|
+
# Clusterer returns int64 cluster labels.
|
989
1094
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
990
1095
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
991
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
992
|
-
|
993
|
-
|
994
|
-
|
1096
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1097
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1098
|
+
)
|
1099
|
+
|
995
1100
|
# For regressor, the type of predict is float64
|
996
|
-
elif self._sklearn_object._estimator_type ==
|
1101
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
997
1102
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
998
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
999
|
-
|
1000
|
-
|
1001
|
-
|
1103
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1104
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1105
|
+
)
|
1106
|
+
|
1002
1107
|
for prob_func in PROB_FUNCTIONS:
|
1003
1108
|
if hasattr(self, prob_func):
|
1004
1109
|
output_cols_prefix: str = f"{prob_func}_"
|
1005
1110
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1006
1111
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1007
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1008
|
-
|
1009
|
-
|
1112
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1113
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1114
|
+
)
|
1010
1115
|
|
1011
1116
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1012
1117
|
items = list(self._model_signature_dict.items())
|
@@ -1019,10 +1124,10 @@ class MDS(BaseTransformer):
|
|
1019
1124
|
"""Returns model signature of current class.
|
1020
1125
|
|
1021
1126
|
Raises:
|
1022
|
-
|
1127
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1023
1128
|
|
1024
1129
|
Returns:
|
1025
|
-
Dict
|
1130
|
+
Dict with each method and its input output signature
|
1026
1131
|
"""
|
1027
1132
|
if self._model_signature_dict is None:
|
1028
1133
|
raise exceptions.SnowflakeMLException(
|
@@ -1030,35 +1135,3 @@ class MDS(BaseTransformer):
|
|
1030
1135
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1031
1136
|
)
|
1032
1137
|
return self._model_signature_dict
|
1033
|
-
|
1034
|
-
def to_sklearn(self) -> Any:
|
1035
|
-
"""Get sklearn.manifold.MDS object.
|
1036
|
-
"""
|
1037
|
-
if self._sklearn_object is None:
|
1038
|
-
self._sklearn_object = self._create_sklearn_object()
|
1039
|
-
return self._sklearn_object
|
1040
|
-
|
1041
|
-
def to_xgboost(self) -> Any:
|
1042
|
-
raise exceptions.SnowflakeMLException(
|
1043
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1044
|
-
original_exception=AttributeError(
|
1045
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1046
|
-
"to_xgboost()",
|
1047
|
-
"to_sklearn()"
|
1048
|
-
)
|
1049
|
-
),
|
1050
|
-
)
|
1051
|
-
|
1052
|
-
def to_lightgbm(self) -> Any:
|
1053
|
-
raise exceptions.SnowflakeMLException(
|
1054
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1055
|
-
original_exception=AttributeError(
|
1056
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1057
|
-
"to_lightgbm()",
|
1058
|
-
"to_sklearn()"
|
1059
|
-
)
|
1060
|
-
),
|
1061
|
-
)
|
1062
|
-
|
1063
|
-
def _get_dependencies(self) -> List[str]:
|
1064
|
-
return self._deps
|