snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class FastICA(BaseTransformer):
71
64
  r"""FastICA: a fast algorithm for Independent Component Analysis
72
65
  For more details on this class, see [sklearn.decomposition.FastICA]
@@ -269,12 +262,7 @@ class FastICA(BaseTransformer):
269
262
  )
270
263
  return selected_cols
271
264
 
272
- @telemetry.send_api_usage_telemetry(
273
- project=_PROJECT,
274
- subproject=_SUBPROJECT,
275
- custom_tags=dict([("autogen", True)]),
276
- )
277
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "FastICA":
265
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "FastICA":
278
266
  """Fit the model to X
279
267
  For more details on this function, see [sklearn.decomposition.FastICA.fit]
280
268
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.fit)
@@ -301,12 +289,14 @@ class FastICA(BaseTransformer):
301
289
 
302
290
  self._snowpark_cols = dataset.select(self.input_cols).columns
303
291
 
304
- # If we are already in a stored procedure, no need to kick off another one.
292
+ # If we are already in a stored procedure, no need to kick off another one.
305
293
  if SNOWML_SPROC_ENV in os.environ:
306
294
  statement_params = telemetry.get_function_usage_statement_params(
307
295
  project=_PROJECT,
308
296
  subproject=_SUBPROJECT,
309
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FastICA.__class__.__name__),
297
+ function_name=telemetry.get_statement_params_full_func_name(
298
+ inspect.currentframe(), FastICA.__class__.__name__
299
+ ),
310
300
  api_calls=[Session.call],
311
301
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
312
302
  )
@@ -327,27 +317,24 @@ class FastICA(BaseTransformer):
327
317
  )
328
318
  self._sklearn_object = model_trainer.train()
329
319
  self._is_fitted = True
330
- self._get_model_signatures(dataset)
320
+ self._generate_model_signatures(dataset)
331
321
  return self
332
322
 
333
323
  def _batch_inference_validate_snowpark(
334
324
  self,
335
325
  dataset: DataFrame,
336
326
  inference_method: str,
337
- ) -> List[str]:
338
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
339
- return the available package that exists in the snowflake anaconda channel
327
+ ) -> None:
328
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
340
329
 
341
330
  Args:
342
331
  dataset: snowpark dataframe
343
332
  inference_method: the inference method such as predict, score...
344
-
333
+
345
334
  Raises:
346
335
  SnowflakeMLException: If the estimator is not fitted, raise error
347
336
  SnowflakeMLException: If the session is None, raise error
348
337
 
349
- Returns:
350
- A list of available package that exists in the snowflake anaconda channel
351
338
  """
352
339
  if not self._is_fitted:
353
340
  raise exceptions.SnowflakeMLException(
@@ -365,9 +352,7 @@ class FastICA(BaseTransformer):
365
352
  "Session must not specified for snowpark dataset."
366
353
  ),
367
354
  )
368
- # Validate that key package version in user workspace are supported in snowflake conda channel
369
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
370
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
355
+
371
356
 
372
357
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
373
358
  @telemetry.send_api_usage_telemetry(
@@ -401,7 +386,9 @@ class FastICA(BaseTransformer):
401
386
  # when it is classifier, infer the datatype from label columns
402
387
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
403
388
  # Batch inference takes a single expected output column type. Use the first columns type for now.
404
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
389
+ label_cols_signatures = [
390
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
391
+ ]
405
392
  if len(label_cols_signatures) == 0:
406
393
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
407
394
  raise exceptions.SnowflakeMLException(
@@ -409,25 +396,23 @@ class FastICA(BaseTransformer):
409
396
  original_exception=ValueError(error_str),
410
397
  )
411
398
 
412
- expected_type_inferred = convert_sp_to_sf_type(
413
- label_cols_signatures[0].as_snowpark_type()
414
- )
399
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
415
400
 
416
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
417
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
401
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
402
+ self._deps = self._get_dependencies()
403
+ assert isinstance(
404
+ dataset._session, Session
405
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
418
406
 
419
407
  transform_kwargs = dict(
420
- session = dataset._session,
421
- dependencies = self._deps,
422
- drop_input_cols = self._drop_input_cols,
423
- expected_output_cols_type = expected_type_inferred,
408
+ session=dataset._session,
409
+ dependencies=self._deps,
410
+ drop_input_cols=self._drop_input_cols,
411
+ expected_output_cols_type=expected_type_inferred,
424
412
  )
425
413
 
426
414
  elif isinstance(dataset, pd.DataFrame):
427
- transform_kwargs = dict(
428
- snowpark_input_cols = self._snowpark_cols,
429
- drop_input_cols = self._drop_input_cols
430
- )
415
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
431
416
 
432
417
  transform_handlers = ModelTransformerBuilder.build(
433
418
  dataset=dataset,
@@ -469,7 +454,7 @@ class FastICA(BaseTransformer):
469
454
  Transformed dataset.
470
455
  """
471
456
  super()._check_dataset_type(dataset)
472
- inference_method="transform"
457
+ inference_method = "transform"
473
458
 
474
459
  # This dictionary contains optional kwargs for batch inference. These kwargs
475
460
  # are specific to the type of dataset used.
@@ -499,24 +484,19 @@ class FastICA(BaseTransformer):
499
484
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
500
485
  expected_dtype = convert_sp_to_sf_type(output_types[0])
501
486
 
502
- self._deps = self._batch_inference_validate_snowpark(
503
- dataset=dataset,
504
- inference_method=inference_method,
505
- )
487
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
488
+ self._deps = self._get_dependencies()
506
489
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
507
490
 
508
491
  transform_kwargs = dict(
509
- session = dataset._session,
510
- dependencies = self._deps,
511
- drop_input_cols = self._drop_input_cols,
512
- expected_output_cols_type = expected_dtype,
492
+ session=dataset._session,
493
+ dependencies=self._deps,
494
+ drop_input_cols=self._drop_input_cols,
495
+ expected_output_cols_type=expected_dtype,
513
496
  )
514
497
 
515
498
  elif isinstance(dataset, pd.DataFrame):
516
- transform_kwargs = dict(
517
- snowpark_input_cols = self._snowpark_cols,
518
- drop_input_cols = self._drop_input_cols
519
- )
499
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
520
500
 
521
501
  transform_handlers = ModelTransformerBuilder.build(
522
502
  dataset=dataset,
@@ -535,7 +515,11 @@ class FastICA(BaseTransformer):
535
515
  return output_df
536
516
 
537
517
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
538
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
518
+ def fit_predict(
519
+ self,
520
+ dataset: Union[DataFrame, pd.DataFrame],
521
+ output_cols_prefix: str = "fit_predict_",
522
+ ) -> Union[DataFrame, pd.DataFrame]:
539
523
  """ Method not supported for this class.
540
524
 
541
525
 
@@ -560,22 +544,106 @@ class FastICA(BaseTransformer):
560
544
  )
561
545
  output_result, fitted_estimator = model_trainer.train_fit_predict(
562
546
  drop_input_cols=self._drop_input_cols,
563
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
547
+ expected_output_cols_list=(
548
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
549
+ ),
564
550
  )
565
551
  self._sklearn_object = fitted_estimator
566
552
  self._is_fitted = True
567
553
  return output_result
568
554
 
555
+
556
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
557
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
558
+ """ Fit the model and recover the sources from X
559
+ For more details on this function, see [sklearn.decomposition.FastICA.fit_transform]
560
+ (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html#sklearn.decomposition.FastICA.fit_transform)
561
+
562
+
563
+ Raises:
564
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
569
565
 
570
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
571
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
572
- """
566
+ Args:
567
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
568
+ Snowpark or Pandas DataFrame.
569
+ output_cols_prefix: Prefix for the response columns
573
570
  Returns:
574
571
  Transformed dataset.
575
572
  """
576
- self.fit(dataset)
577
- assert self._sklearn_object is not None
578
- return self._sklearn_object.embedding_
573
+ self._infer_input_output_cols(dataset)
574
+ super()._check_dataset_type(dataset)
575
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
576
+ estimator=self._sklearn_object,
577
+ dataset=dataset,
578
+ input_cols=self.input_cols,
579
+ label_cols=self.label_cols,
580
+ sample_weight_col=self.sample_weight_col,
581
+ autogenerated=self._autogenerated,
582
+ subproject=_SUBPROJECT,
583
+ )
584
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
585
+ drop_input_cols=self._drop_input_cols,
586
+ expected_output_cols_list=self.output_cols,
587
+ )
588
+ self._sklearn_object = fitted_estimator
589
+ self._is_fitted = True
590
+ return output_result
591
+
592
+
593
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
594
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
595
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
596
+ """
597
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
598
+ # The following condition is introduced for kneighbors methods, and not used in other methods
599
+ if output_cols:
600
+ output_cols = [
601
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
602
+ for c in output_cols
603
+ ]
604
+ elif getattr(self._sklearn_object, "classes_", None) is None:
605
+ output_cols = [output_cols_prefix]
606
+ elif self._sklearn_object is not None:
607
+ classes = self._sklearn_object.classes_
608
+ if isinstance(classes, numpy.ndarray):
609
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
610
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
611
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
612
+ output_cols = []
613
+ for i, cl in enumerate(classes):
614
+ # For binary classification, there is only one output column for each class
615
+ # ndarray as the two classes are complementary.
616
+ if len(cl) == 2:
617
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
618
+ else:
619
+ output_cols.extend([
620
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
621
+ ])
622
+ else:
623
+ output_cols = []
624
+
625
+ # Make sure column names are valid snowflake identifiers.
626
+ assert output_cols is not None # Make MyPy happy
627
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
628
+
629
+ return rv
630
+
631
+ def _align_expected_output_names(
632
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
633
+ ) -> List[str]:
634
+ # in case the inferred output column names dimension is different
635
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
636
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
637
+ output_df_columns = list(output_df_pd.columns)
638
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
639
+ if self.sample_weight_col:
640
+ output_df_columns_set -= set(self.sample_weight_col)
641
+ # if the dimension of inferred output column names is correct; use it
642
+ if len(expected_output_cols_list) == len(output_df_columns_set):
643
+ return expected_output_cols_list
644
+ # otherwise, use the sklearn estimator's output
645
+ else:
646
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
579
647
 
580
648
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
581
649
  @telemetry.send_api_usage_telemetry(
@@ -607,24 +675,26 @@ class FastICA(BaseTransformer):
607
675
  # are specific to the type of dataset used.
608
676
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
609
677
 
678
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
679
+
610
680
  if isinstance(dataset, DataFrame):
611
- self._deps = self._batch_inference_validate_snowpark(
612
- dataset=dataset,
613
- inference_method=inference_method,
614
- )
615
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
681
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
682
+ self._deps = self._get_dependencies()
683
+ assert isinstance(
684
+ dataset._session, Session
685
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
616
686
  transform_kwargs = dict(
617
687
  session=dataset._session,
618
688
  dependencies=self._deps,
619
- drop_input_cols = self._drop_input_cols,
689
+ drop_input_cols=self._drop_input_cols,
620
690
  expected_output_cols_type="float",
621
691
  )
692
+ expected_output_cols = self._align_expected_output_names(
693
+ inference_method, dataset, expected_output_cols, output_cols_prefix
694
+ )
622
695
 
623
696
  elif isinstance(dataset, pd.DataFrame):
624
- transform_kwargs = dict(
625
- snowpark_input_cols = self._snowpark_cols,
626
- drop_input_cols = self._drop_input_cols
627
- )
697
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
628
698
 
629
699
  transform_handlers = ModelTransformerBuilder.build(
630
700
  dataset=dataset,
@@ -636,7 +706,7 @@ class FastICA(BaseTransformer):
636
706
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
637
707
  inference_method=inference_method,
638
708
  input_cols=self.input_cols,
639
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
709
+ expected_output_cols=expected_output_cols,
640
710
  **transform_kwargs
641
711
  )
642
712
  return output_df
@@ -666,29 +736,30 @@ class FastICA(BaseTransformer):
666
736
  Output dataset with log probability of the sample for each class in the model.
667
737
  """
668
738
  super()._check_dataset_type(dataset)
669
- inference_method="predict_log_proba"
739
+ inference_method = "predict_log_proba"
740
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
670
741
 
671
742
  # This dictionary contains optional kwargs for batch inference. These kwargs
672
743
  # are specific to the type of dataset used.
673
744
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
674
745
 
675
746
  if isinstance(dataset, DataFrame):
676
- self._deps = self._batch_inference_validate_snowpark(
677
- dataset=dataset,
678
- inference_method=inference_method,
679
- )
680
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
747
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
748
+ self._deps = self._get_dependencies()
749
+ assert isinstance(
750
+ dataset._session, Session
751
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
681
752
  transform_kwargs = dict(
682
753
  session=dataset._session,
683
754
  dependencies=self._deps,
684
- drop_input_cols = self._drop_input_cols,
755
+ drop_input_cols=self._drop_input_cols,
685
756
  expected_output_cols_type="float",
686
757
  )
758
+ expected_output_cols = self._align_expected_output_names(
759
+ inference_method, dataset, expected_output_cols, output_cols_prefix
760
+ )
687
761
  elif isinstance(dataset, pd.DataFrame):
688
- transform_kwargs = dict(
689
- snowpark_input_cols = self._snowpark_cols,
690
- drop_input_cols = self._drop_input_cols
691
- )
762
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
692
763
 
693
764
  transform_handlers = ModelTransformerBuilder.build(
694
765
  dataset=dataset,
@@ -701,7 +772,7 @@ class FastICA(BaseTransformer):
701
772
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
702
773
  inference_method=inference_method,
703
774
  input_cols=self.input_cols,
704
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
775
+ expected_output_cols=expected_output_cols,
705
776
  **transform_kwargs
706
777
  )
707
778
  return output_df
@@ -727,30 +798,32 @@ class FastICA(BaseTransformer):
727
798
  Output dataset with results of the decision function for the samples in input dataset.
728
799
  """
729
800
  super()._check_dataset_type(dataset)
730
- inference_method="decision_function"
801
+ inference_method = "decision_function"
731
802
 
732
803
  # This dictionary contains optional kwargs for batch inference. These kwargs
733
804
  # are specific to the type of dataset used.
734
805
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
735
806
 
807
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
808
+
736
809
  if isinstance(dataset, DataFrame):
737
- self._deps = self._batch_inference_validate_snowpark(
738
- dataset=dataset,
739
- inference_method=inference_method,
740
- )
741
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
810
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
811
+ self._deps = self._get_dependencies()
812
+ assert isinstance(
813
+ dataset._session, Session
814
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
742
815
  transform_kwargs = dict(
743
816
  session=dataset._session,
744
817
  dependencies=self._deps,
745
- drop_input_cols = self._drop_input_cols,
818
+ drop_input_cols=self._drop_input_cols,
746
819
  expected_output_cols_type="float",
747
820
  )
821
+ expected_output_cols = self._align_expected_output_names(
822
+ inference_method, dataset, expected_output_cols, output_cols_prefix
823
+ )
748
824
 
749
825
  elif isinstance(dataset, pd.DataFrame):
750
- transform_kwargs = dict(
751
- snowpark_input_cols = self._snowpark_cols,
752
- drop_input_cols = self._drop_input_cols
753
- )
826
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
754
827
 
755
828
  transform_handlers = ModelTransformerBuilder.build(
756
829
  dataset=dataset,
@@ -763,7 +836,7 @@ class FastICA(BaseTransformer):
763
836
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
764
837
  inference_method=inference_method,
765
838
  input_cols=self.input_cols,
766
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
839
+ expected_output_cols=expected_output_cols,
767
840
  **transform_kwargs
768
841
  )
769
842
  return output_df
@@ -792,17 +865,17 @@ class FastICA(BaseTransformer):
792
865
  Output dataset with probability of the sample for each class in the model.
793
866
  """
794
867
  super()._check_dataset_type(dataset)
795
- inference_method="score_samples"
868
+ inference_method = "score_samples"
796
869
 
797
870
  # This dictionary contains optional kwargs for batch inference. These kwargs
798
871
  # are specific to the type of dataset used.
799
872
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
800
873
 
874
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
875
+
801
876
  if isinstance(dataset, DataFrame):
802
- self._deps = self._batch_inference_validate_snowpark(
803
- dataset=dataset,
804
- inference_method=inference_method,
805
- )
877
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
878
+ self._deps = self._get_dependencies()
806
879
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
807
880
  transform_kwargs = dict(
808
881
  session=dataset._session,
@@ -810,6 +883,9 @@ class FastICA(BaseTransformer):
810
883
  drop_input_cols = self._drop_input_cols,
811
884
  expected_output_cols_type="float",
812
885
  )
886
+ expected_output_cols = self._align_expected_output_names(
887
+ inference_method, dataset, expected_output_cols, output_cols_prefix
888
+ )
813
889
 
814
890
  elif isinstance(dataset, pd.DataFrame):
815
891
  transform_kwargs = dict(
@@ -828,7 +904,7 @@ class FastICA(BaseTransformer):
828
904
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
829
905
  inference_method=inference_method,
830
906
  input_cols=self.input_cols,
831
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
907
+ expected_output_cols=expected_output_cols,
832
908
  **transform_kwargs
833
909
  )
834
910
  return output_df
@@ -861,17 +937,15 @@ class FastICA(BaseTransformer):
861
937
  transform_kwargs: ScoreKwargsTypedDict = dict()
862
938
 
863
939
  if isinstance(dataset, DataFrame):
864
- self._deps = self._batch_inference_validate_snowpark(
865
- dataset=dataset,
866
- inference_method="score",
867
- )
940
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
941
+ self._deps = self._get_dependencies()
868
942
  selected_cols = self._get_active_columns()
869
943
  if len(selected_cols) > 0:
870
944
  dataset = dataset.select(selected_cols)
871
945
  assert isinstance(dataset._session, Session) # keep mypy happy
872
946
  transform_kwargs = dict(
873
947
  session=dataset._session,
874
- dependencies=["snowflake-snowpark-python"] + self._deps,
948
+ dependencies=self._deps,
875
949
  score_sproc_imports=['sklearn'],
876
950
  )
877
951
  elif isinstance(dataset, pd.DataFrame):
@@ -936,11 +1010,8 @@ class FastICA(BaseTransformer):
936
1010
 
937
1011
  if isinstance(dataset, DataFrame):
938
1012
 
939
- self._deps = self._batch_inference_validate_snowpark(
940
- dataset=dataset,
941
- inference_method=inference_method,
942
-
943
- )
1013
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1014
+ self._deps = self._get_dependencies()
944
1015
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
945
1016
  transform_kwargs = dict(
946
1017
  session = dataset._session,
@@ -973,50 +1044,84 @@ class FastICA(BaseTransformer):
973
1044
  )
974
1045
  return output_df
975
1046
 
1047
+
1048
+
1049
+ def to_sklearn(self) -> Any:
1050
+ """Get sklearn.decomposition.FastICA object.
1051
+ """
1052
+ if self._sklearn_object is None:
1053
+ self._sklearn_object = self._create_sklearn_object()
1054
+ return self._sklearn_object
1055
+
1056
+ def to_xgboost(self) -> Any:
1057
+ raise exceptions.SnowflakeMLException(
1058
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1059
+ original_exception=AttributeError(
1060
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
+ "to_xgboost()",
1062
+ "to_sklearn()"
1063
+ )
1064
+ ),
1065
+ )
976
1066
 
977
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1067
+ def to_lightgbm(self) -> Any:
1068
+ raise exceptions.SnowflakeMLException(
1069
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1070
+ original_exception=AttributeError(
1071
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1072
+ "to_lightgbm()",
1073
+ "to_sklearn()"
1074
+ )
1075
+ ),
1076
+ )
1077
+
1078
+ def _get_dependencies(self) -> List[str]:
1079
+ return self._deps
1080
+
1081
+
1082
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
978
1083
  self._model_signature_dict = dict()
979
1084
 
980
1085
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
981
1086
 
982
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1087
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
983
1088
  outputs: List[BaseFeatureSpec] = []
984
1089
  if hasattr(self, "predict"):
985
1090
  # keep mypy happy
986
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1091
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
987
1092
  # For classifier, the type of predict is the same as the type of label
988
- if self._sklearn_object._estimator_type == 'classifier':
989
- # label columns is the desired type for output
1093
+ if self._sklearn_object._estimator_type == "classifier":
1094
+ # label columns is the desired type for output
990
1095
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
991
1096
  # rename the output columns
992
1097
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
993
- self._model_signature_dict["predict"] = ModelSignature(inputs,
994
- ([] if self._drop_input_cols else inputs)
995
- + outputs)
1098
+ self._model_signature_dict["predict"] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
996
1101
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
997
1102
  # For outlier models, returns -1 for outliers and 1 for inliers.
998
- # Clusterer returns int64 cluster labels.
1103
+ # Clusterer returns int64 cluster labels.
999
1104
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1000
1105
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1001
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1002
- ([] if self._drop_input_cols else inputs)
1003
- + outputs)
1004
-
1106
+ self._model_signature_dict["predict"] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1109
+
1005
1110
  # For regressor, the type of predict is float64
1006
- elif self._sklearn_object._estimator_type == 'regressor':
1111
+ elif self._sklearn_object._estimator_type == "regressor":
1007
1112
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1008
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1011
-
1113
+ self._model_signature_dict["predict"] = ModelSignature(
1114
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1115
+ )
1116
+
1012
1117
  for prob_func in PROB_FUNCTIONS:
1013
1118
  if hasattr(self, prob_func):
1014
1119
  output_cols_prefix: str = f"{prob_func}_"
1015
1120
  output_column_names = self._get_output_column_names(output_cols_prefix)
1016
1121
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1017
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1018
- ([] if self._drop_input_cols else inputs)
1019
- + outputs)
1122
+ self._model_signature_dict[prob_func] = ModelSignature(
1123
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1124
+ )
1020
1125
 
1021
1126
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1022
1127
  items = list(self._model_signature_dict.items())
@@ -1029,10 +1134,10 @@ class FastICA(BaseTransformer):
1029
1134
  """Returns model signature of current class.
1030
1135
 
1031
1136
  Raises:
1032
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1137
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1033
1138
 
1034
1139
  Returns:
1035
- Dict[str, ModelSignature]: each method and its input output signature
1140
+ Dict with each method and its input output signature
1036
1141
  """
1037
1142
  if self._model_signature_dict is None:
1038
1143
  raise exceptions.SnowflakeMLException(
@@ -1040,35 +1145,3 @@ class FastICA(BaseTransformer):
1040
1145
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1041
1146
  )
1042
1147
  return self._model_signature_dict
1043
-
1044
- def to_sklearn(self) -> Any:
1045
- """Get sklearn.decomposition.FastICA object.
1046
- """
1047
- if self._sklearn_object is None:
1048
- self._sklearn_object = self._create_sklearn_object()
1049
- return self._sklearn_object
1050
-
1051
- def to_xgboost(self) -> Any:
1052
- raise exceptions.SnowflakeMLException(
1053
- error_code=error_codes.METHOD_NOT_ALLOWED,
1054
- original_exception=AttributeError(
1055
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1056
- "to_xgboost()",
1057
- "to_sklearn()"
1058
- )
1059
- ),
1060
- )
1061
-
1062
- def to_lightgbm(self) -> Any:
1063
- raise exceptions.SnowflakeMLException(
1064
- error_code=error_codes.METHOD_NOT_ALLOWED,
1065
- original_exception=AttributeError(
1066
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1067
- "to_lightgbm()",
1068
- "to_sklearn()"
1069
- )
1070
- ),
1071
- )
1072
-
1073
- def _get_dependencies(self) -> List[str]:
1074
- return self._deps