snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class FactorAnalysis(BaseTransformer):
71
64
  r"""Factor Analysis (FA)
72
65
  For more details on this class, see [sklearn.decomposition.FactorAnalysis]
@@ -251,12 +244,7 @@ class FactorAnalysis(BaseTransformer):
251
244
  )
252
245
  return selected_cols
253
246
 
254
- @telemetry.send_api_usage_telemetry(
255
- project=_PROJECT,
256
- subproject=_SUBPROJECT,
257
- custom_tags=dict([("autogen", True)]),
258
- )
259
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "FactorAnalysis":
247
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "FactorAnalysis":
260
248
  """Fit the FactorAnalysis model to X using SVD based approach
261
249
  For more details on this function, see [sklearn.decomposition.FactorAnalysis.fit]
262
250
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html#sklearn.decomposition.FactorAnalysis.fit)
@@ -283,12 +271,14 @@ class FactorAnalysis(BaseTransformer):
283
271
 
284
272
  self._snowpark_cols = dataset.select(self.input_cols).columns
285
273
 
286
- # If we are already in a stored procedure, no need to kick off another one.
274
+ # If we are already in a stored procedure, no need to kick off another one.
287
275
  if SNOWML_SPROC_ENV in os.environ:
288
276
  statement_params = telemetry.get_function_usage_statement_params(
289
277
  project=_PROJECT,
290
278
  subproject=_SUBPROJECT,
291
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), FactorAnalysis.__class__.__name__),
279
+ function_name=telemetry.get_statement_params_full_func_name(
280
+ inspect.currentframe(), FactorAnalysis.__class__.__name__
281
+ ),
292
282
  api_calls=[Session.call],
293
283
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
294
284
  )
@@ -309,27 +299,24 @@ class FactorAnalysis(BaseTransformer):
309
299
  )
310
300
  self._sklearn_object = model_trainer.train()
311
301
  self._is_fitted = True
312
- self._get_model_signatures(dataset)
302
+ self._generate_model_signatures(dataset)
313
303
  return self
314
304
 
315
305
  def _batch_inference_validate_snowpark(
316
306
  self,
317
307
  dataset: DataFrame,
318
308
  inference_method: str,
319
- ) -> List[str]:
320
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
321
- return the available package that exists in the snowflake anaconda channel
309
+ ) -> None:
310
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
322
311
 
323
312
  Args:
324
313
  dataset: snowpark dataframe
325
314
  inference_method: the inference method such as predict, score...
326
-
315
+
327
316
  Raises:
328
317
  SnowflakeMLException: If the estimator is not fitted, raise error
329
318
  SnowflakeMLException: If the session is None, raise error
330
319
 
331
- Returns:
332
- A list of available package that exists in the snowflake anaconda channel
333
320
  """
334
321
  if not self._is_fitted:
335
322
  raise exceptions.SnowflakeMLException(
@@ -347,9 +334,7 @@ class FactorAnalysis(BaseTransformer):
347
334
  "Session must not specified for snowpark dataset."
348
335
  ),
349
336
  )
350
- # Validate that key package version in user workspace are supported in snowflake conda channel
351
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
352
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
337
+
353
338
 
354
339
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
355
340
  @telemetry.send_api_usage_telemetry(
@@ -383,7 +368,9 @@ class FactorAnalysis(BaseTransformer):
383
368
  # when it is classifier, infer the datatype from label columns
384
369
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
385
370
  # Batch inference takes a single expected output column type. Use the first columns type for now.
386
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
371
+ label_cols_signatures = [
372
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
373
+ ]
387
374
  if len(label_cols_signatures) == 0:
388
375
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
389
376
  raise exceptions.SnowflakeMLException(
@@ -391,25 +378,23 @@ class FactorAnalysis(BaseTransformer):
391
378
  original_exception=ValueError(error_str),
392
379
  )
393
380
 
394
- expected_type_inferred = convert_sp_to_sf_type(
395
- label_cols_signatures[0].as_snowpark_type()
396
- )
381
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
397
382
 
398
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
399
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
383
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
384
+ self._deps = self._get_dependencies()
385
+ assert isinstance(
386
+ dataset._session, Session
387
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
400
388
 
401
389
  transform_kwargs = dict(
402
- session = dataset._session,
403
- dependencies = self._deps,
404
- drop_input_cols = self._drop_input_cols,
405
- expected_output_cols_type = expected_type_inferred,
390
+ session=dataset._session,
391
+ dependencies=self._deps,
392
+ drop_input_cols=self._drop_input_cols,
393
+ expected_output_cols_type=expected_type_inferred,
406
394
  )
407
395
 
408
396
  elif isinstance(dataset, pd.DataFrame):
409
- transform_kwargs = dict(
410
- snowpark_input_cols = self._snowpark_cols,
411
- drop_input_cols = self._drop_input_cols
412
- )
397
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
413
398
 
414
399
  transform_handlers = ModelTransformerBuilder.build(
415
400
  dataset=dataset,
@@ -451,7 +436,7 @@ class FactorAnalysis(BaseTransformer):
451
436
  Transformed dataset.
452
437
  """
453
438
  super()._check_dataset_type(dataset)
454
- inference_method="transform"
439
+ inference_method = "transform"
455
440
 
456
441
  # This dictionary contains optional kwargs for batch inference. These kwargs
457
442
  # are specific to the type of dataset used.
@@ -481,24 +466,19 @@ class FactorAnalysis(BaseTransformer):
481
466
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
482
467
  expected_dtype = convert_sp_to_sf_type(output_types[0])
483
468
 
484
- self._deps = self._batch_inference_validate_snowpark(
485
- dataset=dataset,
486
- inference_method=inference_method,
487
- )
469
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
470
+ self._deps = self._get_dependencies()
488
471
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
489
472
 
490
473
  transform_kwargs = dict(
491
- session = dataset._session,
492
- dependencies = self._deps,
493
- drop_input_cols = self._drop_input_cols,
494
- expected_output_cols_type = expected_dtype,
474
+ session=dataset._session,
475
+ dependencies=self._deps,
476
+ drop_input_cols=self._drop_input_cols,
477
+ expected_output_cols_type=expected_dtype,
495
478
  )
496
479
 
497
480
  elif isinstance(dataset, pd.DataFrame):
498
- transform_kwargs = dict(
499
- snowpark_input_cols = self._snowpark_cols,
500
- drop_input_cols = self._drop_input_cols
501
- )
481
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
502
482
 
503
483
  transform_handlers = ModelTransformerBuilder.build(
504
484
  dataset=dataset,
@@ -517,7 +497,11 @@ class FactorAnalysis(BaseTransformer):
517
497
  return output_df
518
498
 
519
499
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
520
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
500
+ def fit_predict(
501
+ self,
502
+ dataset: Union[DataFrame, pd.DataFrame],
503
+ output_cols_prefix: str = "fit_predict_",
504
+ ) -> Union[DataFrame, pd.DataFrame]:
521
505
  """ Method not supported for this class.
522
506
 
523
507
 
@@ -542,22 +526,106 @@ class FactorAnalysis(BaseTransformer):
542
526
  )
543
527
  output_result, fitted_estimator = model_trainer.train_fit_predict(
544
528
  drop_input_cols=self._drop_input_cols,
545
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
529
+ expected_output_cols_list=(
530
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
531
+ ),
546
532
  )
547
533
  self._sklearn_object = fitted_estimator
548
534
  self._is_fitted = True
549
535
  return output_result
550
536
 
537
+
538
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
539
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
540
+ """ Fit to data, then transform it
541
+ For more details on this function, see [sklearn.decomposition.FactorAnalysis.fit_transform]
542
+ (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FactorAnalysis.html#sklearn.decomposition.FactorAnalysis.fit_transform)
543
+
544
+
545
+ Raises:
546
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
551
547
 
552
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
553
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
554
- """
548
+ Args:
549
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
550
+ Snowpark or Pandas DataFrame.
551
+ output_cols_prefix: Prefix for the response columns
555
552
  Returns:
556
553
  Transformed dataset.
557
554
  """
558
- self.fit(dataset)
559
- assert self._sklearn_object is not None
560
- return self._sklearn_object.embedding_
555
+ self._infer_input_output_cols(dataset)
556
+ super()._check_dataset_type(dataset)
557
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
558
+ estimator=self._sklearn_object,
559
+ dataset=dataset,
560
+ input_cols=self.input_cols,
561
+ label_cols=self.label_cols,
562
+ sample_weight_col=self.sample_weight_col,
563
+ autogenerated=self._autogenerated,
564
+ subproject=_SUBPROJECT,
565
+ )
566
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
567
+ drop_input_cols=self._drop_input_cols,
568
+ expected_output_cols_list=self.output_cols,
569
+ )
570
+ self._sklearn_object = fitted_estimator
571
+ self._is_fitted = True
572
+ return output_result
573
+
574
+
575
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
576
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
577
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
578
+ """
579
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
580
+ # The following condition is introduced for kneighbors methods, and not used in other methods
581
+ if output_cols:
582
+ output_cols = [
583
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
584
+ for c in output_cols
585
+ ]
586
+ elif getattr(self._sklearn_object, "classes_", None) is None:
587
+ output_cols = [output_cols_prefix]
588
+ elif self._sklearn_object is not None:
589
+ classes = self._sklearn_object.classes_
590
+ if isinstance(classes, numpy.ndarray):
591
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
592
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
593
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
594
+ output_cols = []
595
+ for i, cl in enumerate(classes):
596
+ # For binary classification, there is only one output column for each class
597
+ # ndarray as the two classes are complementary.
598
+ if len(cl) == 2:
599
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
600
+ else:
601
+ output_cols.extend([
602
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
603
+ ])
604
+ else:
605
+ output_cols = []
606
+
607
+ # Make sure column names are valid snowflake identifiers.
608
+ assert output_cols is not None # Make MyPy happy
609
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
610
+
611
+ return rv
612
+
613
+ def _align_expected_output_names(
614
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
615
+ ) -> List[str]:
616
+ # in case the inferred output column names dimension is different
617
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
618
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
619
+ output_df_columns = list(output_df_pd.columns)
620
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
621
+ if self.sample_weight_col:
622
+ output_df_columns_set -= set(self.sample_weight_col)
623
+ # if the dimension of inferred output column names is correct; use it
624
+ if len(expected_output_cols_list) == len(output_df_columns_set):
625
+ return expected_output_cols_list
626
+ # otherwise, use the sklearn estimator's output
627
+ else:
628
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
561
629
 
562
630
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
563
631
  @telemetry.send_api_usage_telemetry(
@@ -589,24 +657,26 @@ class FactorAnalysis(BaseTransformer):
589
657
  # are specific to the type of dataset used.
590
658
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
591
659
 
660
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
661
+
592
662
  if isinstance(dataset, DataFrame):
593
- self._deps = self._batch_inference_validate_snowpark(
594
- dataset=dataset,
595
- inference_method=inference_method,
596
- )
597
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
663
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
664
+ self._deps = self._get_dependencies()
665
+ assert isinstance(
666
+ dataset._session, Session
667
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
598
668
  transform_kwargs = dict(
599
669
  session=dataset._session,
600
670
  dependencies=self._deps,
601
- drop_input_cols = self._drop_input_cols,
671
+ drop_input_cols=self._drop_input_cols,
602
672
  expected_output_cols_type="float",
603
673
  )
674
+ expected_output_cols = self._align_expected_output_names(
675
+ inference_method, dataset, expected_output_cols, output_cols_prefix
676
+ )
604
677
 
605
678
  elif isinstance(dataset, pd.DataFrame):
606
- transform_kwargs = dict(
607
- snowpark_input_cols = self._snowpark_cols,
608
- drop_input_cols = self._drop_input_cols
609
- )
679
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
610
680
 
611
681
  transform_handlers = ModelTransformerBuilder.build(
612
682
  dataset=dataset,
@@ -618,7 +688,7 @@ class FactorAnalysis(BaseTransformer):
618
688
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
619
689
  inference_method=inference_method,
620
690
  input_cols=self.input_cols,
621
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
691
+ expected_output_cols=expected_output_cols,
622
692
  **transform_kwargs
623
693
  )
624
694
  return output_df
@@ -648,29 +718,30 @@ class FactorAnalysis(BaseTransformer):
648
718
  Output dataset with log probability of the sample for each class in the model.
649
719
  """
650
720
  super()._check_dataset_type(dataset)
651
- inference_method="predict_log_proba"
721
+ inference_method = "predict_log_proba"
722
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
652
723
 
653
724
  # This dictionary contains optional kwargs for batch inference. These kwargs
654
725
  # are specific to the type of dataset used.
655
726
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
656
727
 
657
728
  if isinstance(dataset, DataFrame):
658
- self._deps = self._batch_inference_validate_snowpark(
659
- dataset=dataset,
660
- inference_method=inference_method,
661
- )
662
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
729
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
730
+ self._deps = self._get_dependencies()
731
+ assert isinstance(
732
+ dataset._session, Session
733
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
663
734
  transform_kwargs = dict(
664
735
  session=dataset._session,
665
736
  dependencies=self._deps,
666
- drop_input_cols = self._drop_input_cols,
737
+ drop_input_cols=self._drop_input_cols,
667
738
  expected_output_cols_type="float",
668
739
  )
740
+ expected_output_cols = self._align_expected_output_names(
741
+ inference_method, dataset, expected_output_cols, output_cols_prefix
742
+ )
669
743
  elif isinstance(dataset, pd.DataFrame):
670
- transform_kwargs = dict(
671
- snowpark_input_cols = self._snowpark_cols,
672
- drop_input_cols = self._drop_input_cols
673
- )
744
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
674
745
 
675
746
  transform_handlers = ModelTransformerBuilder.build(
676
747
  dataset=dataset,
@@ -683,7 +754,7 @@ class FactorAnalysis(BaseTransformer):
683
754
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
684
755
  inference_method=inference_method,
685
756
  input_cols=self.input_cols,
686
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
757
+ expected_output_cols=expected_output_cols,
687
758
  **transform_kwargs
688
759
  )
689
760
  return output_df
@@ -709,30 +780,32 @@ class FactorAnalysis(BaseTransformer):
709
780
  Output dataset with results of the decision function for the samples in input dataset.
710
781
  """
711
782
  super()._check_dataset_type(dataset)
712
- inference_method="decision_function"
783
+ inference_method = "decision_function"
713
784
 
714
785
  # This dictionary contains optional kwargs for batch inference. These kwargs
715
786
  # are specific to the type of dataset used.
716
787
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
717
788
 
789
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
790
+
718
791
  if isinstance(dataset, DataFrame):
719
- self._deps = self._batch_inference_validate_snowpark(
720
- dataset=dataset,
721
- inference_method=inference_method,
722
- )
723
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
792
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
793
+ self._deps = self._get_dependencies()
794
+ assert isinstance(
795
+ dataset._session, Session
796
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
724
797
  transform_kwargs = dict(
725
798
  session=dataset._session,
726
799
  dependencies=self._deps,
727
- drop_input_cols = self._drop_input_cols,
800
+ drop_input_cols=self._drop_input_cols,
728
801
  expected_output_cols_type="float",
729
802
  )
803
+ expected_output_cols = self._align_expected_output_names(
804
+ inference_method, dataset, expected_output_cols, output_cols_prefix
805
+ )
730
806
 
731
807
  elif isinstance(dataset, pd.DataFrame):
732
- transform_kwargs = dict(
733
- snowpark_input_cols = self._snowpark_cols,
734
- drop_input_cols = self._drop_input_cols
735
- )
808
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
736
809
 
737
810
  transform_handlers = ModelTransformerBuilder.build(
738
811
  dataset=dataset,
@@ -745,7 +818,7 @@ class FactorAnalysis(BaseTransformer):
745
818
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
746
819
  inference_method=inference_method,
747
820
  input_cols=self.input_cols,
748
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
821
+ expected_output_cols=expected_output_cols,
749
822
  **transform_kwargs
750
823
  )
751
824
  return output_df
@@ -776,17 +849,17 @@ class FactorAnalysis(BaseTransformer):
776
849
  Output dataset with probability of the sample for each class in the model.
777
850
  """
778
851
  super()._check_dataset_type(dataset)
779
- inference_method="score_samples"
852
+ inference_method = "score_samples"
780
853
 
781
854
  # This dictionary contains optional kwargs for batch inference. These kwargs
782
855
  # are specific to the type of dataset used.
783
856
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
784
857
 
858
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
859
+
785
860
  if isinstance(dataset, DataFrame):
786
- self._deps = self._batch_inference_validate_snowpark(
787
- dataset=dataset,
788
- inference_method=inference_method,
789
- )
861
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
862
+ self._deps = self._get_dependencies()
790
863
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
791
864
  transform_kwargs = dict(
792
865
  session=dataset._session,
@@ -794,6 +867,9 @@ class FactorAnalysis(BaseTransformer):
794
867
  drop_input_cols = self._drop_input_cols,
795
868
  expected_output_cols_type="float",
796
869
  )
870
+ expected_output_cols = self._align_expected_output_names(
871
+ inference_method, dataset, expected_output_cols, output_cols_prefix
872
+ )
797
873
 
798
874
  elif isinstance(dataset, pd.DataFrame):
799
875
  transform_kwargs = dict(
@@ -812,7 +888,7 @@ class FactorAnalysis(BaseTransformer):
812
888
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
813
889
  inference_method=inference_method,
814
890
  input_cols=self.input_cols,
815
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
891
+ expected_output_cols=expected_output_cols,
816
892
  **transform_kwargs
817
893
  )
818
894
  return output_df
@@ -847,17 +923,15 @@ class FactorAnalysis(BaseTransformer):
847
923
  transform_kwargs: ScoreKwargsTypedDict = dict()
848
924
 
849
925
  if isinstance(dataset, DataFrame):
850
- self._deps = self._batch_inference_validate_snowpark(
851
- dataset=dataset,
852
- inference_method="score",
853
- )
926
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
927
+ self._deps = self._get_dependencies()
854
928
  selected_cols = self._get_active_columns()
855
929
  if len(selected_cols) > 0:
856
930
  dataset = dataset.select(selected_cols)
857
931
  assert isinstance(dataset._session, Session) # keep mypy happy
858
932
  transform_kwargs = dict(
859
933
  session=dataset._session,
860
- dependencies=["snowflake-snowpark-python"] + self._deps,
934
+ dependencies=self._deps,
861
935
  score_sproc_imports=['sklearn'],
862
936
  )
863
937
  elif isinstance(dataset, pd.DataFrame):
@@ -922,11 +996,8 @@ class FactorAnalysis(BaseTransformer):
922
996
 
923
997
  if isinstance(dataset, DataFrame):
924
998
 
925
- self._deps = self._batch_inference_validate_snowpark(
926
- dataset=dataset,
927
- inference_method=inference_method,
928
-
929
- )
999
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1000
+ self._deps = self._get_dependencies()
930
1001
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
931
1002
  transform_kwargs = dict(
932
1003
  session = dataset._session,
@@ -959,50 +1030,84 @@ class FactorAnalysis(BaseTransformer):
959
1030
  )
960
1031
  return output_df
961
1032
 
1033
+
1034
+
1035
+ def to_sklearn(self) -> Any:
1036
+ """Get sklearn.decomposition.FactorAnalysis object.
1037
+ """
1038
+ if self._sklearn_object is None:
1039
+ self._sklearn_object = self._create_sklearn_object()
1040
+ return self._sklearn_object
1041
+
1042
+ def to_xgboost(self) -> Any:
1043
+ raise exceptions.SnowflakeMLException(
1044
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1045
+ original_exception=AttributeError(
1046
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1047
+ "to_xgboost()",
1048
+ "to_sklearn()"
1049
+ )
1050
+ ),
1051
+ )
962
1052
 
963
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1053
+ def to_lightgbm(self) -> Any:
1054
+ raise exceptions.SnowflakeMLException(
1055
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1056
+ original_exception=AttributeError(
1057
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1058
+ "to_lightgbm()",
1059
+ "to_sklearn()"
1060
+ )
1061
+ ),
1062
+ )
1063
+
1064
+ def _get_dependencies(self) -> List[str]:
1065
+ return self._deps
1066
+
1067
+
1068
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
964
1069
  self._model_signature_dict = dict()
965
1070
 
966
1071
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
967
1072
 
968
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1073
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
969
1074
  outputs: List[BaseFeatureSpec] = []
970
1075
  if hasattr(self, "predict"):
971
1076
  # keep mypy happy
972
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1077
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
973
1078
  # For classifier, the type of predict is the same as the type of label
974
- if self._sklearn_object._estimator_type == 'classifier':
975
- # label columns is the desired type for output
1079
+ if self._sklearn_object._estimator_type == "classifier":
1080
+ # label columns is the desired type for output
976
1081
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
977
1082
  # rename the output columns
978
1083
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
979
- self._model_signature_dict["predict"] = ModelSignature(inputs,
980
- ([] if self._drop_input_cols else inputs)
981
- + outputs)
1084
+ self._model_signature_dict["predict"] = ModelSignature(
1085
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1086
+ )
982
1087
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
983
1088
  # For outlier models, returns -1 for outliers and 1 for inliers.
984
- # Clusterer returns int64 cluster labels.
1089
+ # Clusterer returns int64 cluster labels.
985
1090
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
986
1091
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
987
- self._model_signature_dict["predict"] = ModelSignature(inputs,
988
- ([] if self._drop_input_cols else inputs)
989
- + outputs)
990
-
1092
+ self._model_signature_dict["predict"] = ModelSignature(
1093
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1094
+ )
1095
+
991
1096
  # For regressor, the type of predict is float64
992
- elif self._sklearn_object._estimator_type == 'regressor':
1097
+ elif self._sklearn_object._estimator_type == "regressor":
993
1098
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
997
-
1099
+ self._model_signature_dict["predict"] = ModelSignature(
1100
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1101
+ )
1102
+
998
1103
  for prob_func in PROB_FUNCTIONS:
999
1104
  if hasattr(self, prob_func):
1000
1105
  output_cols_prefix: str = f"{prob_func}_"
1001
1106
  output_column_names = self._get_output_column_names(output_cols_prefix)
1002
1107
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1003
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1004
- ([] if self._drop_input_cols else inputs)
1005
- + outputs)
1108
+ self._model_signature_dict[prob_func] = ModelSignature(
1109
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1110
+ )
1006
1111
 
1007
1112
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1008
1113
  items = list(self._model_signature_dict.items())
@@ -1015,10 +1120,10 @@ class FactorAnalysis(BaseTransformer):
1015
1120
  """Returns model signature of current class.
1016
1121
 
1017
1122
  Raises:
1018
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1123
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1019
1124
 
1020
1125
  Returns:
1021
- Dict[str, ModelSignature]: each method and its input output signature
1126
+ Dict with each method and its input output signature
1022
1127
  """
1023
1128
  if self._model_signature_dict is None:
1024
1129
  raise exceptions.SnowflakeMLException(
@@ -1026,35 +1131,3 @@ class FactorAnalysis(BaseTransformer):
1026
1131
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1027
1132
  )
1028
1133
  return self._model_signature_dict
1029
-
1030
- def to_sklearn(self) -> Any:
1031
- """Get sklearn.decomposition.FactorAnalysis object.
1032
- """
1033
- if self._sklearn_object is None:
1034
- self._sklearn_object = self._create_sklearn_object()
1035
- return self._sklearn_object
1036
-
1037
- def to_xgboost(self) -> Any:
1038
- raise exceptions.SnowflakeMLException(
1039
- error_code=error_codes.METHOD_NOT_ALLOWED,
1040
- original_exception=AttributeError(
1041
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
- "to_xgboost()",
1043
- "to_sklearn()"
1044
- )
1045
- ),
1046
- )
1047
-
1048
- def to_lightgbm(self) -> Any:
1049
- raise exceptions.SnowflakeMLException(
1050
- error_code=error_codes.METHOD_NOT_ALLOWED,
1051
- original_exception=AttributeError(
1052
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
- "to_lightgbm()",
1054
- "to_sklearn()"
1055
- )
1056
- ),
1057
- )
1058
-
1059
- def _get_dependencies(self) -> List[str]:
1060
- return self._deps