snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class RANSACRegressor(BaseTransformer):
71
64
  r"""RANSAC (RANdom SAmple Consensus) algorithm
72
65
  For more details on this class, see [sklearn.linear_model.RANSACRegressor]
@@ -305,12 +298,7 @@ class RANSACRegressor(BaseTransformer):
305
298
  )
306
299
  return selected_cols
307
300
 
308
- @telemetry.send_api_usage_telemetry(
309
- project=_PROJECT,
310
- subproject=_SUBPROJECT,
311
- custom_tags=dict([("autogen", True)]),
312
- )
313
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RANSACRegressor":
301
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RANSACRegressor":
314
302
  """Fit estimator using RANSAC algorithm
315
303
  For more details on this function, see [sklearn.linear_model.RANSACRegressor.fit]
316
304
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html#sklearn.linear_model.RANSACRegressor.fit)
@@ -337,12 +325,14 @@ class RANSACRegressor(BaseTransformer):
337
325
 
338
326
  self._snowpark_cols = dataset.select(self.input_cols).columns
339
327
 
340
- # If we are already in a stored procedure, no need to kick off another one.
328
+ # If we are already in a stored procedure, no need to kick off another one.
341
329
  if SNOWML_SPROC_ENV in os.environ:
342
330
  statement_params = telemetry.get_function_usage_statement_params(
343
331
  project=_PROJECT,
344
332
  subproject=_SUBPROJECT,
345
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RANSACRegressor.__class__.__name__),
333
+ function_name=telemetry.get_statement_params_full_func_name(
334
+ inspect.currentframe(), RANSACRegressor.__class__.__name__
335
+ ),
346
336
  api_calls=[Session.call],
347
337
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
348
338
  )
@@ -363,27 +353,24 @@ class RANSACRegressor(BaseTransformer):
363
353
  )
364
354
  self._sklearn_object = model_trainer.train()
365
355
  self._is_fitted = True
366
- self._get_model_signatures(dataset)
356
+ self._generate_model_signatures(dataset)
367
357
  return self
368
358
 
369
359
  def _batch_inference_validate_snowpark(
370
360
  self,
371
361
  dataset: DataFrame,
372
362
  inference_method: str,
373
- ) -> List[str]:
374
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
375
- return the available package that exists in the snowflake anaconda channel
363
+ ) -> None:
364
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
376
365
 
377
366
  Args:
378
367
  dataset: snowpark dataframe
379
368
  inference_method: the inference method such as predict, score...
380
-
369
+
381
370
  Raises:
382
371
  SnowflakeMLException: If the estimator is not fitted, raise error
383
372
  SnowflakeMLException: If the session is None, raise error
384
373
 
385
- Returns:
386
- A list of available package that exists in the snowflake anaconda channel
387
374
  """
388
375
  if not self._is_fitted:
389
376
  raise exceptions.SnowflakeMLException(
@@ -401,9 +388,7 @@ class RANSACRegressor(BaseTransformer):
401
388
  "Session must not specified for snowpark dataset."
402
389
  ),
403
390
  )
404
- # Validate that key package version in user workspace are supported in snowflake conda channel
405
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
406
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
391
+
407
392
 
408
393
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
409
394
  @telemetry.send_api_usage_telemetry(
@@ -439,7 +424,9 @@ class RANSACRegressor(BaseTransformer):
439
424
  # when it is classifier, infer the datatype from label columns
440
425
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
441
426
  # Batch inference takes a single expected output column type. Use the first columns type for now.
442
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
427
+ label_cols_signatures = [
428
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
429
+ ]
443
430
  if len(label_cols_signatures) == 0:
444
431
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
445
432
  raise exceptions.SnowflakeMLException(
@@ -447,25 +434,23 @@ class RANSACRegressor(BaseTransformer):
447
434
  original_exception=ValueError(error_str),
448
435
  )
449
436
 
450
- expected_type_inferred = convert_sp_to_sf_type(
451
- label_cols_signatures[0].as_snowpark_type()
452
- )
437
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
453
438
 
454
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
455
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
439
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
440
+ self._deps = self._get_dependencies()
441
+ assert isinstance(
442
+ dataset._session, Session
443
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
456
444
 
457
445
  transform_kwargs = dict(
458
- session = dataset._session,
459
- dependencies = self._deps,
460
- drop_input_cols = self._drop_input_cols,
461
- expected_output_cols_type = expected_type_inferred,
446
+ session=dataset._session,
447
+ dependencies=self._deps,
448
+ drop_input_cols=self._drop_input_cols,
449
+ expected_output_cols_type=expected_type_inferred,
462
450
  )
463
451
 
464
452
  elif isinstance(dataset, pd.DataFrame):
465
- transform_kwargs = dict(
466
- snowpark_input_cols = self._snowpark_cols,
467
- drop_input_cols = self._drop_input_cols
468
- )
453
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
469
454
 
470
455
  transform_handlers = ModelTransformerBuilder.build(
471
456
  dataset=dataset,
@@ -505,7 +490,7 @@ class RANSACRegressor(BaseTransformer):
505
490
  Transformed dataset.
506
491
  """
507
492
  super()._check_dataset_type(dataset)
508
- inference_method="transform"
493
+ inference_method = "transform"
509
494
 
510
495
  # This dictionary contains optional kwargs for batch inference. These kwargs
511
496
  # are specific to the type of dataset used.
@@ -535,24 +520,19 @@ class RANSACRegressor(BaseTransformer):
535
520
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
536
521
  expected_dtype = convert_sp_to_sf_type(output_types[0])
537
522
 
538
- self._deps = self._batch_inference_validate_snowpark(
539
- dataset=dataset,
540
- inference_method=inference_method,
541
- )
523
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
524
+ self._deps = self._get_dependencies()
542
525
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
543
526
 
544
527
  transform_kwargs = dict(
545
- session = dataset._session,
546
- dependencies = self._deps,
547
- drop_input_cols = self._drop_input_cols,
548
- expected_output_cols_type = expected_dtype,
528
+ session=dataset._session,
529
+ dependencies=self._deps,
530
+ drop_input_cols=self._drop_input_cols,
531
+ expected_output_cols_type=expected_dtype,
549
532
  )
550
533
 
551
534
  elif isinstance(dataset, pd.DataFrame):
552
- transform_kwargs = dict(
553
- snowpark_input_cols = self._snowpark_cols,
554
- drop_input_cols = self._drop_input_cols
555
- )
535
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
556
536
 
557
537
  transform_handlers = ModelTransformerBuilder.build(
558
538
  dataset=dataset,
@@ -571,7 +551,11 @@ class RANSACRegressor(BaseTransformer):
571
551
  return output_df
572
552
 
573
553
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
574
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
554
+ def fit_predict(
555
+ self,
556
+ dataset: Union[DataFrame, pd.DataFrame],
557
+ output_cols_prefix: str = "fit_predict_",
558
+ ) -> Union[DataFrame, pd.DataFrame]:
575
559
  """ Method not supported for this class.
576
560
 
577
561
 
@@ -596,22 +580,104 @@ class RANSACRegressor(BaseTransformer):
596
580
  )
597
581
  output_result, fitted_estimator = model_trainer.train_fit_predict(
598
582
  drop_input_cols=self._drop_input_cols,
599
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
583
+ expected_output_cols_list=(
584
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
585
+ ),
600
586
  )
601
587
  self._sklearn_object = fitted_estimator
602
588
  self._is_fitted = True
603
589
  return output_result
604
590
 
591
+
592
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
593
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
594
+ """ Method not supported for this class.
595
+
605
596
 
606
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
607
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
608
- """
597
+ Raises:
598
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
599
+
600
+ Args:
601
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
602
+ Snowpark or Pandas DataFrame.
603
+ output_cols_prefix: Prefix for the response columns
609
604
  Returns:
610
605
  Transformed dataset.
611
606
  """
612
- self.fit(dataset)
613
- assert self._sklearn_object is not None
614
- return self._sklearn_object.embedding_
607
+ self._infer_input_output_cols(dataset)
608
+ super()._check_dataset_type(dataset)
609
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
610
+ estimator=self._sklearn_object,
611
+ dataset=dataset,
612
+ input_cols=self.input_cols,
613
+ label_cols=self.label_cols,
614
+ sample_weight_col=self.sample_weight_col,
615
+ autogenerated=self._autogenerated,
616
+ subproject=_SUBPROJECT,
617
+ )
618
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
619
+ drop_input_cols=self._drop_input_cols,
620
+ expected_output_cols_list=self.output_cols,
621
+ )
622
+ self._sklearn_object = fitted_estimator
623
+ self._is_fitted = True
624
+ return output_result
625
+
626
+
627
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
628
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
629
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
630
+ """
631
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
632
+ # The following condition is introduced for kneighbors methods, and not used in other methods
633
+ if output_cols:
634
+ output_cols = [
635
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
636
+ for c in output_cols
637
+ ]
638
+ elif getattr(self._sklearn_object, "classes_", None) is None:
639
+ output_cols = [output_cols_prefix]
640
+ elif self._sklearn_object is not None:
641
+ classes = self._sklearn_object.classes_
642
+ if isinstance(classes, numpy.ndarray):
643
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
644
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
645
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
646
+ output_cols = []
647
+ for i, cl in enumerate(classes):
648
+ # For binary classification, there is only one output column for each class
649
+ # ndarray as the two classes are complementary.
650
+ if len(cl) == 2:
651
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
652
+ else:
653
+ output_cols.extend([
654
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
655
+ ])
656
+ else:
657
+ output_cols = []
658
+
659
+ # Make sure column names are valid snowflake identifiers.
660
+ assert output_cols is not None # Make MyPy happy
661
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
662
+
663
+ return rv
664
+
665
+ def _align_expected_output_names(
666
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
667
+ ) -> List[str]:
668
+ # in case the inferred output column names dimension is different
669
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
670
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
671
+ output_df_columns = list(output_df_pd.columns)
672
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
673
+ if self.sample_weight_col:
674
+ output_df_columns_set -= set(self.sample_weight_col)
675
+ # if the dimension of inferred output column names is correct; use it
676
+ if len(expected_output_cols_list) == len(output_df_columns_set):
677
+ return expected_output_cols_list
678
+ # otherwise, use the sklearn estimator's output
679
+ else:
680
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
615
681
 
616
682
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
617
683
  @telemetry.send_api_usage_telemetry(
@@ -643,24 +709,26 @@ class RANSACRegressor(BaseTransformer):
643
709
  # are specific to the type of dataset used.
644
710
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
645
711
 
712
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
713
+
646
714
  if isinstance(dataset, DataFrame):
647
- self._deps = self._batch_inference_validate_snowpark(
648
- dataset=dataset,
649
- inference_method=inference_method,
650
- )
651
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
715
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
716
+ self._deps = self._get_dependencies()
717
+ assert isinstance(
718
+ dataset._session, Session
719
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
652
720
  transform_kwargs = dict(
653
721
  session=dataset._session,
654
722
  dependencies=self._deps,
655
- drop_input_cols = self._drop_input_cols,
723
+ drop_input_cols=self._drop_input_cols,
656
724
  expected_output_cols_type="float",
657
725
  )
726
+ expected_output_cols = self._align_expected_output_names(
727
+ inference_method, dataset, expected_output_cols, output_cols_prefix
728
+ )
658
729
 
659
730
  elif isinstance(dataset, pd.DataFrame):
660
- transform_kwargs = dict(
661
- snowpark_input_cols = self._snowpark_cols,
662
- drop_input_cols = self._drop_input_cols
663
- )
731
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
664
732
 
665
733
  transform_handlers = ModelTransformerBuilder.build(
666
734
  dataset=dataset,
@@ -672,7 +740,7 @@ class RANSACRegressor(BaseTransformer):
672
740
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
673
741
  inference_method=inference_method,
674
742
  input_cols=self.input_cols,
675
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
743
+ expected_output_cols=expected_output_cols,
676
744
  **transform_kwargs
677
745
  )
678
746
  return output_df
@@ -702,29 +770,30 @@ class RANSACRegressor(BaseTransformer):
702
770
  Output dataset with log probability of the sample for each class in the model.
703
771
  """
704
772
  super()._check_dataset_type(dataset)
705
- inference_method="predict_log_proba"
773
+ inference_method = "predict_log_proba"
774
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
706
775
 
707
776
  # This dictionary contains optional kwargs for batch inference. These kwargs
708
777
  # are specific to the type of dataset used.
709
778
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
710
779
 
711
780
  if isinstance(dataset, DataFrame):
712
- self._deps = self._batch_inference_validate_snowpark(
713
- dataset=dataset,
714
- inference_method=inference_method,
715
- )
716
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
781
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
782
+ self._deps = self._get_dependencies()
783
+ assert isinstance(
784
+ dataset._session, Session
785
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
717
786
  transform_kwargs = dict(
718
787
  session=dataset._session,
719
788
  dependencies=self._deps,
720
- drop_input_cols = self._drop_input_cols,
789
+ drop_input_cols=self._drop_input_cols,
721
790
  expected_output_cols_type="float",
722
791
  )
792
+ expected_output_cols = self._align_expected_output_names(
793
+ inference_method, dataset, expected_output_cols, output_cols_prefix
794
+ )
723
795
  elif isinstance(dataset, pd.DataFrame):
724
- transform_kwargs = dict(
725
- snowpark_input_cols = self._snowpark_cols,
726
- drop_input_cols = self._drop_input_cols
727
- )
796
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
728
797
 
729
798
  transform_handlers = ModelTransformerBuilder.build(
730
799
  dataset=dataset,
@@ -737,7 +806,7 @@ class RANSACRegressor(BaseTransformer):
737
806
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
738
807
  inference_method=inference_method,
739
808
  input_cols=self.input_cols,
740
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
809
+ expected_output_cols=expected_output_cols,
741
810
  **transform_kwargs
742
811
  )
743
812
  return output_df
@@ -763,30 +832,32 @@ class RANSACRegressor(BaseTransformer):
763
832
  Output dataset with results of the decision function for the samples in input dataset.
764
833
  """
765
834
  super()._check_dataset_type(dataset)
766
- inference_method="decision_function"
835
+ inference_method = "decision_function"
767
836
 
768
837
  # This dictionary contains optional kwargs for batch inference. These kwargs
769
838
  # are specific to the type of dataset used.
770
839
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
771
840
 
841
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
842
+
772
843
  if isinstance(dataset, DataFrame):
773
- self._deps = self._batch_inference_validate_snowpark(
774
- dataset=dataset,
775
- inference_method=inference_method,
776
- )
777
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
844
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
845
+ self._deps = self._get_dependencies()
846
+ assert isinstance(
847
+ dataset._session, Session
848
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
778
849
  transform_kwargs = dict(
779
850
  session=dataset._session,
780
851
  dependencies=self._deps,
781
- drop_input_cols = self._drop_input_cols,
852
+ drop_input_cols=self._drop_input_cols,
782
853
  expected_output_cols_type="float",
783
854
  )
855
+ expected_output_cols = self._align_expected_output_names(
856
+ inference_method, dataset, expected_output_cols, output_cols_prefix
857
+ )
784
858
 
785
859
  elif isinstance(dataset, pd.DataFrame):
786
- transform_kwargs = dict(
787
- snowpark_input_cols = self._snowpark_cols,
788
- drop_input_cols = self._drop_input_cols
789
- )
860
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
790
861
 
791
862
  transform_handlers = ModelTransformerBuilder.build(
792
863
  dataset=dataset,
@@ -799,7 +870,7 @@ class RANSACRegressor(BaseTransformer):
799
870
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
800
871
  inference_method=inference_method,
801
872
  input_cols=self.input_cols,
802
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
873
+ expected_output_cols=expected_output_cols,
803
874
  **transform_kwargs
804
875
  )
805
876
  return output_df
@@ -828,17 +899,17 @@ class RANSACRegressor(BaseTransformer):
828
899
  Output dataset with probability of the sample for each class in the model.
829
900
  """
830
901
  super()._check_dataset_type(dataset)
831
- inference_method="score_samples"
902
+ inference_method = "score_samples"
832
903
 
833
904
  # This dictionary contains optional kwargs for batch inference. These kwargs
834
905
  # are specific to the type of dataset used.
835
906
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
836
907
 
908
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
909
+
837
910
  if isinstance(dataset, DataFrame):
838
- self._deps = self._batch_inference_validate_snowpark(
839
- dataset=dataset,
840
- inference_method=inference_method,
841
- )
911
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
912
+ self._deps = self._get_dependencies()
842
913
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
843
914
  transform_kwargs = dict(
844
915
  session=dataset._session,
@@ -846,6 +917,9 @@ class RANSACRegressor(BaseTransformer):
846
917
  drop_input_cols = self._drop_input_cols,
847
918
  expected_output_cols_type="float",
848
919
  )
920
+ expected_output_cols = self._align_expected_output_names(
921
+ inference_method, dataset, expected_output_cols, output_cols_prefix
922
+ )
849
923
 
850
924
  elif isinstance(dataset, pd.DataFrame):
851
925
  transform_kwargs = dict(
@@ -864,7 +938,7 @@ class RANSACRegressor(BaseTransformer):
864
938
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
865
939
  inference_method=inference_method,
866
940
  input_cols=self.input_cols,
867
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
941
+ expected_output_cols=expected_output_cols,
868
942
  **transform_kwargs
869
943
  )
870
944
  return output_df
@@ -899,17 +973,15 @@ class RANSACRegressor(BaseTransformer):
899
973
  transform_kwargs: ScoreKwargsTypedDict = dict()
900
974
 
901
975
  if isinstance(dataset, DataFrame):
902
- self._deps = self._batch_inference_validate_snowpark(
903
- dataset=dataset,
904
- inference_method="score",
905
- )
976
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
977
+ self._deps = self._get_dependencies()
906
978
  selected_cols = self._get_active_columns()
907
979
  if len(selected_cols) > 0:
908
980
  dataset = dataset.select(selected_cols)
909
981
  assert isinstance(dataset._session, Session) # keep mypy happy
910
982
  transform_kwargs = dict(
911
983
  session=dataset._session,
912
- dependencies=["snowflake-snowpark-python"] + self._deps,
984
+ dependencies=self._deps,
913
985
  score_sproc_imports=['sklearn'],
914
986
  )
915
987
  elif isinstance(dataset, pd.DataFrame):
@@ -974,11 +1046,8 @@ class RANSACRegressor(BaseTransformer):
974
1046
 
975
1047
  if isinstance(dataset, DataFrame):
976
1048
 
977
- self._deps = self._batch_inference_validate_snowpark(
978
- dataset=dataset,
979
- inference_method=inference_method,
980
-
981
- )
1049
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1050
+ self._deps = self._get_dependencies()
982
1051
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
983
1052
  transform_kwargs = dict(
984
1053
  session = dataset._session,
@@ -1011,50 +1080,84 @@ class RANSACRegressor(BaseTransformer):
1011
1080
  )
1012
1081
  return output_df
1013
1082
 
1083
+
1084
+
1085
+ def to_sklearn(self) -> Any:
1086
+ """Get sklearn.linear_model.RANSACRegressor object.
1087
+ """
1088
+ if self._sklearn_object is None:
1089
+ self._sklearn_object = self._create_sklearn_object()
1090
+ return self._sklearn_object
1091
+
1092
+ def to_xgboost(self) -> Any:
1093
+ raise exceptions.SnowflakeMLException(
1094
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1095
+ original_exception=AttributeError(
1096
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1097
+ "to_xgboost()",
1098
+ "to_sklearn()"
1099
+ )
1100
+ ),
1101
+ )
1102
+
1103
+ def to_lightgbm(self) -> Any:
1104
+ raise exceptions.SnowflakeMLException(
1105
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1106
+ original_exception=AttributeError(
1107
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1108
+ "to_lightgbm()",
1109
+ "to_sklearn()"
1110
+ )
1111
+ ),
1112
+ )
1113
+
1114
+ def _get_dependencies(self) -> List[str]:
1115
+ return self._deps
1116
+
1014
1117
 
1015
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1118
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1016
1119
  self._model_signature_dict = dict()
1017
1120
 
1018
1121
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1019
1122
 
1020
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1123
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1021
1124
  outputs: List[BaseFeatureSpec] = []
1022
1125
  if hasattr(self, "predict"):
1023
1126
  # keep mypy happy
1024
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1127
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1025
1128
  # For classifier, the type of predict is the same as the type of label
1026
- if self._sklearn_object._estimator_type == 'classifier':
1027
- # label columns is the desired type for output
1129
+ if self._sklearn_object._estimator_type == "classifier":
1130
+ # label columns is the desired type for output
1028
1131
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1029
1132
  # rename the output columns
1030
1133
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1031
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1032
- ([] if self._drop_input_cols else inputs)
1033
- + outputs)
1134
+ self._model_signature_dict["predict"] = ModelSignature(
1135
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1136
+ )
1034
1137
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1035
1138
  # For outlier models, returns -1 for outliers and 1 for inliers.
1036
- # Clusterer returns int64 cluster labels.
1139
+ # Clusterer returns int64 cluster labels.
1037
1140
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1038
1141
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1039
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1040
- ([] if self._drop_input_cols else inputs)
1041
- + outputs)
1042
-
1142
+ self._model_signature_dict["predict"] = ModelSignature(
1143
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1144
+ )
1145
+
1043
1146
  # For regressor, the type of predict is float64
1044
- elif self._sklearn_object._estimator_type == 'regressor':
1147
+ elif self._sklearn_object._estimator_type == "regressor":
1045
1148
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1046
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1047
- ([] if self._drop_input_cols else inputs)
1048
- + outputs)
1049
-
1149
+ self._model_signature_dict["predict"] = ModelSignature(
1150
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1151
+ )
1152
+
1050
1153
  for prob_func in PROB_FUNCTIONS:
1051
1154
  if hasattr(self, prob_func):
1052
1155
  output_cols_prefix: str = f"{prob_func}_"
1053
1156
  output_column_names = self._get_output_column_names(output_cols_prefix)
1054
1157
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1055
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1056
- ([] if self._drop_input_cols else inputs)
1057
- + outputs)
1158
+ self._model_signature_dict[prob_func] = ModelSignature(
1159
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1160
+ )
1058
1161
 
1059
1162
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1060
1163
  items = list(self._model_signature_dict.items())
@@ -1067,10 +1170,10 @@ class RANSACRegressor(BaseTransformer):
1067
1170
  """Returns model signature of current class.
1068
1171
 
1069
1172
  Raises:
1070
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1173
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1071
1174
 
1072
1175
  Returns:
1073
- Dict[str, ModelSignature]: each method and its input output signature
1176
+ Dict with each method and its input output signature
1074
1177
  """
1075
1178
  if self._model_signature_dict is None:
1076
1179
  raise exceptions.SnowflakeMLException(
@@ -1078,35 +1181,3 @@ class RANSACRegressor(BaseTransformer):
1078
1181
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1079
1182
  )
1080
1183
  return self._model_signature_dict
1081
-
1082
- def to_sklearn(self) -> Any:
1083
- """Get sklearn.linear_model.RANSACRegressor object.
1084
- """
1085
- if self._sklearn_object is None:
1086
- self._sklearn_object = self._create_sklearn_object()
1087
- return self._sklearn_object
1088
-
1089
- def to_xgboost(self) -> Any:
1090
- raise exceptions.SnowflakeMLException(
1091
- error_code=error_codes.METHOD_NOT_ALLOWED,
1092
- original_exception=AttributeError(
1093
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1094
- "to_xgboost()",
1095
- "to_sklearn()"
1096
- )
1097
- ),
1098
- )
1099
-
1100
- def to_lightgbm(self) -> Any:
1101
- raise exceptions.SnowflakeMLException(
1102
- error_code=error_codes.METHOD_NOT_ALLOWED,
1103
- original_exception=AttributeError(
1104
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1105
- "to_lightgbm()",
1106
- "to_sklearn()"
1107
- )
1108
- ),
1109
- )
1110
-
1111
- def _get_dependencies(self) -> List[str]:
1112
- return self._deps