snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class TheilSenRegressor(BaseTransformer):
71
64
  r"""Theil-Sen Estimator: robust multivariate regression model
72
65
  For more details on this class, see [sklearn.linear_model.TheilSenRegressor]
@@ -256,12 +249,7 @@ class TheilSenRegressor(BaseTransformer):
256
249
  )
257
250
  return selected_cols
258
251
 
259
- @telemetry.send_api_usage_telemetry(
260
- project=_PROJECT,
261
- subproject=_SUBPROJECT,
262
- custom_tags=dict([("autogen", True)]),
263
- )
264
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TheilSenRegressor":
252
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TheilSenRegressor":
265
253
  """Fit linear model
266
254
  For more details on this function, see [sklearn.linear_model.TheilSenRegressor.fit]
267
255
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor.fit)
@@ -288,12 +276,14 @@ class TheilSenRegressor(BaseTransformer):
288
276
 
289
277
  self._snowpark_cols = dataset.select(self.input_cols).columns
290
278
 
291
- # If we are already in a stored procedure, no need to kick off another one.
279
+ # If we are already in a stored procedure, no need to kick off another one.
292
280
  if SNOWML_SPROC_ENV in os.environ:
293
281
  statement_params = telemetry.get_function_usage_statement_params(
294
282
  project=_PROJECT,
295
283
  subproject=_SUBPROJECT,
296
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TheilSenRegressor.__class__.__name__),
284
+ function_name=telemetry.get_statement_params_full_func_name(
285
+ inspect.currentframe(), TheilSenRegressor.__class__.__name__
286
+ ),
297
287
  api_calls=[Session.call],
298
288
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
299
289
  )
@@ -314,27 +304,24 @@ class TheilSenRegressor(BaseTransformer):
314
304
  )
315
305
  self._sklearn_object = model_trainer.train()
316
306
  self._is_fitted = True
317
- self._get_model_signatures(dataset)
307
+ self._generate_model_signatures(dataset)
318
308
  return self
319
309
 
320
310
  def _batch_inference_validate_snowpark(
321
311
  self,
322
312
  dataset: DataFrame,
323
313
  inference_method: str,
324
- ) -> List[str]:
325
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
326
- return the available package that exists in the snowflake anaconda channel
314
+ ) -> None:
315
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
327
316
 
328
317
  Args:
329
318
  dataset: snowpark dataframe
330
319
  inference_method: the inference method such as predict, score...
331
-
320
+
332
321
  Raises:
333
322
  SnowflakeMLException: If the estimator is not fitted, raise error
334
323
  SnowflakeMLException: If the session is None, raise error
335
324
 
336
- Returns:
337
- A list of available package that exists in the snowflake anaconda channel
338
325
  """
339
326
  if not self._is_fitted:
340
327
  raise exceptions.SnowflakeMLException(
@@ -352,9 +339,7 @@ class TheilSenRegressor(BaseTransformer):
352
339
  "Session must not specified for snowpark dataset."
353
340
  ),
354
341
  )
355
- # Validate that key package version in user workspace are supported in snowflake conda channel
356
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
357
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
342
+
358
343
 
359
344
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
360
345
  @telemetry.send_api_usage_telemetry(
@@ -390,7 +375,9 @@ class TheilSenRegressor(BaseTransformer):
390
375
  # when it is classifier, infer the datatype from label columns
391
376
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
392
377
  # Batch inference takes a single expected output column type. Use the first columns type for now.
393
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
378
+ label_cols_signatures = [
379
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
380
+ ]
394
381
  if len(label_cols_signatures) == 0:
395
382
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
396
383
  raise exceptions.SnowflakeMLException(
@@ -398,25 +385,23 @@ class TheilSenRegressor(BaseTransformer):
398
385
  original_exception=ValueError(error_str),
399
386
  )
400
387
 
401
- expected_type_inferred = convert_sp_to_sf_type(
402
- label_cols_signatures[0].as_snowpark_type()
403
- )
388
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
404
389
 
405
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
406
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
390
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
391
+ self._deps = self._get_dependencies()
392
+ assert isinstance(
393
+ dataset._session, Session
394
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
407
395
 
408
396
  transform_kwargs = dict(
409
- session = dataset._session,
410
- dependencies = self._deps,
411
- drop_input_cols = self._drop_input_cols,
412
- expected_output_cols_type = expected_type_inferred,
397
+ session=dataset._session,
398
+ dependencies=self._deps,
399
+ drop_input_cols=self._drop_input_cols,
400
+ expected_output_cols_type=expected_type_inferred,
413
401
  )
414
402
 
415
403
  elif isinstance(dataset, pd.DataFrame):
416
- transform_kwargs = dict(
417
- snowpark_input_cols = self._snowpark_cols,
418
- drop_input_cols = self._drop_input_cols
419
- )
404
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
420
405
 
421
406
  transform_handlers = ModelTransformerBuilder.build(
422
407
  dataset=dataset,
@@ -456,7 +441,7 @@ class TheilSenRegressor(BaseTransformer):
456
441
  Transformed dataset.
457
442
  """
458
443
  super()._check_dataset_type(dataset)
459
- inference_method="transform"
444
+ inference_method = "transform"
460
445
 
461
446
  # This dictionary contains optional kwargs for batch inference. These kwargs
462
447
  # are specific to the type of dataset used.
@@ -486,24 +471,19 @@ class TheilSenRegressor(BaseTransformer):
486
471
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
487
472
  expected_dtype = convert_sp_to_sf_type(output_types[0])
488
473
 
489
- self._deps = self._batch_inference_validate_snowpark(
490
- dataset=dataset,
491
- inference_method=inference_method,
492
- )
474
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
475
+ self._deps = self._get_dependencies()
493
476
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
494
477
 
495
478
  transform_kwargs = dict(
496
- session = dataset._session,
497
- dependencies = self._deps,
498
- drop_input_cols = self._drop_input_cols,
499
- expected_output_cols_type = expected_dtype,
479
+ session=dataset._session,
480
+ dependencies=self._deps,
481
+ drop_input_cols=self._drop_input_cols,
482
+ expected_output_cols_type=expected_dtype,
500
483
  )
501
484
 
502
485
  elif isinstance(dataset, pd.DataFrame):
503
- transform_kwargs = dict(
504
- snowpark_input_cols = self._snowpark_cols,
505
- drop_input_cols = self._drop_input_cols
506
- )
486
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
507
487
 
508
488
  transform_handlers = ModelTransformerBuilder.build(
509
489
  dataset=dataset,
@@ -522,7 +502,11 @@ class TheilSenRegressor(BaseTransformer):
522
502
  return output_df
523
503
 
524
504
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
525
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
505
+ def fit_predict(
506
+ self,
507
+ dataset: Union[DataFrame, pd.DataFrame],
508
+ output_cols_prefix: str = "fit_predict_",
509
+ ) -> Union[DataFrame, pd.DataFrame]:
526
510
  """ Method not supported for this class.
527
511
 
528
512
 
@@ -547,22 +531,104 @@ class TheilSenRegressor(BaseTransformer):
547
531
  )
548
532
  output_result, fitted_estimator = model_trainer.train_fit_predict(
549
533
  drop_input_cols=self._drop_input_cols,
550
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
534
+ expected_output_cols_list=(
535
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
536
+ ),
551
537
  )
552
538
  self._sklearn_object = fitted_estimator
553
539
  self._is_fitted = True
554
540
  return output_result
555
541
 
542
+
543
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
544
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
545
+ """ Method not supported for this class.
546
+
556
547
 
557
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
558
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
559
- """
548
+ Raises:
549
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
550
+
551
+ Args:
552
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
553
+ Snowpark or Pandas DataFrame.
554
+ output_cols_prefix: Prefix for the response columns
560
555
  Returns:
561
556
  Transformed dataset.
562
557
  """
563
- self.fit(dataset)
564
- assert self._sklearn_object is not None
565
- return self._sklearn_object.embedding_
558
+ self._infer_input_output_cols(dataset)
559
+ super()._check_dataset_type(dataset)
560
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
561
+ estimator=self._sklearn_object,
562
+ dataset=dataset,
563
+ input_cols=self.input_cols,
564
+ label_cols=self.label_cols,
565
+ sample_weight_col=self.sample_weight_col,
566
+ autogenerated=self._autogenerated,
567
+ subproject=_SUBPROJECT,
568
+ )
569
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
570
+ drop_input_cols=self._drop_input_cols,
571
+ expected_output_cols_list=self.output_cols,
572
+ )
573
+ self._sklearn_object = fitted_estimator
574
+ self._is_fitted = True
575
+ return output_result
576
+
577
+
578
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
579
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
580
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
581
+ """
582
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
583
+ # The following condition is introduced for kneighbors methods, and not used in other methods
584
+ if output_cols:
585
+ output_cols = [
586
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
587
+ for c in output_cols
588
+ ]
589
+ elif getattr(self._sklearn_object, "classes_", None) is None:
590
+ output_cols = [output_cols_prefix]
591
+ elif self._sklearn_object is not None:
592
+ classes = self._sklearn_object.classes_
593
+ if isinstance(classes, numpy.ndarray):
594
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
595
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
596
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
597
+ output_cols = []
598
+ for i, cl in enumerate(classes):
599
+ # For binary classification, there is only one output column for each class
600
+ # ndarray as the two classes are complementary.
601
+ if len(cl) == 2:
602
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
603
+ else:
604
+ output_cols.extend([
605
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
606
+ ])
607
+ else:
608
+ output_cols = []
609
+
610
+ # Make sure column names are valid snowflake identifiers.
611
+ assert output_cols is not None # Make MyPy happy
612
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
613
+
614
+ return rv
615
+
616
+ def _align_expected_output_names(
617
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
618
+ ) -> List[str]:
619
+ # in case the inferred output column names dimension is different
620
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
621
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
622
+ output_df_columns = list(output_df_pd.columns)
623
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
624
+ if self.sample_weight_col:
625
+ output_df_columns_set -= set(self.sample_weight_col)
626
+ # if the dimension of inferred output column names is correct; use it
627
+ if len(expected_output_cols_list) == len(output_df_columns_set):
628
+ return expected_output_cols_list
629
+ # otherwise, use the sklearn estimator's output
630
+ else:
631
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
566
632
 
567
633
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
568
634
  @telemetry.send_api_usage_telemetry(
@@ -594,24 +660,26 @@ class TheilSenRegressor(BaseTransformer):
594
660
  # are specific to the type of dataset used.
595
661
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
596
662
 
663
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
664
+
597
665
  if isinstance(dataset, DataFrame):
598
- self._deps = self._batch_inference_validate_snowpark(
599
- dataset=dataset,
600
- inference_method=inference_method,
601
- )
602
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
666
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
667
+ self._deps = self._get_dependencies()
668
+ assert isinstance(
669
+ dataset._session, Session
670
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
603
671
  transform_kwargs = dict(
604
672
  session=dataset._session,
605
673
  dependencies=self._deps,
606
- drop_input_cols = self._drop_input_cols,
674
+ drop_input_cols=self._drop_input_cols,
607
675
  expected_output_cols_type="float",
608
676
  )
677
+ expected_output_cols = self._align_expected_output_names(
678
+ inference_method, dataset, expected_output_cols, output_cols_prefix
679
+ )
609
680
 
610
681
  elif isinstance(dataset, pd.DataFrame):
611
- transform_kwargs = dict(
612
- snowpark_input_cols = self._snowpark_cols,
613
- drop_input_cols = self._drop_input_cols
614
- )
682
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
615
683
 
616
684
  transform_handlers = ModelTransformerBuilder.build(
617
685
  dataset=dataset,
@@ -623,7 +691,7 @@ class TheilSenRegressor(BaseTransformer):
623
691
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
624
692
  inference_method=inference_method,
625
693
  input_cols=self.input_cols,
626
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
694
+ expected_output_cols=expected_output_cols,
627
695
  **transform_kwargs
628
696
  )
629
697
  return output_df
@@ -653,29 +721,30 @@ class TheilSenRegressor(BaseTransformer):
653
721
  Output dataset with log probability of the sample for each class in the model.
654
722
  """
655
723
  super()._check_dataset_type(dataset)
656
- inference_method="predict_log_proba"
724
+ inference_method = "predict_log_proba"
725
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
657
726
 
658
727
  # This dictionary contains optional kwargs for batch inference. These kwargs
659
728
  # are specific to the type of dataset used.
660
729
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
661
730
 
662
731
  if isinstance(dataset, DataFrame):
663
- self._deps = self._batch_inference_validate_snowpark(
664
- dataset=dataset,
665
- inference_method=inference_method,
666
- )
667
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
732
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
733
+ self._deps = self._get_dependencies()
734
+ assert isinstance(
735
+ dataset._session, Session
736
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
668
737
  transform_kwargs = dict(
669
738
  session=dataset._session,
670
739
  dependencies=self._deps,
671
- drop_input_cols = self._drop_input_cols,
740
+ drop_input_cols=self._drop_input_cols,
672
741
  expected_output_cols_type="float",
673
742
  )
743
+ expected_output_cols = self._align_expected_output_names(
744
+ inference_method, dataset, expected_output_cols, output_cols_prefix
745
+ )
674
746
  elif isinstance(dataset, pd.DataFrame):
675
- transform_kwargs = dict(
676
- snowpark_input_cols = self._snowpark_cols,
677
- drop_input_cols = self._drop_input_cols
678
- )
747
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
679
748
 
680
749
  transform_handlers = ModelTransformerBuilder.build(
681
750
  dataset=dataset,
@@ -688,7 +757,7 @@ class TheilSenRegressor(BaseTransformer):
688
757
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
689
758
  inference_method=inference_method,
690
759
  input_cols=self.input_cols,
691
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
760
+ expected_output_cols=expected_output_cols,
692
761
  **transform_kwargs
693
762
  )
694
763
  return output_df
@@ -714,30 +783,32 @@ class TheilSenRegressor(BaseTransformer):
714
783
  Output dataset with results of the decision function for the samples in input dataset.
715
784
  """
716
785
  super()._check_dataset_type(dataset)
717
- inference_method="decision_function"
786
+ inference_method = "decision_function"
718
787
 
719
788
  # This dictionary contains optional kwargs for batch inference. These kwargs
720
789
  # are specific to the type of dataset used.
721
790
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
722
791
 
792
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
793
+
723
794
  if isinstance(dataset, DataFrame):
724
- self._deps = self._batch_inference_validate_snowpark(
725
- dataset=dataset,
726
- inference_method=inference_method,
727
- )
728
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
795
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
796
+ self._deps = self._get_dependencies()
797
+ assert isinstance(
798
+ dataset._session, Session
799
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
729
800
  transform_kwargs = dict(
730
801
  session=dataset._session,
731
802
  dependencies=self._deps,
732
- drop_input_cols = self._drop_input_cols,
803
+ drop_input_cols=self._drop_input_cols,
733
804
  expected_output_cols_type="float",
734
805
  )
806
+ expected_output_cols = self._align_expected_output_names(
807
+ inference_method, dataset, expected_output_cols, output_cols_prefix
808
+ )
735
809
 
736
810
  elif isinstance(dataset, pd.DataFrame):
737
- transform_kwargs = dict(
738
- snowpark_input_cols = self._snowpark_cols,
739
- drop_input_cols = self._drop_input_cols
740
- )
811
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
741
812
 
742
813
  transform_handlers = ModelTransformerBuilder.build(
743
814
  dataset=dataset,
@@ -750,7 +821,7 @@ class TheilSenRegressor(BaseTransformer):
750
821
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
751
822
  inference_method=inference_method,
752
823
  input_cols=self.input_cols,
753
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
824
+ expected_output_cols=expected_output_cols,
754
825
  **transform_kwargs
755
826
  )
756
827
  return output_df
@@ -779,17 +850,17 @@ class TheilSenRegressor(BaseTransformer):
779
850
  Output dataset with probability of the sample for each class in the model.
780
851
  """
781
852
  super()._check_dataset_type(dataset)
782
- inference_method="score_samples"
853
+ inference_method = "score_samples"
783
854
 
784
855
  # This dictionary contains optional kwargs for batch inference. These kwargs
785
856
  # are specific to the type of dataset used.
786
857
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
787
858
 
859
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
860
+
788
861
  if isinstance(dataset, DataFrame):
789
- self._deps = self._batch_inference_validate_snowpark(
790
- dataset=dataset,
791
- inference_method=inference_method,
792
- )
862
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
863
+ self._deps = self._get_dependencies()
793
864
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
794
865
  transform_kwargs = dict(
795
866
  session=dataset._session,
@@ -797,6 +868,9 @@ class TheilSenRegressor(BaseTransformer):
797
868
  drop_input_cols = self._drop_input_cols,
798
869
  expected_output_cols_type="float",
799
870
  )
871
+ expected_output_cols = self._align_expected_output_names(
872
+ inference_method, dataset, expected_output_cols, output_cols_prefix
873
+ )
800
874
 
801
875
  elif isinstance(dataset, pd.DataFrame):
802
876
  transform_kwargs = dict(
@@ -815,7 +889,7 @@ class TheilSenRegressor(BaseTransformer):
815
889
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
816
890
  inference_method=inference_method,
817
891
  input_cols=self.input_cols,
818
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
892
+ expected_output_cols=expected_output_cols,
819
893
  **transform_kwargs
820
894
  )
821
895
  return output_df
@@ -850,17 +924,15 @@ class TheilSenRegressor(BaseTransformer):
850
924
  transform_kwargs: ScoreKwargsTypedDict = dict()
851
925
 
852
926
  if isinstance(dataset, DataFrame):
853
- self._deps = self._batch_inference_validate_snowpark(
854
- dataset=dataset,
855
- inference_method="score",
856
- )
927
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
928
+ self._deps = self._get_dependencies()
857
929
  selected_cols = self._get_active_columns()
858
930
  if len(selected_cols) > 0:
859
931
  dataset = dataset.select(selected_cols)
860
932
  assert isinstance(dataset._session, Session) # keep mypy happy
861
933
  transform_kwargs = dict(
862
934
  session=dataset._session,
863
- dependencies=["snowflake-snowpark-python"] + self._deps,
935
+ dependencies=self._deps,
864
936
  score_sproc_imports=['sklearn'],
865
937
  )
866
938
  elif isinstance(dataset, pd.DataFrame):
@@ -925,11 +997,8 @@ class TheilSenRegressor(BaseTransformer):
925
997
 
926
998
  if isinstance(dataset, DataFrame):
927
999
 
928
- self._deps = self._batch_inference_validate_snowpark(
929
- dataset=dataset,
930
- inference_method=inference_method,
931
-
932
- )
1000
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1001
+ self._deps = self._get_dependencies()
933
1002
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
934
1003
  transform_kwargs = dict(
935
1004
  session = dataset._session,
@@ -962,50 +1031,84 @@ class TheilSenRegressor(BaseTransformer):
962
1031
  )
963
1032
  return output_df
964
1033
 
1034
+
1035
+
1036
+ def to_sklearn(self) -> Any:
1037
+ """Get sklearn.linear_model.TheilSenRegressor object.
1038
+ """
1039
+ if self._sklearn_object is None:
1040
+ self._sklearn_object = self._create_sklearn_object()
1041
+ return self._sklearn_object
1042
+
1043
+ def to_xgboost(self) -> Any:
1044
+ raise exceptions.SnowflakeMLException(
1045
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1046
+ original_exception=AttributeError(
1047
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1048
+ "to_xgboost()",
1049
+ "to_sklearn()"
1050
+ )
1051
+ ),
1052
+ )
1053
+
1054
+ def to_lightgbm(self) -> Any:
1055
+ raise exceptions.SnowflakeMLException(
1056
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1057
+ original_exception=AttributeError(
1058
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1059
+ "to_lightgbm()",
1060
+ "to_sklearn()"
1061
+ )
1062
+ ),
1063
+ )
1064
+
1065
+ def _get_dependencies(self) -> List[str]:
1066
+ return self._deps
1067
+
965
1068
 
966
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1069
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
967
1070
  self._model_signature_dict = dict()
968
1071
 
969
1072
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
970
1073
 
971
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1074
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
972
1075
  outputs: List[BaseFeatureSpec] = []
973
1076
  if hasattr(self, "predict"):
974
1077
  # keep mypy happy
975
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1078
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
976
1079
  # For classifier, the type of predict is the same as the type of label
977
- if self._sklearn_object._estimator_type == 'classifier':
978
- # label columns is the desired type for output
1080
+ if self._sklearn_object._estimator_type == "classifier":
1081
+ # label columns is the desired type for output
979
1082
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
980
1083
  # rename the output columns
981
1084
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
982
- self._model_signature_dict["predict"] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
1085
+ self._model_signature_dict["predict"] = ModelSignature(
1086
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1087
+ )
985
1088
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
986
1089
  # For outlier models, returns -1 for outliers and 1 for inliers.
987
- # Clusterer returns int64 cluster labels.
1090
+ # Clusterer returns int64 cluster labels.
988
1091
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
989
1092
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
990
- self._model_signature_dict["predict"] = ModelSignature(inputs,
991
- ([] if self._drop_input_cols else inputs)
992
- + outputs)
993
-
1093
+ self._model_signature_dict["predict"] = ModelSignature(
1094
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1095
+ )
1096
+
994
1097
  # For regressor, the type of predict is float64
995
- elif self._sklearn_object._estimator_type == 'regressor':
1098
+ elif self._sklearn_object._estimator_type == "regressor":
996
1099
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
997
- self._model_signature_dict["predict"] = ModelSignature(inputs,
998
- ([] if self._drop_input_cols else inputs)
999
- + outputs)
1000
-
1100
+ self._model_signature_dict["predict"] = ModelSignature(
1101
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1102
+ )
1103
+
1001
1104
  for prob_func in PROB_FUNCTIONS:
1002
1105
  if hasattr(self, prob_func):
1003
1106
  output_cols_prefix: str = f"{prob_func}_"
1004
1107
  output_column_names = self._get_output_column_names(output_cols_prefix)
1005
1108
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1006
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1007
- ([] if self._drop_input_cols else inputs)
1008
- + outputs)
1109
+ self._model_signature_dict[prob_func] = ModelSignature(
1110
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1111
+ )
1009
1112
 
1010
1113
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1011
1114
  items = list(self._model_signature_dict.items())
@@ -1018,10 +1121,10 @@ class TheilSenRegressor(BaseTransformer):
1018
1121
  """Returns model signature of current class.
1019
1122
 
1020
1123
  Raises:
1021
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1124
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1022
1125
 
1023
1126
  Returns:
1024
- Dict[str, ModelSignature]: each method and its input output signature
1127
+ Dict with each method and its input output signature
1025
1128
  """
1026
1129
  if self._model_signature_dict is None:
1027
1130
  raise exceptions.SnowflakeMLException(
@@ -1029,35 +1132,3 @@ class TheilSenRegressor(BaseTransformer):
1029
1132
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1030
1133
  )
1031
1134
  return self._model_signature_dict
1032
-
1033
- def to_sklearn(self) -> Any:
1034
- """Get sklearn.linear_model.TheilSenRegressor object.
1035
- """
1036
- if self._sklearn_object is None:
1037
- self._sklearn_object = self._create_sklearn_object()
1038
- return self._sklearn_object
1039
-
1040
- def to_xgboost(self) -> Any:
1041
- raise exceptions.SnowflakeMLException(
1042
- error_code=error_codes.METHOD_NOT_ALLOWED,
1043
- original_exception=AttributeError(
1044
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1045
- "to_xgboost()",
1046
- "to_sklearn()"
1047
- )
1048
- ),
1049
- )
1050
-
1051
- def to_lightgbm(self) -> Any:
1052
- raise exceptions.SnowflakeMLException(
1053
- error_code=error_codes.METHOD_NOT_ALLOWED,
1054
- original_exception=AttributeError(
1055
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1056
- "to_lightgbm()",
1057
- "to_sklearn()"
1058
- )
1059
- ),
1060
- )
1061
-
1062
- def _get_dependencies(self) -> List[str]:
1063
- return self._deps