snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class TheilSenRegressor(BaseTransformer):
|
71
64
|
r"""Theil-Sen Estimator: robust multivariate regression model
|
72
65
|
For more details on this class, see [sklearn.linear_model.TheilSenRegressor]
|
@@ -256,12 +249,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
256
249
|
)
|
257
250
|
return selected_cols
|
258
251
|
|
259
|
-
|
260
|
-
project=_PROJECT,
|
261
|
-
subproject=_SUBPROJECT,
|
262
|
-
custom_tags=dict([("autogen", True)]),
|
263
|
-
)
|
264
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TheilSenRegressor":
|
252
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TheilSenRegressor":
|
265
253
|
"""Fit linear model
|
266
254
|
For more details on this function, see [sklearn.linear_model.TheilSenRegressor.fit]
|
267
255
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor.fit)
|
@@ -288,12 +276,14 @@ class TheilSenRegressor(BaseTransformer):
|
|
288
276
|
|
289
277
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
290
278
|
|
291
|
-
|
279
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
292
280
|
if SNOWML_SPROC_ENV in os.environ:
|
293
281
|
statement_params = telemetry.get_function_usage_statement_params(
|
294
282
|
project=_PROJECT,
|
295
283
|
subproject=_SUBPROJECT,
|
296
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
284
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
285
|
+
inspect.currentframe(), TheilSenRegressor.__class__.__name__
|
286
|
+
),
|
297
287
|
api_calls=[Session.call],
|
298
288
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
299
289
|
)
|
@@ -314,27 +304,24 @@ class TheilSenRegressor(BaseTransformer):
|
|
314
304
|
)
|
315
305
|
self._sklearn_object = model_trainer.train()
|
316
306
|
self._is_fitted = True
|
317
|
-
self.
|
307
|
+
self._generate_model_signatures(dataset)
|
318
308
|
return self
|
319
309
|
|
320
310
|
def _batch_inference_validate_snowpark(
|
321
311
|
self,
|
322
312
|
dataset: DataFrame,
|
323
313
|
inference_method: str,
|
324
|
-
) ->
|
325
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
326
|
-
return the available package that exists in the snowflake anaconda channel
|
314
|
+
) -> None:
|
315
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
327
316
|
|
328
317
|
Args:
|
329
318
|
dataset: snowpark dataframe
|
330
319
|
inference_method: the inference method such as predict, score...
|
331
|
-
|
320
|
+
|
332
321
|
Raises:
|
333
322
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
334
323
|
SnowflakeMLException: If the session is None, raise error
|
335
324
|
|
336
|
-
Returns:
|
337
|
-
A list of available package that exists in the snowflake anaconda channel
|
338
325
|
"""
|
339
326
|
if not self._is_fitted:
|
340
327
|
raise exceptions.SnowflakeMLException(
|
@@ -352,9 +339,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
352
339
|
"Session must not specified for snowpark dataset."
|
353
340
|
),
|
354
341
|
)
|
355
|
-
|
356
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
357
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
342
|
+
|
358
343
|
|
359
344
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
360
345
|
@telemetry.send_api_usage_telemetry(
|
@@ -390,7 +375,9 @@ class TheilSenRegressor(BaseTransformer):
|
|
390
375
|
# when it is classifier, infer the datatype from label columns
|
391
376
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
392
377
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
393
|
-
label_cols_signatures = [
|
378
|
+
label_cols_signatures = [
|
379
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
380
|
+
]
|
394
381
|
if len(label_cols_signatures) == 0:
|
395
382
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
396
383
|
raise exceptions.SnowflakeMLException(
|
@@ -398,25 +385,23 @@ class TheilSenRegressor(BaseTransformer):
|
|
398
385
|
original_exception=ValueError(error_str),
|
399
386
|
)
|
400
387
|
|
401
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
402
|
-
label_cols_signatures[0].as_snowpark_type()
|
403
|
-
)
|
388
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
404
389
|
|
405
|
-
self.
|
406
|
-
|
390
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
391
|
+
self._deps = self._get_dependencies()
|
392
|
+
assert isinstance(
|
393
|
+
dataset._session, Session
|
394
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
407
395
|
|
408
396
|
transform_kwargs = dict(
|
409
|
-
session
|
410
|
-
dependencies
|
411
|
-
drop_input_cols
|
412
|
-
expected_output_cols_type
|
397
|
+
session=dataset._session,
|
398
|
+
dependencies=self._deps,
|
399
|
+
drop_input_cols=self._drop_input_cols,
|
400
|
+
expected_output_cols_type=expected_type_inferred,
|
413
401
|
)
|
414
402
|
|
415
403
|
elif isinstance(dataset, pd.DataFrame):
|
416
|
-
transform_kwargs = dict(
|
417
|
-
snowpark_input_cols = self._snowpark_cols,
|
418
|
-
drop_input_cols = self._drop_input_cols
|
419
|
-
)
|
404
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
420
405
|
|
421
406
|
transform_handlers = ModelTransformerBuilder.build(
|
422
407
|
dataset=dataset,
|
@@ -456,7 +441,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
456
441
|
Transformed dataset.
|
457
442
|
"""
|
458
443
|
super()._check_dataset_type(dataset)
|
459
|
-
inference_method="transform"
|
444
|
+
inference_method = "transform"
|
460
445
|
|
461
446
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
462
447
|
# are specific to the type of dataset used.
|
@@ -486,24 +471,19 @@ class TheilSenRegressor(BaseTransformer):
|
|
486
471
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
487
472
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
488
473
|
|
489
|
-
self.
|
490
|
-
|
491
|
-
inference_method=inference_method,
|
492
|
-
)
|
474
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
475
|
+
self._deps = self._get_dependencies()
|
493
476
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
494
477
|
|
495
478
|
transform_kwargs = dict(
|
496
|
-
session
|
497
|
-
dependencies
|
498
|
-
drop_input_cols
|
499
|
-
expected_output_cols_type
|
479
|
+
session=dataset._session,
|
480
|
+
dependencies=self._deps,
|
481
|
+
drop_input_cols=self._drop_input_cols,
|
482
|
+
expected_output_cols_type=expected_dtype,
|
500
483
|
)
|
501
484
|
|
502
485
|
elif isinstance(dataset, pd.DataFrame):
|
503
|
-
transform_kwargs = dict(
|
504
|
-
snowpark_input_cols = self._snowpark_cols,
|
505
|
-
drop_input_cols = self._drop_input_cols
|
506
|
-
)
|
486
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
507
487
|
|
508
488
|
transform_handlers = ModelTransformerBuilder.build(
|
509
489
|
dataset=dataset,
|
@@ -522,7 +502,11 @@ class TheilSenRegressor(BaseTransformer):
|
|
522
502
|
return output_df
|
523
503
|
|
524
504
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
525
|
-
def fit_predict(
|
505
|
+
def fit_predict(
|
506
|
+
self,
|
507
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
508
|
+
output_cols_prefix: str = "fit_predict_",
|
509
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
526
510
|
""" Method not supported for this class.
|
527
511
|
|
528
512
|
|
@@ -547,22 +531,104 @@ class TheilSenRegressor(BaseTransformer):
|
|
547
531
|
)
|
548
532
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
549
533
|
drop_input_cols=self._drop_input_cols,
|
550
|
-
expected_output_cols_list=
|
534
|
+
expected_output_cols_list=(
|
535
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
536
|
+
),
|
551
537
|
)
|
552
538
|
self._sklearn_object = fitted_estimator
|
553
539
|
self._is_fitted = True
|
554
540
|
return output_result
|
555
541
|
|
542
|
+
|
543
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
544
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
545
|
+
""" Method not supported for this class.
|
546
|
+
|
556
547
|
|
557
|
-
|
558
|
-
|
559
|
-
|
548
|
+
Raises:
|
549
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
550
|
+
|
551
|
+
Args:
|
552
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
553
|
+
Snowpark or Pandas DataFrame.
|
554
|
+
output_cols_prefix: Prefix for the response columns
|
560
555
|
Returns:
|
561
556
|
Transformed dataset.
|
562
557
|
"""
|
563
|
-
self.
|
564
|
-
|
565
|
-
|
558
|
+
self._infer_input_output_cols(dataset)
|
559
|
+
super()._check_dataset_type(dataset)
|
560
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
561
|
+
estimator=self._sklearn_object,
|
562
|
+
dataset=dataset,
|
563
|
+
input_cols=self.input_cols,
|
564
|
+
label_cols=self.label_cols,
|
565
|
+
sample_weight_col=self.sample_weight_col,
|
566
|
+
autogenerated=self._autogenerated,
|
567
|
+
subproject=_SUBPROJECT,
|
568
|
+
)
|
569
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
570
|
+
drop_input_cols=self._drop_input_cols,
|
571
|
+
expected_output_cols_list=self.output_cols,
|
572
|
+
)
|
573
|
+
self._sklearn_object = fitted_estimator
|
574
|
+
self._is_fitted = True
|
575
|
+
return output_result
|
576
|
+
|
577
|
+
|
578
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
579
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
580
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
581
|
+
"""
|
582
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
583
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
584
|
+
if output_cols:
|
585
|
+
output_cols = [
|
586
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
587
|
+
for c in output_cols
|
588
|
+
]
|
589
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
590
|
+
output_cols = [output_cols_prefix]
|
591
|
+
elif self._sklearn_object is not None:
|
592
|
+
classes = self._sklearn_object.classes_
|
593
|
+
if isinstance(classes, numpy.ndarray):
|
594
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
595
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
596
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
597
|
+
output_cols = []
|
598
|
+
for i, cl in enumerate(classes):
|
599
|
+
# For binary classification, there is only one output column for each class
|
600
|
+
# ndarray as the two classes are complementary.
|
601
|
+
if len(cl) == 2:
|
602
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
603
|
+
else:
|
604
|
+
output_cols.extend([
|
605
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
606
|
+
])
|
607
|
+
else:
|
608
|
+
output_cols = []
|
609
|
+
|
610
|
+
# Make sure column names are valid snowflake identifiers.
|
611
|
+
assert output_cols is not None # Make MyPy happy
|
612
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
613
|
+
|
614
|
+
return rv
|
615
|
+
|
616
|
+
def _align_expected_output_names(
|
617
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
618
|
+
) -> List[str]:
|
619
|
+
# in case the inferred output column names dimension is different
|
620
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
621
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
622
|
+
output_df_columns = list(output_df_pd.columns)
|
623
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
624
|
+
if self.sample_weight_col:
|
625
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
626
|
+
# if the dimension of inferred output column names is correct; use it
|
627
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
628
|
+
return expected_output_cols_list
|
629
|
+
# otherwise, use the sklearn estimator's output
|
630
|
+
else:
|
631
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
566
632
|
|
567
633
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
568
634
|
@telemetry.send_api_usage_telemetry(
|
@@ -594,24 +660,26 @@ class TheilSenRegressor(BaseTransformer):
|
|
594
660
|
# are specific to the type of dataset used.
|
595
661
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
596
662
|
|
663
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
664
|
+
|
597
665
|
if isinstance(dataset, DataFrame):
|
598
|
-
self.
|
599
|
-
|
600
|
-
|
601
|
-
|
602
|
-
|
666
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
667
|
+
self._deps = self._get_dependencies()
|
668
|
+
assert isinstance(
|
669
|
+
dataset._session, Session
|
670
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
603
671
|
transform_kwargs = dict(
|
604
672
|
session=dataset._session,
|
605
673
|
dependencies=self._deps,
|
606
|
-
drop_input_cols
|
674
|
+
drop_input_cols=self._drop_input_cols,
|
607
675
|
expected_output_cols_type="float",
|
608
676
|
)
|
677
|
+
expected_output_cols = self._align_expected_output_names(
|
678
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
679
|
+
)
|
609
680
|
|
610
681
|
elif isinstance(dataset, pd.DataFrame):
|
611
|
-
transform_kwargs = dict(
|
612
|
-
snowpark_input_cols = self._snowpark_cols,
|
613
|
-
drop_input_cols = self._drop_input_cols
|
614
|
-
)
|
682
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
615
683
|
|
616
684
|
transform_handlers = ModelTransformerBuilder.build(
|
617
685
|
dataset=dataset,
|
@@ -623,7 +691,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
623
691
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
624
692
|
inference_method=inference_method,
|
625
693
|
input_cols=self.input_cols,
|
626
|
-
expected_output_cols=
|
694
|
+
expected_output_cols=expected_output_cols,
|
627
695
|
**transform_kwargs
|
628
696
|
)
|
629
697
|
return output_df
|
@@ -653,29 +721,30 @@ class TheilSenRegressor(BaseTransformer):
|
|
653
721
|
Output dataset with log probability of the sample for each class in the model.
|
654
722
|
"""
|
655
723
|
super()._check_dataset_type(dataset)
|
656
|
-
inference_method="predict_log_proba"
|
724
|
+
inference_method = "predict_log_proba"
|
725
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
657
726
|
|
658
727
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
659
728
|
# are specific to the type of dataset used.
|
660
729
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
661
730
|
|
662
731
|
if isinstance(dataset, DataFrame):
|
663
|
-
self.
|
664
|
-
|
665
|
-
|
666
|
-
|
667
|
-
|
732
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
733
|
+
self._deps = self._get_dependencies()
|
734
|
+
assert isinstance(
|
735
|
+
dataset._session, Session
|
736
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
668
737
|
transform_kwargs = dict(
|
669
738
|
session=dataset._session,
|
670
739
|
dependencies=self._deps,
|
671
|
-
drop_input_cols
|
740
|
+
drop_input_cols=self._drop_input_cols,
|
672
741
|
expected_output_cols_type="float",
|
673
742
|
)
|
743
|
+
expected_output_cols = self._align_expected_output_names(
|
744
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
745
|
+
)
|
674
746
|
elif isinstance(dataset, pd.DataFrame):
|
675
|
-
transform_kwargs = dict(
|
676
|
-
snowpark_input_cols = self._snowpark_cols,
|
677
|
-
drop_input_cols = self._drop_input_cols
|
678
|
-
)
|
747
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
679
748
|
|
680
749
|
transform_handlers = ModelTransformerBuilder.build(
|
681
750
|
dataset=dataset,
|
@@ -688,7 +757,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
688
757
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
689
758
|
inference_method=inference_method,
|
690
759
|
input_cols=self.input_cols,
|
691
|
-
expected_output_cols=
|
760
|
+
expected_output_cols=expected_output_cols,
|
692
761
|
**transform_kwargs
|
693
762
|
)
|
694
763
|
return output_df
|
@@ -714,30 +783,32 @@ class TheilSenRegressor(BaseTransformer):
|
|
714
783
|
Output dataset with results of the decision function for the samples in input dataset.
|
715
784
|
"""
|
716
785
|
super()._check_dataset_type(dataset)
|
717
|
-
inference_method="decision_function"
|
786
|
+
inference_method = "decision_function"
|
718
787
|
|
719
788
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
720
789
|
# are specific to the type of dataset used.
|
721
790
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
722
791
|
|
792
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
793
|
+
|
723
794
|
if isinstance(dataset, DataFrame):
|
724
|
-
self.
|
725
|
-
|
726
|
-
|
727
|
-
|
728
|
-
|
795
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
796
|
+
self._deps = self._get_dependencies()
|
797
|
+
assert isinstance(
|
798
|
+
dataset._session, Session
|
799
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
729
800
|
transform_kwargs = dict(
|
730
801
|
session=dataset._session,
|
731
802
|
dependencies=self._deps,
|
732
|
-
drop_input_cols
|
803
|
+
drop_input_cols=self._drop_input_cols,
|
733
804
|
expected_output_cols_type="float",
|
734
805
|
)
|
806
|
+
expected_output_cols = self._align_expected_output_names(
|
807
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
808
|
+
)
|
735
809
|
|
736
810
|
elif isinstance(dataset, pd.DataFrame):
|
737
|
-
transform_kwargs = dict(
|
738
|
-
snowpark_input_cols = self._snowpark_cols,
|
739
|
-
drop_input_cols = self._drop_input_cols
|
740
|
-
)
|
811
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
741
812
|
|
742
813
|
transform_handlers = ModelTransformerBuilder.build(
|
743
814
|
dataset=dataset,
|
@@ -750,7 +821,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
750
821
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
751
822
|
inference_method=inference_method,
|
752
823
|
input_cols=self.input_cols,
|
753
|
-
expected_output_cols=
|
824
|
+
expected_output_cols=expected_output_cols,
|
754
825
|
**transform_kwargs
|
755
826
|
)
|
756
827
|
return output_df
|
@@ -779,17 +850,17 @@ class TheilSenRegressor(BaseTransformer):
|
|
779
850
|
Output dataset with probability of the sample for each class in the model.
|
780
851
|
"""
|
781
852
|
super()._check_dataset_type(dataset)
|
782
|
-
inference_method="score_samples"
|
853
|
+
inference_method = "score_samples"
|
783
854
|
|
784
855
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
785
856
|
# are specific to the type of dataset used.
|
786
857
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
787
858
|
|
859
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
860
|
+
|
788
861
|
if isinstance(dataset, DataFrame):
|
789
|
-
self.
|
790
|
-
|
791
|
-
inference_method=inference_method,
|
792
|
-
)
|
862
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
863
|
+
self._deps = self._get_dependencies()
|
793
864
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
794
865
|
transform_kwargs = dict(
|
795
866
|
session=dataset._session,
|
@@ -797,6 +868,9 @@ class TheilSenRegressor(BaseTransformer):
|
|
797
868
|
drop_input_cols = self._drop_input_cols,
|
798
869
|
expected_output_cols_type="float",
|
799
870
|
)
|
871
|
+
expected_output_cols = self._align_expected_output_names(
|
872
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
873
|
+
)
|
800
874
|
|
801
875
|
elif isinstance(dataset, pd.DataFrame):
|
802
876
|
transform_kwargs = dict(
|
@@ -815,7 +889,7 @@ class TheilSenRegressor(BaseTransformer):
|
|
815
889
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
816
890
|
inference_method=inference_method,
|
817
891
|
input_cols=self.input_cols,
|
818
|
-
expected_output_cols=
|
892
|
+
expected_output_cols=expected_output_cols,
|
819
893
|
**transform_kwargs
|
820
894
|
)
|
821
895
|
return output_df
|
@@ -850,17 +924,15 @@ class TheilSenRegressor(BaseTransformer):
|
|
850
924
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
851
925
|
|
852
926
|
if isinstance(dataset, DataFrame):
|
853
|
-
self.
|
854
|
-
|
855
|
-
inference_method="score",
|
856
|
-
)
|
927
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
928
|
+
self._deps = self._get_dependencies()
|
857
929
|
selected_cols = self._get_active_columns()
|
858
930
|
if len(selected_cols) > 0:
|
859
931
|
dataset = dataset.select(selected_cols)
|
860
932
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
861
933
|
transform_kwargs = dict(
|
862
934
|
session=dataset._session,
|
863
|
-
dependencies=
|
935
|
+
dependencies=self._deps,
|
864
936
|
score_sproc_imports=['sklearn'],
|
865
937
|
)
|
866
938
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -925,11 +997,8 @@ class TheilSenRegressor(BaseTransformer):
|
|
925
997
|
|
926
998
|
if isinstance(dataset, DataFrame):
|
927
999
|
|
928
|
-
self.
|
929
|
-
|
930
|
-
inference_method=inference_method,
|
931
|
-
|
932
|
-
)
|
1000
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1001
|
+
self._deps = self._get_dependencies()
|
933
1002
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
934
1003
|
transform_kwargs = dict(
|
935
1004
|
session = dataset._session,
|
@@ -962,50 +1031,84 @@ class TheilSenRegressor(BaseTransformer):
|
|
962
1031
|
)
|
963
1032
|
return output_df
|
964
1033
|
|
1034
|
+
|
1035
|
+
|
1036
|
+
def to_sklearn(self) -> Any:
|
1037
|
+
"""Get sklearn.linear_model.TheilSenRegressor object.
|
1038
|
+
"""
|
1039
|
+
if self._sklearn_object is None:
|
1040
|
+
self._sklearn_object = self._create_sklearn_object()
|
1041
|
+
return self._sklearn_object
|
1042
|
+
|
1043
|
+
def to_xgboost(self) -> Any:
|
1044
|
+
raise exceptions.SnowflakeMLException(
|
1045
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1046
|
+
original_exception=AttributeError(
|
1047
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1048
|
+
"to_xgboost()",
|
1049
|
+
"to_sklearn()"
|
1050
|
+
)
|
1051
|
+
),
|
1052
|
+
)
|
1053
|
+
|
1054
|
+
def to_lightgbm(self) -> Any:
|
1055
|
+
raise exceptions.SnowflakeMLException(
|
1056
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1057
|
+
original_exception=AttributeError(
|
1058
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1059
|
+
"to_lightgbm()",
|
1060
|
+
"to_sklearn()"
|
1061
|
+
)
|
1062
|
+
),
|
1063
|
+
)
|
1064
|
+
|
1065
|
+
def _get_dependencies(self) -> List[str]:
|
1066
|
+
return self._deps
|
1067
|
+
|
965
1068
|
|
966
|
-
def
|
1069
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
967
1070
|
self._model_signature_dict = dict()
|
968
1071
|
|
969
1072
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
970
1073
|
|
971
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1074
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
972
1075
|
outputs: List[BaseFeatureSpec] = []
|
973
1076
|
if hasattr(self, "predict"):
|
974
1077
|
# keep mypy happy
|
975
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1078
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
976
1079
|
# For classifier, the type of predict is the same as the type of label
|
977
|
-
if self._sklearn_object._estimator_type ==
|
978
|
-
|
1080
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1081
|
+
# label columns is the desired type for output
|
979
1082
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
980
1083
|
# rename the output columns
|
981
1084
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
982
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
983
|
-
|
984
|
-
|
1085
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1086
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1087
|
+
)
|
985
1088
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
986
1089
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
987
|
-
# Clusterer returns int64 cluster labels.
|
1090
|
+
# Clusterer returns int64 cluster labels.
|
988
1091
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
989
1092
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
990
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
991
|
-
|
992
|
-
|
993
|
-
|
1093
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1094
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1095
|
+
)
|
1096
|
+
|
994
1097
|
# For regressor, the type of predict is float64
|
995
|
-
elif self._sklearn_object._estimator_type ==
|
1098
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
996
1099
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
997
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
998
|
-
|
999
|
-
|
1000
|
-
|
1100
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1101
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1102
|
+
)
|
1103
|
+
|
1001
1104
|
for prob_func in PROB_FUNCTIONS:
|
1002
1105
|
if hasattr(self, prob_func):
|
1003
1106
|
output_cols_prefix: str = f"{prob_func}_"
|
1004
1107
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1005
1108
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1006
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1007
|
-
|
1008
|
-
|
1109
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1110
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1111
|
+
)
|
1009
1112
|
|
1010
1113
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1011
1114
|
items = list(self._model_signature_dict.items())
|
@@ -1018,10 +1121,10 @@ class TheilSenRegressor(BaseTransformer):
|
|
1018
1121
|
"""Returns model signature of current class.
|
1019
1122
|
|
1020
1123
|
Raises:
|
1021
|
-
|
1124
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1022
1125
|
|
1023
1126
|
Returns:
|
1024
|
-
Dict
|
1127
|
+
Dict with each method and its input output signature
|
1025
1128
|
"""
|
1026
1129
|
if self._model_signature_dict is None:
|
1027
1130
|
raise exceptions.SnowflakeMLException(
|
@@ -1029,35 +1132,3 @@ class TheilSenRegressor(BaseTransformer):
|
|
1029
1132
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1030
1133
|
)
|
1031
1134
|
return self._model_signature_dict
|
1032
|
-
|
1033
|
-
def to_sklearn(self) -> Any:
|
1034
|
-
"""Get sklearn.linear_model.TheilSenRegressor object.
|
1035
|
-
"""
|
1036
|
-
if self._sklearn_object is None:
|
1037
|
-
self._sklearn_object = self._create_sklearn_object()
|
1038
|
-
return self._sklearn_object
|
1039
|
-
|
1040
|
-
def to_xgboost(self) -> Any:
|
1041
|
-
raise exceptions.SnowflakeMLException(
|
1042
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1043
|
-
original_exception=AttributeError(
|
1044
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1045
|
-
"to_xgboost()",
|
1046
|
-
"to_sklearn()"
|
1047
|
-
)
|
1048
|
-
),
|
1049
|
-
)
|
1050
|
-
|
1051
|
-
def to_lightgbm(self) -> Any:
|
1052
|
-
raise exceptions.SnowflakeMLException(
|
1053
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1054
|
-
original_exception=AttributeError(
|
1055
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1056
|
-
"to_lightgbm()",
|
1057
|
-
"to_sklearn()"
|
1058
|
-
)
|
1059
|
-
),
|
1060
|
-
)
|
1061
|
-
|
1062
|
-
def _get_dependencies(self) -> List[str]:
|
1063
|
-
return self._deps
|