snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class MeanShift(BaseTransformer):
|
71
64
|
r"""Mean shift clustering using a flat kernel
|
72
65
|
For more details on this class, see [sklearn.cluster.MeanShift]
|
@@ -253,12 +246,7 @@ class MeanShift(BaseTransformer):
|
|
253
246
|
)
|
254
247
|
return selected_cols
|
255
248
|
|
256
|
-
|
257
|
-
project=_PROJECT,
|
258
|
-
subproject=_SUBPROJECT,
|
259
|
-
custom_tags=dict([("autogen", True)]),
|
260
|
-
)
|
261
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MeanShift":
|
249
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MeanShift":
|
262
250
|
"""Perform clustering
|
263
251
|
For more details on this function, see [sklearn.cluster.MeanShift.fit]
|
264
252
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift.fit)
|
@@ -285,12 +273,14 @@ class MeanShift(BaseTransformer):
|
|
285
273
|
|
286
274
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
287
275
|
|
288
|
-
|
276
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
289
277
|
if SNOWML_SPROC_ENV in os.environ:
|
290
278
|
statement_params = telemetry.get_function_usage_statement_params(
|
291
279
|
project=_PROJECT,
|
292
280
|
subproject=_SUBPROJECT,
|
293
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
281
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
282
|
+
inspect.currentframe(), MeanShift.__class__.__name__
|
283
|
+
),
|
294
284
|
api_calls=[Session.call],
|
295
285
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
296
286
|
)
|
@@ -311,27 +301,24 @@ class MeanShift(BaseTransformer):
|
|
311
301
|
)
|
312
302
|
self._sklearn_object = model_trainer.train()
|
313
303
|
self._is_fitted = True
|
314
|
-
self.
|
304
|
+
self._generate_model_signatures(dataset)
|
315
305
|
return self
|
316
306
|
|
317
307
|
def _batch_inference_validate_snowpark(
|
318
308
|
self,
|
319
309
|
dataset: DataFrame,
|
320
310
|
inference_method: str,
|
321
|
-
) ->
|
322
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
323
|
-
return the available package that exists in the snowflake anaconda channel
|
311
|
+
) -> None:
|
312
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
324
313
|
|
325
314
|
Args:
|
326
315
|
dataset: snowpark dataframe
|
327
316
|
inference_method: the inference method such as predict, score...
|
328
|
-
|
317
|
+
|
329
318
|
Raises:
|
330
319
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
331
320
|
SnowflakeMLException: If the session is None, raise error
|
332
321
|
|
333
|
-
Returns:
|
334
|
-
A list of available package that exists in the snowflake anaconda channel
|
335
322
|
"""
|
336
323
|
if not self._is_fitted:
|
337
324
|
raise exceptions.SnowflakeMLException(
|
@@ -349,9 +336,7 @@ class MeanShift(BaseTransformer):
|
|
349
336
|
"Session must not specified for snowpark dataset."
|
350
337
|
),
|
351
338
|
)
|
352
|
-
|
353
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
354
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
339
|
+
|
355
340
|
|
356
341
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
357
342
|
@telemetry.send_api_usage_telemetry(
|
@@ -387,7 +372,9 @@ class MeanShift(BaseTransformer):
|
|
387
372
|
# when it is classifier, infer the datatype from label columns
|
388
373
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
389
374
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
390
|
-
label_cols_signatures = [
|
375
|
+
label_cols_signatures = [
|
376
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
377
|
+
]
|
391
378
|
if len(label_cols_signatures) == 0:
|
392
379
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
393
380
|
raise exceptions.SnowflakeMLException(
|
@@ -395,25 +382,23 @@ class MeanShift(BaseTransformer):
|
|
395
382
|
original_exception=ValueError(error_str),
|
396
383
|
)
|
397
384
|
|
398
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
399
|
-
label_cols_signatures[0].as_snowpark_type()
|
400
|
-
)
|
385
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
401
386
|
|
402
|
-
self.
|
403
|
-
|
387
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
388
|
+
self._deps = self._get_dependencies()
|
389
|
+
assert isinstance(
|
390
|
+
dataset._session, Session
|
391
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
404
392
|
|
405
393
|
transform_kwargs = dict(
|
406
|
-
session
|
407
|
-
dependencies
|
408
|
-
drop_input_cols
|
409
|
-
expected_output_cols_type
|
394
|
+
session=dataset._session,
|
395
|
+
dependencies=self._deps,
|
396
|
+
drop_input_cols=self._drop_input_cols,
|
397
|
+
expected_output_cols_type=expected_type_inferred,
|
410
398
|
)
|
411
399
|
|
412
400
|
elif isinstance(dataset, pd.DataFrame):
|
413
|
-
transform_kwargs = dict(
|
414
|
-
snowpark_input_cols = self._snowpark_cols,
|
415
|
-
drop_input_cols = self._drop_input_cols
|
416
|
-
)
|
401
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
417
402
|
|
418
403
|
transform_handlers = ModelTransformerBuilder.build(
|
419
404
|
dataset=dataset,
|
@@ -453,7 +438,7 @@ class MeanShift(BaseTransformer):
|
|
453
438
|
Transformed dataset.
|
454
439
|
"""
|
455
440
|
super()._check_dataset_type(dataset)
|
456
|
-
inference_method="transform"
|
441
|
+
inference_method = "transform"
|
457
442
|
|
458
443
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
459
444
|
# are specific to the type of dataset used.
|
@@ -483,24 +468,19 @@ class MeanShift(BaseTransformer):
|
|
483
468
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
484
469
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
485
470
|
|
486
|
-
self.
|
487
|
-
|
488
|
-
inference_method=inference_method,
|
489
|
-
)
|
471
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
472
|
+
self._deps = self._get_dependencies()
|
490
473
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
491
474
|
|
492
475
|
transform_kwargs = dict(
|
493
|
-
session
|
494
|
-
dependencies
|
495
|
-
drop_input_cols
|
496
|
-
expected_output_cols_type
|
476
|
+
session=dataset._session,
|
477
|
+
dependencies=self._deps,
|
478
|
+
drop_input_cols=self._drop_input_cols,
|
479
|
+
expected_output_cols_type=expected_dtype,
|
497
480
|
)
|
498
481
|
|
499
482
|
elif isinstance(dataset, pd.DataFrame):
|
500
|
-
transform_kwargs = dict(
|
501
|
-
snowpark_input_cols = self._snowpark_cols,
|
502
|
-
drop_input_cols = self._drop_input_cols
|
503
|
-
)
|
483
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
504
484
|
|
505
485
|
transform_handlers = ModelTransformerBuilder.build(
|
506
486
|
dataset=dataset,
|
@@ -519,7 +499,11 @@ class MeanShift(BaseTransformer):
|
|
519
499
|
return output_df
|
520
500
|
|
521
501
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
522
|
-
def fit_predict(
|
502
|
+
def fit_predict(
|
503
|
+
self,
|
504
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
505
|
+
output_cols_prefix: str = "fit_predict_",
|
506
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
523
507
|
""" Perform clustering on `X` and returns cluster labels
|
524
508
|
For more details on this function, see [sklearn.cluster.MeanShift.fit_predict]
|
525
509
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift.fit_predict)
|
@@ -546,22 +530,104 @@ class MeanShift(BaseTransformer):
|
|
546
530
|
)
|
547
531
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
548
532
|
drop_input_cols=self._drop_input_cols,
|
549
|
-
expected_output_cols_list=
|
533
|
+
expected_output_cols_list=(
|
534
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
535
|
+
),
|
550
536
|
)
|
551
537
|
self._sklearn_object = fitted_estimator
|
552
538
|
self._is_fitted = True
|
553
539
|
return output_result
|
554
540
|
|
541
|
+
|
542
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
543
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
544
|
+
""" Method not supported for this class.
|
545
|
+
|
546
|
+
|
547
|
+
Raises:
|
548
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
555
549
|
|
556
|
-
|
557
|
-
|
558
|
-
|
550
|
+
Args:
|
551
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
552
|
+
Snowpark or Pandas DataFrame.
|
553
|
+
output_cols_prefix: Prefix for the response columns
|
559
554
|
Returns:
|
560
555
|
Transformed dataset.
|
561
556
|
"""
|
562
|
-
self.
|
563
|
-
|
564
|
-
|
557
|
+
self._infer_input_output_cols(dataset)
|
558
|
+
super()._check_dataset_type(dataset)
|
559
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
560
|
+
estimator=self._sklearn_object,
|
561
|
+
dataset=dataset,
|
562
|
+
input_cols=self.input_cols,
|
563
|
+
label_cols=self.label_cols,
|
564
|
+
sample_weight_col=self.sample_weight_col,
|
565
|
+
autogenerated=self._autogenerated,
|
566
|
+
subproject=_SUBPROJECT,
|
567
|
+
)
|
568
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
569
|
+
drop_input_cols=self._drop_input_cols,
|
570
|
+
expected_output_cols_list=self.output_cols,
|
571
|
+
)
|
572
|
+
self._sklearn_object = fitted_estimator
|
573
|
+
self._is_fitted = True
|
574
|
+
return output_result
|
575
|
+
|
576
|
+
|
577
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
578
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
579
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
580
|
+
"""
|
581
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
582
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
583
|
+
if output_cols:
|
584
|
+
output_cols = [
|
585
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
586
|
+
for c in output_cols
|
587
|
+
]
|
588
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
589
|
+
output_cols = [output_cols_prefix]
|
590
|
+
elif self._sklearn_object is not None:
|
591
|
+
classes = self._sklearn_object.classes_
|
592
|
+
if isinstance(classes, numpy.ndarray):
|
593
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
594
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
595
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
596
|
+
output_cols = []
|
597
|
+
for i, cl in enumerate(classes):
|
598
|
+
# For binary classification, there is only one output column for each class
|
599
|
+
# ndarray as the two classes are complementary.
|
600
|
+
if len(cl) == 2:
|
601
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
602
|
+
else:
|
603
|
+
output_cols.extend([
|
604
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
605
|
+
])
|
606
|
+
else:
|
607
|
+
output_cols = []
|
608
|
+
|
609
|
+
# Make sure column names are valid snowflake identifiers.
|
610
|
+
assert output_cols is not None # Make MyPy happy
|
611
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
612
|
+
|
613
|
+
return rv
|
614
|
+
|
615
|
+
def _align_expected_output_names(
|
616
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
617
|
+
) -> List[str]:
|
618
|
+
# in case the inferred output column names dimension is different
|
619
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
620
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
621
|
+
output_df_columns = list(output_df_pd.columns)
|
622
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
623
|
+
if self.sample_weight_col:
|
624
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
625
|
+
# if the dimension of inferred output column names is correct; use it
|
626
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
627
|
+
return expected_output_cols_list
|
628
|
+
# otherwise, use the sklearn estimator's output
|
629
|
+
else:
|
630
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
565
631
|
|
566
632
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
567
633
|
@telemetry.send_api_usage_telemetry(
|
@@ -593,24 +659,26 @@ class MeanShift(BaseTransformer):
|
|
593
659
|
# are specific to the type of dataset used.
|
594
660
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
595
661
|
|
662
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
663
|
+
|
596
664
|
if isinstance(dataset, DataFrame):
|
597
|
-
self.
|
598
|
-
|
599
|
-
|
600
|
-
|
601
|
-
|
665
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
666
|
+
self._deps = self._get_dependencies()
|
667
|
+
assert isinstance(
|
668
|
+
dataset._session, Session
|
669
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
602
670
|
transform_kwargs = dict(
|
603
671
|
session=dataset._session,
|
604
672
|
dependencies=self._deps,
|
605
|
-
drop_input_cols
|
673
|
+
drop_input_cols=self._drop_input_cols,
|
606
674
|
expected_output_cols_type="float",
|
607
675
|
)
|
676
|
+
expected_output_cols = self._align_expected_output_names(
|
677
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
678
|
+
)
|
608
679
|
|
609
680
|
elif isinstance(dataset, pd.DataFrame):
|
610
|
-
transform_kwargs = dict(
|
611
|
-
snowpark_input_cols = self._snowpark_cols,
|
612
|
-
drop_input_cols = self._drop_input_cols
|
613
|
-
)
|
681
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
614
682
|
|
615
683
|
transform_handlers = ModelTransformerBuilder.build(
|
616
684
|
dataset=dataset,
|
@@ -622,7 +690,7 @@ class MeanShift(BaseTransformer):
|
|
622
690
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
623
691
|
inference_method=inference_method,
|
624
692
|
input_cols=self.input_cols,
|
625
|
-
expected_output_cols=
|
693
|
+
expected_output_cols=expected_output_cols,
|
626
694
|
**transform_kwargs
|
627
695
|
)
|
628
696
|
return output_df
|
@@ -652,29 +720,30 @@ class MeanShift(BaseTransformer):
|
|
652
720
|
Output dataset with log probability of the sample for each class in the model.
|
653
721
|
"""
|
654
722
|
super()._check_dataset_type(dataset)
|
655
|
-
inference_method="predict_log_proba"
|
723
|
+
inference_method = "predict_log_proba"
|
724
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
656
725
|
|
657
726
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
658
727
|
# are specific to the type of dataset used.
|
659
728
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
660
729
|
|
661
730
|
if isinstance(dataset, DataFrame):
|
662
|
-
self.
|
663
|
-
|
664
|
-
|
665
|
-
|
666
|
-
|
731
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
732
|
+
self._deps = self._get_dependencies()
|
733
|
+
assert isinstance(
|
734
|
+
dataset._session, Session
|
735
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
667
736
|
transform_kwargs = dict(
|
668
737
|
session=dataset._session,
|
669
738
|
dependencies=self._deps,
|
670
|
-
drop_input_cols
|
739
|
+
drop_input_cols=self._drop_input_cols,
|
671
740
|
expected_output_cols_type="float",
|
672
741
|
)
|
742
|
+
expected_output_cols = self._align_expected_output_names(
|
743
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
744
|
+
)
|
673
745
|
elif isinstance(dataset, pd.DataFrame):
|
674
|
-
transform_kwargs = dict(
|
675
|
-
snowpark_input_cols = self._snowpark_cols,
|
676
|
-
drop_input_cols = self._drop_input_cols
|
677
|
-
)
|
746
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
678
747
|
|
679
748
|
transform_handlers = ModelTransformerBuilder.build(
|
680
749
|
dataset=dataset,
|
@@ -687,7 +756,7 @@ class MeanShift(BaseTransformer):
|
|
687
756
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
688
757
|
inference_method=inference_method,
|
689
758
|
input_cols=self.input_cols,
|
690
|
-
expected_output_cols=
|
759
|
+
expected_output_cols=expected_output_cols,
|
691
760
|
**transform_kwargs
|
692
761
|
)
|
693
762
|
return output_df
|
@@ -713,30 +782,32 @@ class MeanShift(BaseTransformer):
|
|
713
782
|
Output dataset with results of the decision function for the samples in input dataset.
|
714
783
|
"""
|
715
784
|
super()._check_dataset_type(dataset)
|
716
|
-
inference_method="decision_function"
|
785
|
+
inference_method = "decision_function"
|
717
786
|
|
718
787
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
719
788
|
# are specific to the type of dataset used.
|
720
789
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
721
790
|
|
791
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
792
|
+
|
722
793
|
if isinstance(dataset, DataFrame):
|
723
|
-
self.
|
724
|
-
|
725
|
-
|
726
|
-
|
727
|
-
|
794
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
795
|
+
self._deps = self._get_dependencies()
|
796
|
+
assert isinstance(
|
797
|
+
dataset._session, Session
|
798
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
728
799
|
transform_kwargs = dict(
|
729
800
|
session=dataset._session,
|
730
801
|
dependencies=self._deps,
|
731
|
-
drop_input_cols
|
802
|
+
drop_input_cols=self._drop_input_cols,
|
732
803
|
expected_output_cols_type="float",
|
733
804
|
)
|
805
|
+
expected_output_cols = self._align_expected_output_names(
|
806
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
807
|
+
)
|
734
808
|
|
735
809
|
elif isinstance(dataset, pd.DataFrame):
|
736
|
-
transform_kwargs = dict(
|
737
|
-
snowpark_input_cols = self._snowpark_cols,
|
738
|
-
drop_input_cols = self._drop_input_cols
|
739
|
-
)
|
810
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
740
811
|
|
741
812
|
transform_handlers = ModelTransformerBuilder.build(
|
742
813
|
dataset=dataset,
|
@@ -749,7 +820,7 @@ class MeanShift(BaseTransformer):
|
|
749
820
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
750
821
|
inference_method=inference_method,
|
751
822
|
input_cols=self.input_cols,
|
752
|
-
expected_output_cols=
|
823
|
+
expected_output_cols=expected_output_cols,
|
753
824
|
**transform_kwargs
|
754
825
|
)
|
755
826
|
return output_df
|
@@ -778,17 +849,17 @@ class MeanShift(BaseTransformer):
|
|
778
849
|
Output dataset with probability of the sample for each class in the model.
|
779
850
|
"""
|
780
851
|
super()._check_dataset_type(dataset)
|
781
|
-
inference_method="score_samples"
|
852
|
+
inference_method = "score_samples"
|
782
853
|
|
783
854
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
784
855
|
# are specific to the type of dataset used.
|
785
856
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
786
857
|
|
858
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
859
|
+
|
787
860
|
if isinstance(dataset, DataFrame):
|
788
|
-
self.
|
789
|
-
|
790
|
-
inference_method=inference_method,
|
791
|
-
)
|
861
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
862
|
+
self._deps = self._get_dependencies()
|
792
863
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
793
864
|
transform_kwargs = dict(
|
794
865
|
session=dataset._session,
|
@@ -796,6 +867,9 @@ class MeanShift(BaseTransformer):
|
|
796
867
|
drop_input_cols = self._drop_input_cols,
|
797
868
|
expected_output_cols_type="float",
|
798
869
|
)
|
870
|
+
expected_output_cols = self._align_expected_output_names(
|
871
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
872
|
+
)
|
799
873
|
|
800
874
|
elif isinstance(dataset, pd.DataFrame):
|
801
875
|
transform_kwargs = dict(
|
@@ -814,7 +888,7 @@ class MeanShift(BaseTransformer):
|
|
814
888
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
815
889
|
inference_method=inference_method,
|
816
890
|
input_cols=self.input_cols,
|
817
|
-
expected_output_cols=
|
891
|
+
expected_output_cols=expected_output_cols,
|
818
892
|
**transform_kwargs
|
819
893
|
)
|
820
894
|
return output_df
|
@@ -847,17 +921,15 @@ class MeanShift(BaseTransformer):
|
|
847
921
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
848
922
|
|
849
923
|
if isinstance(dataset, DataFrame):
|
850
|
-
self.
|
851
|
-
|
852
|
-
inference_method="score",
|
853
|
-
)
|
924
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
925
|
+
self._deps = self._get_dependencies()
|
854
926
|
selected_cols = self._get_active_columns()
|
855
927
|
if len(selected_cols) > 0:
|
856
928
|
dataset = dataset.select(selected_cols)
|
857
929
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
858
930
|
transform_kwargs = dict(
|
859
931
|
session=dataset._session,
|
860
|
-
dependencies=
|
932
|
+
dependencies=self._deps,
|
861
933
|
score_sproc_imports=['sklearn'],
|
862
934
|
)
|
863
935
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -922,11 +994,8 @@ class MeanShift(BaseTransformer):
|
|
922
994
|
|
923
995
|
if isinstance(dataset, DataFrame):
|
924
996
|
|
925
|
-
self.
|
926
|
-
|
927
|
-
inference_method=inference_method,
|
928
|
-
|
929
|
-
)
|
997
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
998
|
+
self._deps = self._get_dependencies()
|
930
999
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
931
1000
|
transform_kwargs = dict(
|
932
1001
|
session = dataset._session,
|
@@ -959,50 +1028,84 @@ class MeanShift(BaseTransformer):
|
|
959
1028
|
)
|
960
1029
|
return output_df
|
961
1030
|
|
1031
|
+
|
1032
|
+
|
1033
|
+
def to_sklearn(self) -> Any:
|
1034
|
+
"""Get sklearn.cluster.MeanShift object.
|
1035
|
+
"""
|
1036
|
+
if self._sklearn_object is None:
|
1037
|
+
self._sklearn_object = self._create_sklearn_object()
|
1038
|
+
return self._sklearn_object
|
1039
|
+
|
1040
|
+
def to_xgboost(self) -> Any:
|
1041
|
+
raise exceptions.SnowflakeMLException(
|
1042
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1043
|
+
original_exception=AttributeError(
|
1044
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1045
|
+
"to_xgboost()",
|
1046
|
+
"to_sklearn()"
|
1047
|
+
)
|
1048
|
+
),
|
1049
|
+
)
|
962
1050
|
|
963
|
-
def
|
1051
|
+
def to_lightgbm(self) -> Any:
|
1052
|
+
raise exceptions.SnowflakeMLException(
|
1053
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1054
|
+
original_exception=AttributeError(
|
1055
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1056
|
+
"to_lightgbm()",
|
1057
|
+
"to_sklearn()"
|
1058
|
+
)
|
1059
|
+
),
|
1060
|
+
)
|
1061
|
+
|
1062
|
+
def _get_dependencies(self) -> List[str]:
|
1063
|
+
return self._deps
|
1064
|
+
|
1065
|
+
|
1066
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
964
1067
|
self._model_signature_dict = dict()
|
965
1068
|
|
966
1069
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
967
1070
|
|
968
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1071
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
969
1072
|
outputs: List[BaseFeatureSpec] = []
|
970
1073
|
if hasattr(self, "predict"):
|
971
1074
|
# keep mypy happy
|
972
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1075
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
973
1076
|
# For classifier, the type of predict is the same as the type of label
|
974
|
-
if self._sklearn_object._estimator_type ==
|
975
|
-
|
1077
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1078
|
+
# label columns is the desired type for output
|
976
1079
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
977
1080
|
# rename the output columns
|
978
1081
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
979
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
980
|
-
|
981
|
-
|
1082
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1083
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1084
|
+
)
|
982
1085
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
983
1086
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
984
|
-
# Clusterer returns int64 cluster labels.
|
1087
|
+
# Clusterer returns int64 cluster labels.
|
985
1088
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
986
1089
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
987
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
988
|
-
|
989
|
-
|
990
|
-
|
1090
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1091
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1092
|
+
)
|
1093
|
+
|
991
1094
|
# For regressor, the type of predict is float64
|
992
|
-
elif self._sklearn_object._estimator_type ==
|
1095
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
993
1096
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
994
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
995
|
-
|
996
|
-
|
997
|
-
|
1097
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1098
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1099
|
+
)
|
1100
|
+
|
998
1101
|
for prob_func in PROB_FUNCTIONS:
|
999
1102
|
if hasattr(self, prob_func):
|
1000
1103
|
output_cols_prefix: str = f"{prob_func}_"
|
1001
1104
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1002
1105
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1003
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1004
|
-
|
1005
|
-
|
1106
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1107
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1108
|
+
)
|
1006
1109
|
|
1007
1110
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1008
1111
|
items = list(self._model_signature_dict.items())
|
@@ -1015,10 +1118,10 @@ class MeanShift(BaseTransformer):
|
|
1015
1118
|
"""Returns model signature of current class.
|
1016
1119
|
|
1017
1120
|
Raises:
|
1018
|
-
|
1121
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1019
1122
|
|
1020
1123
|
Returns:
|
1021
|
-
Dict
|
1124
|
+
Dict with each method and its input output signature
|
1022
1125
|
"""
|
1023
1126
|
if self._model_signature_dict is None:
|
1024
1127
|
raise exceptions.SnowflakeMLException(
|
@@ -1026,35 +1129,3 @@ class MeanShift(BaseTransformer):
|
|
1026
1129
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1027
1130
|
)
|
1028
1131
|
return self._model_signature_dict
|
1029
|
-
|
1030
|
-
def to_sklearn(self) -> Any:
|
1031
|
-
"""Get sklearn.cluster.MeanShift object.
|
1032
|
-
"""
|
1033
|
-
if self._sklearn_object is None:
|
1034
|
-
self._sklearn_object = self._create_sklearn_object()
|
1035
|
-
return self._sklearn_object
|
1036
|
-
|
1037
|
-
def to_xgboost(self) -> Any:
|
1038
|
-
raise exceptions.SnowflakeMLException(
|
1039
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1040
|
-
original_exception=AttributeError(
|
1041
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1042
|
-
"to_xgboost()",
|
1043
|
-
"to_sklearn()"
|
1044
|
-
)
|
1045
|
-
),
|
1046
|
-
)
|
1047
|
-
|
1048
|
-
def to_lightgbm(self) -> Any:
|
1049
|
-
raise exceptions.SnowflakeMLException(
|
1050
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1051
|
-
original_exception=AttributeError(
|
1052
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1053
|
-
"to_lightgbm()",
|
1054
|
-
"to_sklearn()"
|
1055
|
-
)
|
1056
|
-
),
|
1057
|
-
)
|
1058
|
-
|
1059
|
-
def _get_dependencies(self) -> List[str]:
|
1060
|
-
return self._deps
|