snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class MeanShift(BaseTransformer):
71
64
  r"""Mean shift clustering using a flat kernel
72
65
  For more details on this class, see [sklearn.cluster.MeanShift]
@@ -253,12 +246,7 @@ class MeanShift(BaseTransformer):
253
246
  )
254
247
  return selected_cols
255
248
 
256
- @telemetry.send_api_usage_telemetry(
257
- project=_PROJECT,
258
- subproject=_SUBPROJECT,
259
- custom_tags=dict([("autogen", True)]),
260
- )
261
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MeanShift":
249
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MeanShift":
262
250
  """Perform clustering
263
251
  For more details on this function, see [sklearn.cluster.MeanShift.fit]
264
252
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift.fit)
@@ -285,12 +273,14 @@ class MeanShift(BaseTransformer):
285
273
 
286
274
  self._snowpark_cols = dataset.select(self.input_cols).columns
287
275
 
288
- # If we are already in a stored procedure, no need to kick off another one.
276
+ # If we are already in a stored procedure, no need to kick off another one.
289
277
  if SNOWML_SPROC_ENV in os.environ:
290
278
  statement_params = telemetry.get_function_usage_statement_params(
291
279
  project=_PROJECT,
292
280
  subproject=_SUBPROJECT,
293
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MeanShift.__class__.__name__),
281
+ function_name=telemetry.get_statement_params_full_func_name(
282
+ inspect.currentframe(), MeanShift.__class__.__name__
283
+ ),
294
284
  api_calls=[Session.call],
295
285
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
296
286
  )
@@ -311,27 +301,24 @@ class MeanShift(BaseTransformer):
311
301
  )
312
302
  self._sklearn_object = model_trainer.train()
313
303
  self._is_fitted = True
314
- self._get_model_signatures(dataset)
304
+ self._generate_model_signatures(dataset)
315
305
  return self
316
306
 
317
307
  def _batch_inference_validate_snowpark(
318
308
  self,
319
309
  dataset: DataFrame,
320
310
  inference_method: str,
321
- ) -> List[str]:
322
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
323
- return the available package that exists in the snowflake anaconda channel
311
+ ) -> None:
312
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
324
313
 
325
314
  Args:
326
315
  dataset: snowpark dataframe
327
316
  inference_method: the inference method such as predict, score...
328
-
317
+
329
318
  Raises:
330
319
  SnowflakeMLException: If the estimator is not fitted, raise error
331
320
  SnowflakeMLException: If the session is None, raise error
332
321
 
333
- Returns:
334
- A list of available package that exists in the snowflake anaconda channel
335
322
  """
336
323
  if not self._is_fitted:
337
324
  raise exceptions.SnowflakeMLException(
@@ -349,9 +336,7 @@ class MeanShift(BaseTransformer):
349
336
  "Session must not specified for snowpark dataset."
350
337
  ),
351
338
  )
352
- # Validate that key package version in user workspace are supported in snowflake conda channel
353
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
354
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
339
+
355
340
 
356
341
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
357
342
  @telemetry.send_api_usage_telemetry(
@@ -387,7 +372,9 @@ class MeanShift(BaseTransformer):
387
372
  # when it is classifier, infer the datatype from label columns
388
373
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
389
374
  # Batch inference takes a single expected output column type. Use the first columns type for now.
390
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
375
+ label_cols_signatures = [
376
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
377
+ ]
391
378
  if len(label_cols_signatures) == 0:
392
379
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
393
380
  raise exceptions.SnowflakeMLException(
@@ -395,25 +382,23 @@ class MeanShift(BaseTransformer):
395
382
  original_exception=ValueError(error_str),
396
383
  )
397
384
 
398
- expected_type_inferred = convert_sp_to_sf_type(
399
- label_cols_signatures[0].as_snowpark_type()
400
- )
385
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
401
386
 
402
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
403
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
387
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
388
+ self._deps = self._get_dependencies()
389
+ assert isinstance(
390
+ dataset._session, Session
391
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
404
392
 
405
393
  transform_kwargs = dict(
406
- session = dataset._session,
407
- dependencies = self._deps,
408
- drop_input_cols = self._drop_input_cols,
409
- expected_output_cols_type = expected_type_inferred,
394
+ session=dataset._session,
395
+ dependencies=self._deps,
396
+ drop_input_cols=self._drop_input_cols,
397
+ expected_output_cols_type=expected_type_inferred,
410
398
  )
411
399
 
412
400
  elif isinstance(dataset, pd.DataFrame):
413
- transform_kwargs = dict(
414
- snowpark_input_cols = self._snowpark_cols,
415
- drop_input_cols = self._drop_input_cols
416
- )
401
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
417
402
 
418
403
  transform_handlers = ModelTransformerBuilder.build(
419
404
  dataset=dataset,
@@ -453,7 +438,7 @@ class MeanShift(BaseTransformer):
453
438
  Transformed dataset.
454
439
  """
455
440
  super()._check_dataset_type(dataset)
456
- inference_method="transform"
441
+ inference_method = "transform"
457
442
 
458
443
  # This dictionary contains optional kwargs for batch inference. These kwargs
459
444
  # are specific to the type of dataset used.
@@ -483,24 +468,19 @@ class MeanShift(BaseTransformer):
483
468
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
484
469
  expected_dtype = convert_sp_to_sf_type(output_types[0])
485
470
 
486
- self._deps = self._batch_inference_validate_snowpark(
487
- dataset=dataset,
488
- inference_method=inference_method,
489
- )
471
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
472
+ self._deps = self._get_dependencies()
490
473
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
491
474
 
492
475
  transform_kwargs = dict(
493
- session = dataset._session,
494
- dependencies = self._deps,
495
- drop_input_cols = self._drop_input_cols,
496
- expected_output_cols_type = expected_dtype,
476
+ session=dataset._session,
477
+ dependencies=self._deps,
478
+ drop_input_cols=self._drop_input_cols,
479
+ expected_output_cols_type=expected_dtype,
497
480
  )
498
481
 
499
482
  elif isinstance(dataset, pd.DataFrame):
500
- transform_kwargs = dict(
501
- snowpark_input_cols = self._snowpark_cols,
502
- drop_input_cols = self._drop_input_cols
503
- )
483
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
504
484
 
505
485
  transform_handlers = ModelTransformerBuilder.build(
506
486
  dataset=dataset,
@@ -519,7 +499,11 @@ class MeanShift(BaseTransformer):
519
499
  return output_df
520
500
 
521
501
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
522
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
502
+ def fit_predict(
503
+ self,
504
+ dataset: Union[DataFrame, pd.DataFrame],
505
+ output_cols_prefix: str = "fit_predict_",
506
+ ) -> Union[DataFrame, pd.DataFrame]:
523
507
  """ Perform clustering on `X` and returns cluster labels
524
508
  For more details on this function, see [sklearn.cluster.MeanShift.fit_predict]
525
509
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MeanShift.html#sklearn.cluster.MeanShift.fit_predict)
@@ -546,22 +530,104 @@ class MeanShift(BaseTransformer):
546
530
  )
547
531
  output_result, fitted_estimator = model_trainer.train_fit_predict(
548
532
  drop_input_cols=self._drop_input_cols,
549
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
533
+ expected_output_cols_list=(
534
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
535
+ ),
550
536
  )
551
537
  self._sklearn_object = fitted_estimator
552
538
  self._is_fitted = True
553
539
  return output_result
554
540
 
541
+
542
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
543
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
544
+ """ Method not supported for this class.
545
+
546
+
547
+ Raises:
548
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
555
549
 
556
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
557
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
558
- """
550
+ Args:
551
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
552
+ Snowpark or Pandas DataFrame.
553
+ output_cols_prefix: Prefix for the response columns
559
554
  Returns:
560
555
  Transformed dataset.
561
556
  """
562
- self.fit(dataset)
563
- assert self._sklearn_object is not None
564
- return self._sklearn_object.embedding_
557
+ self._infer_input_output_cols(dataset)
558
+ super()._check_dataset_type(dataset)
559
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
560
+ estimator=self._sklearn_object,
561
+ dataset=dataset,
562
+ input_cols=self.input_cols,
563
+ label_cols=self.label_cols,
564
+ sample_weight_col=self.sample_weight_col,
565
+ autogenerated=self._autogenerated,
566
+ subproject=_SUBPROJECT,
567
+ )
568
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
569
+ drop_input_cols=self._drop_input_cols,
570
+ expected_output_cols_list=self.output_cols,
571
+ )
572
+ self._sklearn_object = fitted_estimator
573
+ self._is_fitted = True
574
+ return output_result
575
+
576
+
577
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
578
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
579
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
580
+ """
581
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
582
+ # The following condition is introduced for kneighbors methods, and not used in other methods
583
+ if output_cols:
584
+ output_cols = [
585
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
586
+ for c in output_cols
587
+ ]
588
+ elif getattr(self._sklearn_object, "classes_", None) is None:
589
+ output_cols = [output_cols_prefix]
590
+ elif self._sklearn_object is not None:
591
+ classes = self._sklearn_object.classes_
592
+ if isinstance(classes, numpy.ndarray):
593
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
594
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
595
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
596
+ output_cols = []
597
+ for i, cl in enumerate(classes):
598
+ # For binary classification, there is only one output column for each class
599
+ # ndarray as the two classes are complementary.
600
+ if len(cl) == 2:
601
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
602
+ else:
603
+ output_cols.extend([
604
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
605
+ ])
606
+ else:
607
+ output_cols = []
608
+
609
+ # Make sure column names are valid snowflake identifiers.
610
+ assert output_cols is not None # Make MyPy happy
611
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
612
+
613
+ return rv
614
+
615
+ def _align_expected_output_names(
616
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
617
+ ) -> List[str]:
618
+ # in case the inferred output column names dimension is different
619
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
620
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
621
+ output_df_columns = list(output_df_pd.columns)
622
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
623
+ if self.sample_weight_col:
624
+ output_df_columns_set -= set(self.sample_weight_col)
625
+ # if the dimension of inferred output column names is correct; use it
626
+ if len(expected_output_cols_list) == len(output_df_columns_set):
627
+ return expected_output_cols_list
628
+ # otherwise, use the sklearn estimator's output
629
+ else:
630
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
565
631
 
566
632
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
567
633
  @telemetry.send_api_usage_telemetry(
@@ -593,24 +659,26 @@ class MeanShift(BaseTransformer):
593
659
  # are specific to the type of dataset used.
594
660
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
595
661
 
662
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
663
+
596
664
  if isinstance(dataset, DataFrame):
597
- self._deps = self._batch_inference_validate_snowpark(
598
- dataset=dataset,
599
- inference_method=inference_method,
600
- )
601
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
665
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
666
+ self._deps = self._get_dependencies()
667
+ assert isinstance(
668
+ dataset._session, Session
669
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
602
670
  transform_kwargs = dict(
603
671
  session=dataset._session,
604
672
  dependencies=self._deps,
605
- drop_input_cols = self._drop_input_cols,
673
+ drop_input_cols=self._drop_input_cols,
606
674
  expected_output_cols_type="float",
607
675
  )
676
+ expected_output_cols = self._align_expected_output_names(
677
+ inference_method, dataset, expected_output_cols, output_cols_prefix
678
+ )
608
679
 
609
680
  elif isinstance(dataset, pd.DataFrame):
610
- transform_kwargs = dict(
611
- snowpark_input_cols = self._snowpark_cols,
612
- drop_input_cols = self._drop_input_cols
613
- )
681
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
614
682
 
615
683
  transform_handlers = ModelTransformerBuilder.build(
616
684
  dataset=dataset,
@@ -622,7 +690,7 @@ class MeanShift(BaseTransformer):
622
690
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
623
691
  inference_method=inference_method,
624
692
  input_cols=self.input_cols,
625
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
693
+ expected_output_cols=expected_output_cols,
626
694
  **transform_kwargs
627
695
  )
628
696
  return output_df
@@ -652,29 +720,30 @@ class MeanShift(BaseTransformer):
652
720
  Output dataset with log probability of the sample for each class in the model.
653
721
  """
654
722
  super()._check_dataset_type(dataset)
655
- inference_method="predict_log_proba"
723
+ inference_method = "predict_log_proba"
724
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
656
725
 
657
726
  # This dictionary contains optional kwargs for batch inference. These kwargs
658
727
  # are specific to the type of dataset used.
659
728
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
660
729
 
661
730
  if isinstance(dataset, DataFrame):
662
- self._deps = self._batch_inference_validate_snowpark(
663
- dataset=dataset,
664
- inference_method=inference_method,
665
- )
666
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
731
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
732
+ self._deps = self._get_dependencies()
733
+ assert isinstance(
734
+ dataset._session, Session
735
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
667
736
  transform_kwargs = dict(
668
737
  session=dataset._session,
669
738
  dependencies=self._deps,
670
- drop_input_cols = self._drop_input_cols,
739
+ drop_input_cols=self._drop_input_cols,
671
740
  expected_output_cols_type="float",
672
741
  )
742
+ expected_output_cols = self._align_expected_output_names(
743
+ inference_method, dataset, expected_output_cols, output_cols_prefix
744
+ )
673
745
  elif isinstance(dataset, pd.DataFrame):
674
- transform_kwargs = dict(
675
- snowpark_input_cols = self._snowpark_cols,
676
- drop_input_cols = self._drop_input_cols
677
- )
746
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
678
747
 
679
748
  transform_handlers = ModelTransformerBuilder.build(
680
749
  dataset=dataset,
@@ -687,7 +756,7 @@ class MeanShift(BaseTransformer):
687
756
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
688
757
  inference_method=inference_method,
689
758
  input_cols=self.input_cols,
690
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
759
+ expected_output_cols=expected_output_cols,
691
760
  **transform_kwargs
692
761
  )
693
762
  return output_df
@@ -713,30 +782,32 @@ class MeanShift(BaseTransformer):
713
782
  Output dataset with results of the decision function for the samples in input dataset.
714
783
  """
715
784
  super()._check_dataset_type(dataset)
716
- inference_method="decision_function"
785
+ inference_method = "decision_function"
717
786
 
718
787
  # This dictionary contains optional kwargs for batch inference. These kwargs
719
788
  # are specific to the type of dataset used.
720
789
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
721
790
 
791
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
792
+
722
793
  if isinstance(dataset, DataFrame):
723
- self._deps = self._batch_inference_validate_snowpark(
724
- dataset=dataset,
725
- inference_method=inference_method,
726
- )
727
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
794
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
795
+ self._deps = self._get_dependencies()
796
+ assert isinstance(
797
+ dataset._session, Session
798
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
728
799
  transform_kwargs = dict(
729
800
  session=dataset._session,
730
801
  dependencies=self._deps,
731
- drop_input_cols = self._drop_input_cols,
802
+ drop_input_cols=self._drop_input_cols,
732
803
  expected_output_cols_type="float",
733
804
  )
805
+ expected_output_cols = self._align_expected_output_names(
806
+ inference_method, dataset, expected_output_cols, output_cols_prefix
807
+ )
734
808
 
735
809
  elif isinstance(dataset, pd.DataFrame):
736
- transform_kwargs = dict(
737
- snowpark_input_cols = self._snowpark_cols,
738
- drop_input_cols = self._drop_input_cols
739
- )
810
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
740
811
 
741
812
  transform_handlers = ModelTransformerBuilder.build(
742
813
  dataset=dataset,
@@ -749,7 +820,7 @@ class MeanShift(BaseTransformer):
749
820
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
750
821
  inference_method=inference_method,
751
822
  input_cols=self.input_cols,
752
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
823
+ expected_output_cols=expected_output_cols,
753
824
  **transform_kwargs
754
825
  )
755
826
  return output_df
@@ -778,17 +849,17 @@ class MeanShift(BaseTransformer):
778
849
  Output dataset with probability of the sample for each class in the model.
779
850
  """
780
851
  super()._check_dataset_type(dataset)
781
- inference_method="score_samples"
852
+ inference_method = "score_samples"
782
853
 
783
854
  # This dictionary contains optional kwargs for batch inference. These kwargs
784
855
  # are specific to the type of dataset used.
785
856
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
786
857
 
858
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
859
+
787
860
  if isinstance(dataset, DataFrame):
788
- self._deps = self._batch_inference_validate_snowpark(
789
- dataset=dataset,
790
- inference_method=inference_method,
791
- )
861
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
862
+ self._deps = self._get_dependencies()
792
863
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
793
864
  transform_kwargs = dict(
794
865
  session=dataset._session,
@@ -796,6 +867,9 @@ class MeanShift(BaseTransformer):
796
867
  drop_input_cols = self._drop_input_cols,
797
868
  expected_output_cols_type="float",
798
869
  )
870
+ expected_output_cols = self._align_expected_output_names(
871
+ inference_method, dataset, expected_output_cols, output_cols_prefix
872
+ )
799
873
 
800
874
  elif isinstance(dataset, pd.DataFrame):
801
875
  transform_kwargs = dict(
@@ -814,7 +888,7 @@ class MeanShift(BaseTransformer):
814
888
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
815
889
  inference_method=inference_method,
816
890
  input_cols=self.input_cols,
817
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
891
+ expected_output_cols=expected_output_cols,
818
892
  **transform_kwargs
819
893
  )
820
894
  return output_df
@@ -847,17 +921,15 @@ class MeanShift(BaseTransformer):
847
921
  transform_kwargs: ScoreKwargsTypedDict = dict()
848
922
 
849
923
  if isinstance(dataset, DataFrame):
850
- self._deps = self._batch_inference_validate_snowpark(
851
- dataset=dataset,
852
- inference_method="score",
853
- )
924
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
925
+ self._deps = self._get_dependencies()
854
926
  selected_cols = self._get_active_columns()
855
927
  if len(selected_cols) > 0:
856
928
  dataset = dataset.select(selected_cols)
857
929
  assert isinstance(dataset._session, Session) # keep mypy happy
858
930
  transform_kwargs = dict(
859
931
  session=dataset._session,
860
- dependencies=["snowflake-snowpark-python"] + self._deps,
932
+ dependencies=self._deps,
861
933
  score_sproc_imports=['sklearn'],
862
934
  )
863
935
  elif isinstance(dataset, pd.DataFrame):
@@ -922,11 +994,8 @@ class MeanShift(BaseTransformer):
922
994
 
923
995
  if isinstance(dataset, DataFrame):
924
996
 
925
- self._deps = self._batch_inference_validate_snowpark(
926
- dataset=dataset,
927
- inference_method=inference_method,
928
-
929
- )
997
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
998
+ self._deps = self._get_dependencies()
930
999
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
931
1000
  transform_kwargs = dict(
932
1001
  session = dataset._session,
@@ -959,50 +1028,84 @@ class MeanShift(BaseTransformer):
959
1028
  )
960
1029
  return output_df
961
1030
 
1031
+
1032
+
1033
+ def to_sklearn(self) -> Any:
1034
+ """Get sklearn.cluster.MeanShift object.
1035
+ """
1036
+ if self._sklearn_object is None:
1037
+ self._sklearn_object = self._create_sklearn_object()
1038
+ return self._sklearn_object
1039
+
1040
+ def to_xgboost(self) -> Any:
1041
+ raise exceptions.SnowflakeMLException(
1042
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1043
+ original_exception=AttributeError(
1044
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1045
+ "to_xgboost()",
1046
+ "to_sklearn()"
1047
+ )
1048
+ ),
1049
+ )
962
1050
 
963
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1051
+ def to_lightgbm(self) -> Any:
1052
+ raise exceptions.SnowflakeMLException(
1053
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1054
+ original_exception=AttributeError(
1055
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1056
+ "to_lightgbm()",
1057
+ "to_sklearn()"
1058
+ )
1059
+ ),
1060
+ )
1061
+
1062
+ def _get_dependencies(self) -> List[str]:
1063
+ return self._deps
1064
+
1065
+
1066
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
964
1067
  self._model_signature_dict = dict()
965
1068
 
966
1069
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
967
1070
 
968
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1071
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
969
1072
  outputs: List[BaseFeatureSpec] = []
970
1073
  if hasattr(self, "predict"):
971
1074
  # keep mypy happy
972
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1075
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
973
1076
  # For classifier, the type of predict is the same as the type of label
974
- if self._sklearn_object._estimator_type == 'classifier':
975
- # label columns is the desired type for output
1077
+ if self._sklearn_object._estimator_type == "classifier":
1078
+ # label columns is the desired type for output
976
1079
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
977
1080
  # rename the output columns
978
1081
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
979
- self._model_signature_dict["predict"] = ModelSignature(inputs,
980
- ([] if self._drop_input_cols else inputs)
981
- + outputs)
1082
+ self._model_signature_dict["predict"] = ModelSignature(
1083
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1084
+ )
982
1085
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
983
1086
  # For outlier models, returns -1 for outliers and 1 for inliers.
984
- # Clusterer returns int64 cluster labels.
1087
+ # Clusterer returns int64 cluster labels.
985
1088
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
986
1089
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
987
- self._model_signature_dict["predict"] = ModelSignature(inputs,
988
- ([] if self._drop_input_cols else inputs)
989
- + outputs)
990
-
1090
+ self._model_signature_dict["predict"] = ModelSignature(
1091
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1092
+ )
1093
+
991
1094
  # For regressor, the type of predict is float64
992
- elif self._sklearn_object._estimator_type == 'regressor':
1095
+ elif self._sklearn_object._estimator_type == "regressor":
993
1096
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
997
-
1097
+ self._model_signature_dict["predict"] = ModelSignature(
1098
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1099
+ )
1100
+
998
1101
  for prob_func in PROB_FUNCTIONS:
999
1102
  if hasattr(self, prob_func):
1000
1103
  output_cols_prefix: str = f"{prob_func}_"
1001
1104
  output_column_names = self._get_output_column_names(output_cols_prefix)
1002
1105
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1003
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1004
- ([] if self._drop_input_cols else inputs)
1005
- + outputs)
1106
+ self._model_signature_dict[prob_func] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1006
1109
 
1007
1110
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1008
1111
  items = list(self._model_signature_dict.items())
@@ -1015,10 +1118,10 @@ class MeanShift(BaseTransformer):
1015
1118
  """Returns model signature of current class.
1016
1119
 
1017
1120
  Raises:
1018
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1121
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1019
1122
 
1020
1123
  Returns:
1021
- Dict[str, ModelSignature]: each method and its input output signature
1124
+ Dict with each method and its input output signature
1022
1125
  """
1023
1126
  if self._model_signature_dict is None:
1024
1127
  raise exceptions.SnowflakeMLException(
@@ -1026,35 +1129,3 @@ class MeanShift(BaseTransformer):
1026
1129
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1027
1130
  )
1028
1131
  return self._model_signature_dict
1029
-
1030
- def to_sklearn(self) -> Any:
1031
- """Get sklearn.cluster.MeanShift object.
1032
- """
1033
- if self._sklearn_object is None:
1034
- self._sklearn_object = self._create_sklearn_object()
1035
- return self._sklearn_object
1036
-
1037
- def to_xgboost(self) -> Any:
1038
- raise exceptions.SnowflakeMLException(
1039
- error_code=error_codes.METHOD_NOT_ALLOWED,
1040
- original_exception=AttributeError(
1041
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
- "to_xgboost()",
1043
- "to_sklearn()"
1044
- )
1045
- ),
1046
- )
1047
-
1048
- def to_lightgbm(self) -> Any:
1049
- raise exceptions.SnowflakeMLException(
1050
- error_code=error_codes.METHOD_NOT_ALLOWED,
1051
- original_exception=AttributeError(
1052
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
- "to_lightgbm()",
1054
- "to_sklearn()"
1055
- )
1056
- ),
1057
- )
1058
-
1059
- def _get_dependencies(self) -> List[str]:
1060
- return self._deps