snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,380 @@
1
+ snowflake/cortex/__init__.py,sha256=CAUk94eXmNBXXaiLg-yNodyM2FPHvacErKtdVQYqtRM,360
2
+ snowflake/cortex/_complete.py,sha256=C2wLk5RMtg-d2bkdbQKou6U8nvR8g3vykpCkH9-gF9g,1226
3
+ snowflake/cortex/_extract_answer.py,sha256=4tiz4pUisw035ZLmCQDcGuwoT-jFpuo5dzrQYhvYHCA,1358
4
+ snowflake/cortex/_sentiment.py,sha256=7X_a8qJNFFgn-Y1tjwMDkyNJHz5yYl0PvnezVCc4TsM,1149
5
+ snowflake/cortex/_summarize.py,sha256=DJRxUrPrTVmtQNgus0ZPF1z8nPmn4Rs5oL3U25CfXxQ,1075
6
+ snowflake/cortex/_translate.py,sha256=JPMIXxHTgJPfJqT5Hw_WtYM6FZ8NuQufZ4XR-M8wnyo,1420
7
+ snowflake/cortex/_util.py,sha256=0xDaDSctenhuj59atZenZp5q9zuhji0WQ77KPjqqNoc,1557
8
+ snowflake/ml/version.py,sha256=3R9EThHATDpTgUWWErtoGeHWTDLDz1F9kgtQ7lMuM80,16
9
+ snowflake/ml/_internal/env.py,sha256=kCrJTRnqQ97VGUVI1cWUPD8HuBWeL5vOOtwUR0NB9Mg,161
10
+ snowflake/ml/_internal/env_utils.py,sha256=aqaF-bXPUvXxONfMRxIuH-JKyu3oWkRqyC_1jDEmK4Y,27629
11
+ snowflake/ml/_internal/file_utils.py,sha256=OyXHv-UcItiip1YgLnab6etonUQkYuyDtmplZA0CaoU,13622
12
+ snowflake/ml/_internal/init_utils.py,sha256=U-oPOtyVf22hCwDH_CH2uDr9yuN6Mr3kwQ_yRAs1mcM,2696
13
+ snowflake/ml/_internal/migrator_utils.py,sha256=k3erO8x3YJcX6nkKeyJAUNGg1qjE3RFmD-W6dtLzIH0,161
14
+ snowflake/ml/_internal/telemetry.py,sha256=oM7dDcs1GKgxKP2UM7va1j1YfQGISFiGYyiT9zM7Yxc,22763
15
+ snowflake/ml/_internal/type_utils.py,sha256=0AjimiQoAPHGnpLV_zCR6vlMR5lJ8CkZkKFwiUHYDCo,2168
16
+ snowflake/ml/_internal/container_services/image_registry/credential.py,sha256=nShNgIb2yNu9w6vceOY3aSgjpuOoi0spWWmvgEafPSk,3291
17
+ snowflake/ml/_internal/container_services/image_registry/http_client.py,sha256=_zqPPp76Vk0jQ8eVK0OJ4mJgcWsdY4suUd1P7Orqmm8,5214
18
+ snowflake/ml/_internal/container_services/image_registry/imagelib.py,sha256=Vh684uUZfwGGnxO-BZ4tRGa50l2uGM-4WfTg6QftlMY,14537
19
+ snowflake/ml/_internal/container_services/image_registry/registry_client.py,sha256=Zic4bF67DMqEZbQMHffyeNoa83-FhswpZx02iBMjyrc,9115
20
+ snowflake/ml/_internal/exceptions/dataset_error_messages.py,sha256=h7uGJbxBM6se-TW_64LKGGGdBCbwflzbBnmijWKX3Gc,285
21
+ snowflake/ml/_internal/exceptions/dataset_errors.py,sha256=wZTPKZRJSYsfeTs0vDL8r4bFFSP_9ob8XinMgPi63RM,762
22
+ snowflake/ml/_internal/exceptions/error_codes.py,sha256=eMgsEfIYFQesK_pqLIsyxRZojz8Ke9DTlA5ni60RLv4,5453
23
+ snowflake/ml/_internal/exceptions/error_messages.py,sha256=vF9XOWJoBuKvFxBkGcDelhXK1dipzTt-AdK4NkCbwTo,47
24
+ snowflake/ml/_internal/exceptions/exceptions.py,sha256=ub0fthrNTVoKhpj1pXnKRfO1Gqnmbe7wY51vaoEOp5M,1653
25
+ snowflake/ml/_internal/exceptions/fileset_error_messages.py,sha256=dqPpRu0cKyQA_0gahvbizgQBTwNhnwveN286JrJLvi8,419
26
+ snowflake/ml/_internal/exceptions/fileset_errors.py,sha256=ZJfkpeDgRIw3qA876fk9FIzxIrm-yZ8I9RXUbzaeM84,1040
27
+ snowflake/ml/_internal/exceptions/modeling_error_messages.py,sha256=q1Nh7KvnUebdKCwwAPmotdAVS578CgAXcfDOfKoweVw,665
28
+ snowflake/ml/_internal/human_readable_id/adjectives.txt,sha256=5o4MbVeHoELAqyLpyuKleOKR47jPjC_nKoziOIZMwT0,804
29
+ snowflake/ml/_internal/human_readable_id/animals.txt,sha256=GDLzMwzxiL07PhIMxw4t89bhYqqg0bQfPiuQT8VNeME,837
30
+ snowflake/ml/_internal/human_readable_id/hrid_generator.py,sha256=LYWB86qZgsVBvnc6Q5VjfDOmnGSQU3cTRKfId_nJSPY,1341
31
+ snowflake/ml/_internal/human_readable_id/hrid_generator_base.py,sha256=D1yoVG1vmAFUhWQ5xCRRU6HCCBPbXHpOXagFd0jK0O8,4519
32
+ snowflake/ml/_internal/lineage/data_source.py,sha256=D24FdR6Wq_PdUuCsBDvSMCr5CfHqpMamrc8-F5iZVJ0,214
33
+ snowflake/ml/_internal/lineage/dataset_dataframe.py,sha256=qbEXgkHxzx6zZzJCGpIhFV7-OdAuA_qrO9AixxyxHSk,1712
34
+ snowflake/ml/_internal/utils/formatting.py,sha256=PswZ6Xas7sx3Ok1MBLoH2o7nfXOxaJqpUPg_UqXrQb8,3676
35
+ snowflake/ml/_internal/utils/identifier.py,sha256=eokEDF7JIML2gm_3FfknPdPR9aBT3woweA5S4z_46-E,10925
36
+ snowflake/ml/_internal/utils/import_utils.py,sha256=eexwIe7auT17s4aVxAns7se0_K15rcq3O17MkIvDpPI,2068
37
+ snowflake/ml/_internal/utils/log_stream_processor.py,sha256=pBf8ycEamhHjEzUT55Rx_tFqSkYRpD5Dt71Mx9ZdaS8,1001
38
+ snowflake/ml/_internal/utils/parallelize.py,sha256=Q6_-P2t4DoYNO8DyC1kOl7H3qNL-bUK6EgtlQ_b5ThY,4534
39
+ snowflake/ml/_internal/utils/pkg_version_utils.py,sha256=tpu6B0HKpbT-svvU2Pbz7zNqzg-jgoSmwYvtTzXYyzw,5857
40
+ snowflake/ml/_internal/utils/query_result_checker.py,sha256=h1nbUImdB9lSNCON3uIA0xCm8_JrS-TE-jQXJJs9WfU,10668
41
+ snowflake/ml/_internal/utils/result.py,sha256=59Sz6MvhjakUNiONwg9oi2544AmORCJR3XyWTxY2vP0,2405
42
+ snowflake/ml/_internal/utils/retryable_http.py,sha256=1GCuQkTGO4sX-VRbjy31e4_VgUjqsp5Lh2v5tSJjVK8,1321
43
+ snowflake/ml/_internal/utils/session_token_manager.py,sha256=qXRlE7pyw-Gb0q_BmTdWZEu9pCq2oRNuJBoqfKD9QDQ,1727
44
+ snowflake/ml/_internal/utils/snowflake_env.py,sha256=Mrov0v95pzVUeAe7r1e1PtlIco9ytj5SGAuUWORQaKs,2927
45
+ snowflake/ml/_internal/utils/snowpark_dataframe_utils.py,sha256=HPyWxj-SwgvWUrYR38BkBtx813eMqz5wmQosgc1sce0,5403
46
+ snowflake/ml/_internal/utils/spcs_attribution_utils.py,sha256=9XPKe1BDkWhnGuHDXBHE4FP-m3U22lTZnrQLsHGFhWU,4292
47
+ snowflake/ml/_internal/utils/sql_identifier.py,sha256=CHTxr3qtc1ygNkA5oOQQa-XEoosw5sjfHe7J4WZlkDQ,3270
48
+ snowflake/ml/_internal/utils/table_manager.py,sha256=jHGfl0YSqhFLL7DOOQkjUMzTmLkqFDIM7Gs0LBQw8BM,4384
49
+ snowflake/ml/_internal/utils/temp_file_utils.py,sha256=7JNib0DvjxW7Eu3bimwAHibGosf0u8W49HEc49BghF8,1402
50
+ snowflake/ml/_internal/utils/uri.py,sha256=pvskcWoeS0M66DaU2XlJzK9wce55z4J5dn5kTy_-Tqs,2828
51
+ snowflake/ml/dataset/__init__.py,sha256=jyoLosJL9mTWTULTqJB3WaDS77-zsPcdoWDTNxyN-rY,236
52
+ snowflake/ml/dataset/dataset.py,sha256=V6QeEN8WatRnpoXRss950ISKiE0hKrJg7PCFkHKmfYo,20863
53
+ snowflake/ml/dataset/dataset_factory.py,sha256=qdS6jX8uiCpW5TIKnZ-_2HRfWN3c_N1bZ6lBC1bLy5g,1712
54
+ snowflake/ml/dataset/dataset_metadata.py,sha256=lvaYd1sNOgWcXD1q_-J7fQZ0ndOC8guR9IgKpChBcFA,3992
55
+ snowflake/ml/dataset/dataset_reader.py,sha256=0Vgr_xV4YIBewPeymGNpaSCA7AVZcCgyq8pSuSwc2Ys,8205
56
+ snowflake/ml/feature_store/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
57
+ snowflake/ml/feature_store/entity.py,sha256=dCpzLC3jrt5wDHqFYJXbAYkMiZ0zEmiVDMGkks6MXkA,3378
58
+ snowflake/ml/feature_store/feature_store.py,sha256=SrJkB_9Y6clbw6jCWmKvjGoZ78PU2hzUSnHTVnTfDKo,76062
59
+ snowflake/ml/feature_store/feature_view.py,sha256=Epqmm5QiK6jdgrgE-x54Lq1B6VBocFLAVk5bt13eyYg,18624
60
+ snowflake/ml/fileset/embedded_stage_fs.py,sha256=gzMX6RbU_K9jCy1zEfF0YZ7nZSVHW4b3UTVAuAn-etY,5740
61
+ snowflake/ml/fileset/fileset.py,sha256=QRhxLeKf1QBqvXO4RyyRd1c8TixhYpHuBEII8Qi3C_M,26201
62
+ snowflake/ml/fileset/parquet_parser.py,sha256=sjyRB59cGBzSzvbcYLvu_ApMPtrR-zwZsQkxekMR4FA,6884
63
+ snowflake/ml/fileset/sfcfs.py,sha256=a77UJFz5Ve9s_26QpcOOoFNOBIKN91KmhYVTQkafn0c,15344
64
+ snowflake/ml/fileset/snowfs.py,sha256=qwBbmMh5mGneO3scriERbdWJ8e717NfkUMXAz2Y4Dhg,6914
65
+ snowflake/ml/fileset/stage_fs.py,sha256=yKMbPlc4chLG2svHKYy7tlefq6hy7kvnefHGunE7DPA,18408
66
+ snowflake/ml/fileset/tf_dataset.py,sha256=K8jafWBsyRaIYEmxaYAYNDj3dLApK82cg0Mlx52jX8I,3849
67
+ snowflake/ml/fileset/torch_datapipe.py,sha256=O2irHckqLzPDnXemEbAEjc3ZCVnLufPdPbt9WKYiBp0,2386
68
+ snowflake/ml/model/__init__.py,sha256=KgZmgLHXmkmEU5Q7pzYQlpfvIll4SRTSiT9s4RjeleI,393
69
+ snowflake/ml/model/_api.py,sha256=u2VUcZ0OK4b8DtlqB_IMaT8EWt_onRVaw3VaWAm4OA4,22329
70
+ snowflake/ml/model/custom_model.py,sha256=xvu7WZ1YmOdvuPePyAj6qMwKq-HNeVV9bNfkOT09CRI,8267
71
+ snowflake/ml/model/deploy_platforms.py,sha256=r6cS3gTNWG9i4P00fHehY6Q8eBiNva6501OTyp_E5m0,144
72
+ snowflake/ml/model/model_signature.py,sha256=UQSGieGJcnmC02V4feCYMdhMXnGoOUa9KBuDrbeivBM,29342
73
+ snowflake/ml/model/type_hints.py,sha256=aUg_1xNtzdH2_kH48v918jbpEnHPNIn6MmfrwdvYvdg,12705
74
+ snowflake/ml/model/_client/model/model_impl.py,sha256=vyjPVoiEUFLW_XGz2tMXHBOk0_yDI5DgnDq3RTmQuW0,13623
75
+ snowflake/ml/model/_client/model/model_version_impl.py,sha256=92uLtim0rZAngg1D0GSFNhPH1QDwZaT6jxOg_rRKcL4,17320
76
+ snowflake/ml/model/_client/ops/metadata_ops.py,sha256=XFNolmueu0nC3nAjb2Lj3v1NffDAhAq0JWMek9JVO38,4094
77
+ snowflake/ml/model/_client/ops/model_ops.py,sha256=J96RRYHOxtO3ScQZYS176Mr4B1BDuWh7UwH-2cSIgng,23490
78
+ snowflake/ml/model/_client/sql/model.py,sha256=dem_jSDQb16bW0U0PvtNbR48XEiceo-sKn86dNFoXBs,5687
79
+ snowflake/ml/model/_client/sql/model_version.py,sha256=HKAiIWvqWtcADUSMXUtAISGj-z8AJFbxGSBackuo3N0,14290
80
+ snowflake/ml/model/_client/sql/stage.py,sha256=4zP8aO6cv0IDrZEqhkheNWwy4qBuv1qyGLwMFSW-7EI,1497
81
+ snowflake/ml/model/_client/sql/tag.py,sha256=RYvblBfQmK4xmLF0pz0BNUd9wddqlfHtEK1JRRpJGPE,4646
82
+ snowflake/ml/model/_deploy_client/image_builds/base_image_builder.py,sha256=clCaoO0DZam4X79UtQV1ZuMQtTezAJkhLu9ViAX18Xk,302
83
+ snowflake/ml/model/_deploy_client/image_builds/client_image_builder.py,sha256=G74D9lV2B3d544YzFN-YrjPkaST7tbQeh-rM17dtoJc,10681
84
+ snowflake/ml/model/_deploy_client/image_builds/docker_context.py,sha256=7uhAJsHsk7LbiZv_w3xOCE2O88rTUVnS3_B6OAz-JG4,6129
85
+ snowflake/ml/model/_deploy_client/image_builds/gunicorn_run.sh,sha256=1pntXgqFthW4gdomqlyWx9CJF-Wqv8VMoLkgSiTHEJ0,1578
86
+ snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py,sha256=SNXqUBkI_tPAgdnLrQW10smG_7O_DGwAuK3dLFE-wJA,10095
87
+ snowflake/ml/model/_deploy_client/image_builds/inference_server/main.py,sha256=Ltk7KrYsp-nrghMhbMWKqi3snU8inbqmKLHFFyBCeBY,11148
88
+ snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template,sha256=8jYNmQfGw7bJgHCEd3iK9Tj68ne_x5U0hWhgKqPxEXw,1783
89
+ snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template,sha256=g8mEvpJmwQ9OnAkZomeErPQ6h4OJ5NdtRCoylyIp7f4,1225
90
+ snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template,sha256=nEK7fqo_XHJEVKLNe--EkES4oiDm7M5E9CacxGItFU0,3633
91
+ snowflake/ml/model/_deploy_client/snowservice/deploy.py,sha256=3Jn--iC5_dP_lJLWVShPvivH7EccT9AUWBX2tOavjYU,29286
92
+ snowflake/ml/model/_deploy_client/snowservice/deploy_options.py,sha256=X4ncWgcgS9DKaNDiauOR9aVC6D27yb3DNouXDEHEjMQ,5989
93
+ snowflake/ml/model/_deploy_client/snowservice/instance_types.py,sha256=YHI5D7UXNlEbV_Bzk0Nq6nrzfv2VUJfxwchLe7hY-lA,232
94
+ snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template,sha256=hZX8XYPAlEU2R6JhZLj46js91g7XSfe2pysflCYH4HM,734
95
+ snowflake/ml/model/_deploy_client/snowservice/templates/service_spec_template_with_model,sha256=2SUfeKVOSuZJgY6HZLi0m80ZrOzofjABbnusUl_JT1U,540
96
+ snowflake/ml/model/_deploy_client/utils/constants.py,sha256=Ip_2GgsCYRXj_mD4MUdktQRlYGkqOXoznE49oignd7Y,1696
97
+ snowflake/ml/model/_deploy_client/utils/snowservice_client.py,sha256=k0SulzWdttRvJkyuXM59aluEVgQg8Qd7XZUUpEBKuO4,11671
98
+ snowflake/ml/model/_deploy_client/warehouse/deploy.py,sha256=yZR9M76oh6JbPQJHb6t3wGO3wuD04w0zLEXiEyZW_tg,8358
99
+ snowflake/ml/model/_deploy_client/warehouse/infer_template.py,sha256=1THMd6JX1nW-OozECyxXbn9HJXDgNBUIdhfC9ODPDWY,3011
100
+ snowflake/ml/model/_model_composer/model_composer.py,sha256=QSliEFs-wr9LguSTkQWIA9Nbw_9mOsHpUnanVsgV3Qs,7325
101
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest.py,sha256=5tMz0d7t9f0oJAEAOXC4BDDpMNAV4atKoK9C66ZHgvU,5667
102
+ snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py,sha256=PsRVrOt15Zr-t2K64_GK5aHjTWN4yLgixRqaYchY2rA,2530
103
+ snowflake/ml/model/_model_composer/model_method/function_generator.py,sha256=2B-fykyanYlGWA4Ie2nOwXx2N5D2qZEvTbbPuSSreeI,1837
104
+ snowflake/ml/model/_model_composer/model_method/infer_function.py_template,sha256=QpQXAIKDs9cotLOL0JdI6xLet1QJU7KtaF7O10nDQcs,2291
105
+ snowflake/ml/model/_model_composer/model_method/infer_table_function.py_template,sha256=gex5if17PZ6t6fPcr2i_LO_3IRY03Ykcv_XAyKJt8pg,2170
106
+ snowflake/ml/model/_model_composer/model_method/model_method.py,sha256=cr5soVDesBm19tjDG6lHLN6xrxj_uwPv1lKt8FgpM-c,6682
107
+ snowflake/ml/model/_packager/model_handler.py,sha256=wMPGOegXx5GgiSA81gbKpfODosdj2mvD1bFbeN4OmNc,2642
108
+ snowflake/ml/model/_packager/model_packager.py,sha256=6YQkmE5LCYIni7bKLMc9yDyS_ozdWuvExh5Wt7Ez2uY,5836
109
+ snowflake/ml/model/_packager/model_env/model_env.py,sha256=3FTftb2OMqCjushFLBISbF6E4z2CQ8G_rNewf-ahVGQ,18312
110
+ snowflake/ml/model/_packager/model_handlers/_base.py,sha256=-FfoDfULcfFRizya5ZHOjx48_w04Zy4eLEqOOrQIDHM,6033
111
+ snowflake/ml/model/_packager/model_handlers/_utils.py,sha256=KKwS93yZnrUr2JERuRGWpzxCWwD6LOCCvR3ZfjZTnyQ,2622
112
+ snowflake/ml/model/_packager/model_handlers/catboost.py,sha256=FC0Yw2QDknaR9jdzncTI4QckozT-y87hWSHsqQYHLTs,8142
113
+ snowflake/ml/model/_packager/model_handlers/custom.py,sha256=y5CHdEeKWAO08uor2OtEob4-67zv1CVfRf1CLvBHN40,7325
114
+ snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py,sha256=Z7vZ5zhZByLVPfNdSkhgzBot1Y8UBOM3ITj3Qfway3A,19985
115
+ snowflake/ml/model/_packager/model_handlers/lightgbm.py,sha256=PWPdpOdden2vfloXZA5sA20b2dCBiGO1-NfJ8atH-Uc,8445
116
+ snowflake/ml/model/_packager/model_handlers/llm.py,sha256=SgCgy9Ys5KivNymjF35ufCpPOtMtSby2Zu4Tllir8Mg,10772
117
+ snowflake/ml/model/_packager/model_handlers/mlflow.py,sha256=Itw1fPiBdU2euOmjLU3P6Vyfj9Go3jSx1c-yHlQRYpU,8993
118
+ snowflake/ml/model/_packager/model_handlers/pytorch.py,sha256=dSxKO530_IlF1OK3t9_UYpVntdPiszKy-x_7XGk0bzQ,8033
119
+ snowflake/ml/model/_packager/model_handlers/sentence_transformers.py,sha256=JRPargMNEJaDFQIpzqEVvOml62G_UVVvJdqBH8Lhu_Y,9051
120
+ snowflake/ml/model/_packager/model_handlers/sklearn.py,sha256=u4ino0SxjAMxEl2jgTqt6Mqs1dKGZmSE90mIp3qHErU,8218
121
+ snowflake/ml/model/_packager/model_handlers/snowmlmodel.py,sha256=le4Y_dbiPlcjhiFpK1shla3pVgQ5UASdx2g7a70tYYY,7967
122
+ snowflake/ml/model/_packager/model_handlers/tensorflow.py,sha256=ujBcbJ1-Ymv7ZeLfuxuDBe7QZ7KNU7x1p2k6OM_yi-0,8179
123
+ snowflake/ml/model/_packager/model_handlers/torchscript.py,sha256=8s8sMWQ9ydJpK1Nk2uPQ-FVeB-xclfX5qzRDr9G1bdk,8104
124
+ snowflake/ml/model/_packager/model_handlers/xgboost.py,sha256=x5bXz5DRzb3O7DMDOF535LBPGnydCa78JHP_7-vsnjY,8874
125
+ snowflake/ml/model/_packager/model_handlers_migrator/base_migrator.py,sha256=BZo14UrywGZM1kTqzN4VFQcYjl7dggDp1U90ZBCMuOg,1409
126
+ snowflake/ml/model/_packager/model_meta/_core_requirements.py,sha256=zObSLyhu56hMnIfdv7PMkzHJrTP3-FAroNZ6-Rji7J4,274
127
+ snowflake/ml/model/_packager/model_meta/_packaging_requirements.py,sha256=TfJNtrfyZoNiJZYFfmTbmiWMlXKM-QxkOBIJVFvPit0,44
128
+ snowflake/ml/model/_packager/model_meta/model_blob_meta.py,sha256=qwgBneEA9xu34FBKDDhxM1igRiviUsuQSGUfKatu_Ro,1818
129
+ snowflake/ml/model/_packager/model_meta/model_meta.py,sha256=0bzons03s0cF2RxbtxS7rPGeZG_Z8BouehqJPd3pfH8,17203
130
+ snowflake/ml/model/_packager/model_meta/model_meta_schema.py,sha256=8eutgCBiL8IFjFIya0NyHLekPhtAsuMhyMA8MCA9VOQ,2380
131
+ snowflake/ml/model/_packager/model_meta_migrator/base_migrator.py,sha256=SORlqpPbOeBg6dvJ3DidHeLVi0w9YF0Zv4tC0Kbc20g,1311
132
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py,sha256=nf6PWDH_gvX_OiS4A-G6BzyCLFEG4dASU0t5JTsijM4,1041
133
+ snowflake/ml/model/_packager/model_meta_migrator/migrator_v1.py,sha256=qEPzdCw_FzExMbPuyFHupeWlYD88yejLdcmkPwjJzDk,2070
134
+ snowflake/ml/model/_packager/model_runtime/_snowml_inference_alternative_requirements.py,sha256=urdG-zCiGWnVBYrvPzeEeaISjBDQwBCft6QJXBmVHWY,248
135
+ snowflake/ml/model/_packager/model_runtime/model_runtime.py,sha256=Hnu0ND3fEmuI29-ommNJdJRzII3tekHrU4z8mUEUqTk,5872
136
+ snowflake/ml/model/_signatures/base_handler.py,sha256=WwBfe-83Y0m-HcDx1YSYCGwanIe0fb2MWhTeXc1IeJI,1304
137
+ snowflake/ml/model/_signatures/builtins_handler.py,sha256=0kAnTZ_-gCK0j5AiWHQhzBZsCweP_87tClsCTUJb3jE,2706
138
+ snowflake/ml/model/_signatures/core.py,sha256=VfOjMsCOKuZwFAXc_FSs2TeFjM-2MSHxQzB_LXc-gLk,17972
139
+ snowflake/ml/model/_signatures/numpy_handler.py,sha256=wE9GNuNNmC-0jLmz8lI_UhyETNkKUvftIABAuNsSe94,5858
140
+ snowflake/ml/model/_signatures/pandas_handler.py,sha256=qKDzRQ3bFa1pLo6-1ReMUOZANMkjW32-B8AqgEIx7nc,8057
141
+ snowflake/ml/model/_signatures/pytorch_handler.py,sha256=QkSiWCBSRRCnsOaONvRPOyMIi4BfUv0zrirXMPmzUD4,4568
142
+ snowflake/ml/model/_signatures/snowpark_handler.py,sha256=ZlXJJIoCUMV99E5ToD3cteQ5VBcs1ekpy8l6dGU0WJM,6036
143
+ snowflake/ml/model/_signatures/tensorflow_handler.py,sha256=VZcws6svwupulhDodRYTn6GmlWZRqY9fW_gLkT8slxA,6082
144
+ snowflake/ml/model/_signatures/utils.py,sha256=aP5lkxiT4lY5gtN6vnupAJhXwRXFSlWFumIYNVH7AtU,12687
145
+ snowflake/ml/model/models/huggingface_pipeline.py,sha256=62GpPZxBheqCnFNxNOggiDE1y9Dhst-v6D4IkGLuDeQ,10221
146
+ snowflake/ml/model/models/llm.py,sha256=ofrdHH4LQEQmnxYAGwmHV2sWLPenf0WcgBLg9MPwSmY,3616
147
+ snowflake/ml/modeling/_internal/constants.py,sha256=xI4ofa3ATQ2UszRPpkfUAxghV_gXmvxleqOew4UI1PM,45
148
+ snowflake/ml/modeling/_internal/estimator_utils.py,sha256=ajRlCHvb4a-rGzMAVvtKhEE5ijObzW7YA_Ox5u2Orr4,9215
149
+ snowflake/ml/modeling/_internal/model_specifications.py,sha256=nAqgw7i1LcYMKRQq9mg2I50Kl0tsayh2_do5UMDXdT0,4801
150
+ snowflake/ml/modeling/_internal/model_trainer.py,sha256=wLAfgWjwWXj3dqhyzZLCJVYSSgujq6zrYBa4q0pw_II,923
151
+ snowflake/ml/modeling/_internal/model_trainer_builder.py,sha256=11cpEaxU1D7R7m79nVLcCA9dryUPsElS7YdlKZh850U,8422
152
+ snowflake/ml/modeling/_internal/model_transformer_builder.py,sha256=Y6Y8XSr7X7xAy1FvjPuHTb9Opy7tnGoCuOUBc5WEBJ4,3364
153
+ snowflake/ml/modeling/_internal/transformer_protocols.py,sha256=adbJH9BcD52Z1VbqoCE_9IexjIxERTXE8932Hz-gw3E,6482
154
+ snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py,sha256=xrayZRLP8_qrnfLJE4uPZ1uz0z3xy4Y5HrJqM3c7MA4,7831
155
+ snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py,sha256=MyTRkBV3zbDeO7HJaWrKYT3KkVqW51Q0AX2BbUtN4og,5737
156
+ snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py,sha256=fgm1DpBBO0qUo2fXFwuN2uFAyTFhcIhT5_bC326VTVw,5544
157
+ snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_trainer.py,sha256=lM1vYwpJ1jgTh8vnuyMp4tnFibM6UFf50W1IpPWwUWE,2535
158
+ snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py,sha256=baETLCVGDcaaGXwiOx6QyhaMX_zQ1Kt7xGjotd_MSKo,54368
159
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py,sha256=AgNupOLqXJytkbdQ1p5Nj1L5QShwi8PSUSYj506SxhM,14539
160
+ snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py,sha256=MYLvpNscLKI0AOuJIdKprtw3VinO0MtSVPj376k-ILo,31819
161
+ snowflake/ml/modeling/_internal/snowpark_implementations/xgboost_external_memory_trainer.py,sha256=VBYWGTy6ajQ-u2aiEvVU6NnKobEqJyz65oaHJS-ZjBs,17208
162
+ snowflake/ml/modeling/calibration/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
163
+ snowflake/ml/modeling/calibration/calibrated_classifier_cv.py,sha256=AGQub8A5L_xTB1gEJsbzTSZdsISnhdsAp3OmbEwRutw,51278
164
+ snowflake/ml/modeling/cluster/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
165
+ snowflake/ml/modeling/cluster/affinity_propagation.py,sha256=YeMtuQvE5f2InBc7CyAnlFf0hGy0Okz5X09AQ9C64bI,49107
166
+ snowflake/ml/modeling/cluster/agglomerative_clustering.py,sha256=g_-psPSkpQt05ryMQFeS_GndA9hB8Dkg12ao2s7VNoQ,51144
167
+ snowflake/ml/modeling/cluster/birch.py,sha256=0zAT_k-ZgnaGFfcZu5XGll7kAH8BZ8lFCTajWFYmV2o,49034
168
+ snowflake/ml/modeling/cluster/bisecting_k_means.py,sha256=l9nxeYVGqf11msu1i6iG12i8YiWD2uZiVtH4WXDDzjI,51793
169
+ snowflake/ml/modeling/cluster/dbscan.py,sha256=qAtH_LxcmVg7B8NerncUsfBoKiUJwb2N1FYiBM8olxk,49194
170
+ snowflake/ml/modeling/cluster/feature_agglomeration.py,sha256=uPo3I-ROixH6SsWknj7f6AaEYLybpxHs1M4LKTkouRU,51909
171
+ snowflake/ml/modeling/cluster/k_means.py,sha256=fiFQSvRRwPbQp8b9UhOeZ97hRTn-HZN4aRGXlehnGyU,51322
172
+ snowflake/ml/modeling/cluster/mean_shift.py,sha256=4H7iQtz-tqhUZVjecoWIk7Z5dtYuWJVD3sy1R_xL2DI,49404
173
+ snowflake/ml/modeling/cluster/mini_batch_k_means.py,sha256=DUM05k_RNIeBenVXtssGnqEerp0OAI0z11k-GO9n7P0,52711
174
+ snowflake/ml/modeling/cluster/optics.py,sha256=-j_q6rcEEzkO9m6owloMRBWUnrCCZK1QUgBUo7mlYYo,52508
175
+ snowflake/ml/modeling/cluster/spectral_biclustering.py,sha256=kWW9zsBhQH6KpLFuw2htgEYolhy8fpQZXdggWx33hAg,49403
176
+ snowflake/ml/modeling/cluster/spectral_clustering.py,sha256=CCZrM9Z_5BJEl3pywVOvCO8vOGGdfPLc7qtP4sdVkoQ,52595
177
+ snowflake/ml/modeling/cluster/spectral_coclustering.py,sha256=nUrqHjI3pDC21OhHsaFoJ9jrCa5nY_a-EdHDW_XWb8U,48536
178
+ snowflake/ml/modeling/compose/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
179
+ snowflake/ml/modeling/compose/column_transformer.py,sha256=Js74mW_UUGrT0W7ZmBtiF-4a3dLvppgSmMxB7AeitgI,51374
180
+ snowflake/ml/modeling/compose/transformed_target_regressor.py,sha256=eCLZdS6zYgyPUQy_9wnA13s1rPE_9U4oX3qNY8VF6tM,49090
181
+ snowflake/ml/modeling/covariance/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
182
+ snowflake/ml/modeling/covariance/elliptic_envelope.py,sha256=awX5rRrXDb-o4CPl2JFXO7BWt4LBLlYEwW3Wo9TLeFQ,49428
183
+ snowflake/ml/modeling/covariance/empirical_covariance.py,sha256=hIRqpixvv2XPwkoDohmjKnGzXaEnFaEx6M-08CJJlYQ,47236
184
+ snowflake/ml/modeling/covariance/graphical_lasso.py,sha256=-GssWNHzC2DMZuMChEGUzHP8cvOTQr1RYXr4r0rBFPo,49100
185
+ snowflake/ml/modeling/covariance/graphical_lasso_cv.py,sha256=7zobpOYlEn45h4JymakbzRgxOeqUpeZdFqKy3bdZmJQ,50265
186
+ snowflake/ml/modeling/covariance/ledoit_wolf.py,sha256=Ns4vqx2OD2Y9pgs1tithBwej1E0E_6wVlXIRS85mTqw,47374
187
+ snowflake/ml/modeling/covariance/min_cov_det.py,sha256=6hK8ePqINpDEEqUi5bM6FPOLWGhk-9ePVJaG82huQIA,48129
188
+ snowflake/ml/modeling/covariance/oas.py,sha256=P64GRhbVHGhZ1Od-n238do_tZQ5cO3SXRqVoqclLcl4,47015
189
+ snowflake/ml/modeling/covariance/shrunk_covariance.py,sha256=yPwbsZ7_Tlj-Sj6CiayG9ic3J6G_yuGZtu9C2V0x1aw,47391
190
+ snowflake/ml/modeling/decomposition/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
191
+ snowflake/ml/modeling/decomposition/dictionary_learning.py,sha256=Glb9UBBcuweG4bzgYK8r0kb4VQqk795L58C4J8JnoQM,52388
192
+ snowflake/ml/modeling/decomposition/factor_analysis.py,sha256=-ip83Gh3nKzkFGceq602ACdK0Fbo2989_Qr2UEGsSDQ,50051
193
+ snowflake/ml/modeling/decomposition/fast_ica.py,sha256=RxhD4aZFNN-Y4_wNnSYS-Mxle--_XWvTxMMAZV5SLJI,49985
194
+ snowflake/ml/modeling/decomposition/incremental_pca.py,sha256=-sbUNsBgn6NoLgmBME-cfoiwfaNx6unDN6Tr_tQi5sw,48345
195
+ snowflake/ml/modeling/decomposition/kernel_pca.py,sha256=KWSFgSYQJS6hZcUksKuSuxE_L31NAPbHvEmQNCajcHY,52343
196
+ snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py,sha256=xHYcxU8q5q7JirOlR9duL7cxQ7j0P41LhJTnJs6X6Fc,53429
197
+ snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py,sha256=Zf0ZWiUDu6UsmWWaNrvi1X87QIPpJddGOvuNDV-FtMo,50694
198
+ snowflake/ml/modeling/decomposition/pca.py,sha256=-m6Fh_6Sldf-70_B_d8J7FAlXG-FLvEnIgsk63sTu6E,51612
199
+ snowflake/ml/modeling/decomposition/sparse_pca.py,sha256=FTaRx6CbM5WYYGQbCvccR514uzIWsBZYIX5Ql_ofNkM,49499
200
+ snowflake/ml/modeling/decomposition/truncated_svd.py,sha256=RiOmwnQpNx2MU0Z6wZ0pIUzsKfjDzJeWrY9zid8n6Bk,49122
201
+ snowflake/ml/modeling/discriminant_analysis/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
202
+ snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py,sha256=p68gHC7ur53Qp7MMnPyc2FSgWBjDmo10guNtbo0MARc,51877
203
+ snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py,sha256=C8T-Ol8s20nx-IeZMs7KXH-BjGRyNtG3exXQn-cbNMc,49659
204
+ snowflake/ml/modeling/ensemble/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
205
+ snowflake/ml/modeling/ensemble/ada_boost_classifier.py,sha256=2pfHIBCvqZSw3p1b_KqqQPkZ9s-JfndDDS-s3l2lnww,50477
206
+ snowflake/ml/modeling/ensemble/ada_boost_regressor.py,sha256=wu_4FpEKU-bVZDx5OPjDcQDR190dcS_farXa3kMWGTE,49368
207
+ snowflake/ml/modeling/ensemble/bagging_classifier.py,sha256=L7bVu-soVZJIOV9qm6IPbh3sYLNj-R_bYmPCEiz_qAE,51388
208
+ snowflake/ml/modeling/ensemble/bagging_regressor.py,sha256=uQ2ibCiPCdQUS-h51H-TPM5KP9UzMsrUWfDrGQ4pdlA,50624
209
+ snowflake/ml/modeling/ensemble/extra_trees_classifier.py,sha256=-fZBhcMXhcld8ZckIlee_N4GVd84ojcOze3hIPHXdlU,56308
210
+ snowflake/ml/modeling/ensemble/extra_trees_regressor.py,sha256=KVGJbZVHdNFvXy0-H3-_hqLj8BVZM0kUSJ8Ssrm7Cr8,54912
211
+ snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py,sha256=Ra4pfsXH2qniulcS4oOC1HGI8yu043vaEwawisuAn5o,57763
212
+ snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py,sha256=SXGVyiFEpOHcAMzyxlOqUcsmGFQ-iqMi_Vj7m-m_r1g,57356
213
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py,sha256=77kepZu2p40ZEJe-Hlwwr1YWl9vJccFoz07CzkWZY_Q,57597
214
+ snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py,sha256=ze6-uVYgAMJueZXMADb6n9AYRXYxUU5Bealob8IZ2oA,56082
215
+ snowflake/ml/modeling/ensemble/isolation_forest.py,sha256=GTQF6U-Z84a5ojKdwviEv_ewtCK2wbL6-YXZwxfrLPc,50576
216
+ snowflake/ml/modeling/ensemble/random_forest_classifier.py,sha256=y5zD_vjuZ4Yw_fDoBtEMVTN8m6lSLiOSlfWOI1x816k,56291
217
+ snowflake/ml/modeling/ensemble/random_forest_regressor.py,sha256=0uH82Fs1n75hfU3uX6ggCZsDFx94_DtURqbsm3z-8lw,54883
218
+ snowflake/ml/modeling/ensemble/stacking_regressor.py,sha256=dP6WDh0_YYZeGZVBvUQWN-hjKMqDSwVVc98xE8pg88U,50602
219
+ snowflake/ml/modeling/ensemble/voting_classifier.py,sha256=I6t3h-qId9TykuvTgwfTNR2Q3T_NhZN_4KakmjadUG4,50155
220
+ snowflake/ml/modeling/ensemble/voting_regressor.py,sha256=PDoRDW8vBXPDX73WjUtW-xXNnn8BG8omJhrEr9t1PHY,48681
221
+ snowflake/ml/modeling/feature_selection/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
222
+ snowflake/ml/modeling/feature_selection/generic_univariate_select.py,sha256=VtYpm0z7tvr-ksYHgk6LZWDjN7UFqHLqtEsnG51O_W8,48018
223
+ snowflake/ml/modeling/feature_selection/select_fdr.py,sha256=MxADr7gOnVj5V3YRQytXmieXpOzybZK6r37QdRpxOoA,47619
224
+ snowflake/ml/modeling/feature_selection/select_fpr.py,sha256=QSF8zO9qzVv7auA4yBz1jkTqEA1mL_C3tSx93xUufMU,47613
225
+ snowflake/ml/modeling/feature_selection/select_fwe.py,sha256=9gpQbytZwQjPBREld8r-p_bG7sZm3h7nQz4bgH7UL7k,47621
226
+ snowflake/ml/modeling/feature_selection/select_k_best.py,sha256=wZyd-94tGP-FzK85b4dFPzncx0BpfbLME9Mjr5vw2ns,47712
227
+ snowflake/ml/modeling/feature_selection/select_percentile.py,sha256=hnTQ5DtNot9OJah20V-tpkXAzLSbRfJjWhv2gxH11gc,47767
228
+ snowflake/ml/modeling/feature_selection/sequential_feature_selector.py,sha256=-0ZEZboABCnbfguy1YmopbjVZ0-eut24E9XaPol97Sk,50387
229
+ snowflake/ml/modeling/feature_selection/variance_threshold.py,sha256=KwTTDc1WLWz6SiXWz3Bks7u-zP53kdqPRLB3RHtvodw,47323
230
+ snowflake/ml/modeling/framework/_utils.py,sha256=7k9iU5zAWa4ZpMZlg8KfSMi4vH3o69w5aAh5RTRNdZ4,10203
231
+ snowflake/ml/modeling/framework/base.py,sha256=K6qW43lGX99a5v9qIhOTJptPrkMSzzZDa5sVgqii0dM,31359
232
+ snowflake/ml/modeling/gaussian_process/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
233
+ snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py,sha256=1nDZ_nda4WBHqi4tW4avY2b0fNwV5ZF-DI1-BwQjtNg,53029
234
+ snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py,sha256=zkHptpQKCEGJspDnZtNTBswzn-0wVDrOJRJ34ach8dM,52094
235
+ snowflake/ml/modeling/impute/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
236
+ snowflake/ml/modeling/impute/iterative_imputer.py,sha256=Y3yPVO6EFqK-ZBxe_55Gp7To2jIt0N01HTyAyBkpVkI,53847
237
+ snowflake/ml/modeling/impute/knn_imputer.py,sha256=0-YnL5I2aX9BlLDe0BcyUnYdZbbmNX4_Kxj-rcJ61DA,49563
238
+ snowflake/ml/modeling/impute/missing_indicator.py,sha256=gWz2h46qVp7wVqpKa2pyQtO7Mw8bKzEy4M4gWOubiXc,48420
239
+ snowflake/ml/modeling/impute/simple_imputer.py,sha256=awM33HugS5jGs3JXud1U8eEMm2VLdIAf7z_eVXAzKD0,18499
240
+ snowflake/ml/modeling/kernel_approximation/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
241
+ snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py,sha256=pFXnaevash3T9li0RrHqvOceWZZ0TdgyZ20ftfwe6Vc,47451
242
+ snowflake/ml/modeling/kernel_approximation/nystroem.py,sha256=JyMxxr-2uyOnimXM8UzNnT9lV3rGgTiOczp-7cy8uP8,49222
243
+ snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py,sha256=H1nXaQ-jmyh5UID2MrZMiJugkGZu4l33qgrYk8PtXJU,48470
244
+ snowflake/ml/modeling/kernel_approximation/rbf_sampler.py,sha256=daDnxgESQqUWC1ZfzguTK9x715n24hWfC4DtwP3ddQw,47824
245
+ snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py,sha256=9_3V5uZ7hR1wgsg4LXPnhofTr7urOoMIOYznEcwziXs,47872
246
+ snowflake/ml/modeling/kernel_ridge/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
247
+ snowflake/ml/modeling/kernel_ridge/kernel_ridge.py,sha256=j6ZRziTOvZK2IlHKC9a8HAdnGJnLUtg4WEbpoZzW6Dk,49408
248
+ snowflake/ml/modeling/lightgbm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
249
+ snowflake/ml/modeling/lightgbm/lgbm_classifier.py,sha256=O05uhJd9w8VJzmJdSVesTxVjvnqXO0FPxid7HtWgJPo,48976
250
+ snowflake/ml/modeling/lightgbm/lgbm_regressor.py,sha256=BgRHeYkUHa3eLDfyTjVAV7aG-munFAzU1t2IVMnVu18,48479
251
+ snowflake/ml/modeling/linear_model/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
252
+ snowflake/ml/modeling/linear_model/ard_regression.py,sha256=HaPbHZuQI173f0M2hgFsoJDUVwJAKtgRC5z7hTgzIc0,49353
253
+ snowflake/ml/modeling/linear_model/bayesian_ridge.py,sha256=WczXSOPGws4hmCKO93TRv7a16Gxls9IW6D4Ifpy4md8,49769
254
+ snowflake/ml/modeling/linear_model/elastic_net.py,sha256=MjqqWIBdaK2BDYc1RAza1RW2PUSAKNF6_SNhh3EJJWI,50341
255
+ snowflake/ml/modeling/linear_model/elastic_net_cv.py,sha256=vK51acP5WZcaf1jEVvrrsJt-Brr69wnm7OvWz4Ummsk,51609
256
+ snowflake/ml/modeling/linear_model/gamma_regressor.py,sha256=eYsPDEsnpJvaB3Jz3irw0uhTTawNK6T_ujtesphqt6Q,49421
257
+ snowflake/ml/modeling/linear_model/huber_regressor.py,sha256=wh8U5NwrwDG21h8FlX148Y31RWNS53RgjH2d5neNdJc,48618
258
+ snowflake/ml/modeling/linear_model/lars.py,sha256=i9EhEs0SB5n41chcDB7uavlUiwsPAvqK8PRG1l-A2vc,49841
259
+ snowflake/ml/modeling/linear_model/lars_cv.py,sha256=Rz6jD0PCc45fTqzv3gqSehWIMKyPJO3ByMWrOpbOYoA,50062
260
+ snowflake/ml/modeling/linear_model/lasso.py,sha256=MyNEp2q5IxmCTqoL-j_o67kAkY8X5QYBTIgh7XMwWO8,49947
261
+ snowflake/ml/modeling/linear_model/lasso_cv.py,sha256=Aqi9VlF0Az_wIB_m6LUnoB2x8uO9GamPeBAphAMbVoI,50732
262
+ snowflake/ml/modeling/linear_model/lasso_lars.py,sha256=aoyGqoQLslpeta9PdDHr0ZEnJLhR19qMh4c7nOv27BI,50977
263
+ snowflake/ml/modeling/linear_model/lasso_lars_cv.py,sha256=D10l4jKKNAfjio8sZCtDt7fKqa1NCWRyCaBHe55Lgys,50938
264
+ snowflake/ml/modeling/linear_model/lasso_lars_ic.py,sha256=9Mkmzw5mRGJX146stdHRSxxHvzHTaG0odEvnFhqpeFM,50284
265
+ snowflake/ml/modeling/linear_model/linear_regression.py,sha256=uZyGyOrdy6lu6Esp6V_kLgha8sBPPommm5AKyF6G0J0,48160
266
+ snowflake/ml/modeling/linear_model/logistic_regression.py,sha256=cbJz4vOHmQGQblfeQ_m0Szh0ScoFTQHm1uEoQGznSCQ,54415
267
+ snowflake/ml/modeling/linear_model/logistic_regression_cv.py,sha256=8t5ndapP8JF2hOMHnUWAP_CDSrZniKlXHo57cujjnFs,55455
268
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net.py,sha256=kTPTxp12BmVhGuKYY009l6jr7cULbpRm9Dp7qW8-Hqs,49632
269
+ snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py,sha256=LMh9nyld0bndsDmIIlahhxq9TIbDEFSArlfoMildflw,51270
270
+ snowflake/ml/modeling/linear_model/multi_task_lasso.py,sha256=eC7AD7AlgXBXnGwP2WNUSJsiYIl69XkpXGArtdj0s5M,49180
271
+ snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py,sha256=7HYneCH5xNlMLcqDSBLiAjbztkLZcVfZlxkJIaOZP9Y,50442
272
+ snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py,sha256=YhfJfMXvRBDOQl5EOmIDJ7xJAvbhWzhmIh2LyA46L6I,48787
273
+ snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py,sha256=FRu7zp4m4EvTDxVYZeV_-Vknrz2hrVFNSkd2YFXepjY,52143
274
+ snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py,sha256=inz27nO6hjKG4DEcLXc-XfYdUc7xy3x62R9Y6SVrv3A,51210
275
+ snowflake/ml/modeling/linear_model/perceptron.py,sha256=Q2yzFRQ-s_RJGUCsCbBT50SX35MnJGzPLGRiLzc07ys,51527
276
+ snowflake/ml/modeling/linear_model/poisson_regressor.py,sha256=w1BXkGQxmGQj-Lysn7tlEQF_Obg00G7v-310JYUjeiE,49466
277
+ snowflake/ml/modeling/linear_model/ransac_regressor.py,sha256=e7UGWQ743I-g1bYSKKnGefGvq-M0AjJ3jDZ7B2kdxL4,52585
278
+ snowflake/ml/modeling/linear_model/ridge.py,sha256=P6AzZbnl60I_425tdOQepJCXN9Edg00GPE0iiLaGBBk,51491
279
+ snowflake/ml/modeling/linear_model/ridge_classifier.py,sha256=bN0EPKU4pOPoQJF9ZQe0j0dPayWl_Up32NbIh2eoRLY,51879
280
+ snowflake/ml/modeling/linear_model/ridge_classifier_cv.py,sha256=ryDxqt-DH0jOZBap8YGBJPWbv-UGFcNRY4iQIe2-xRw,49874
281
+ snowflake/ml/modeling/linear_model/ridge_cv.py,sha256=ywQjvUjnymlVZwpzAN38rgLxl1pFkSyl5yZyW6DxMk8,50575
282
+ snowflake/ml/modeling/linear_model/sgd_classifier.py,sha256=pG5dEakeR1v8W1Acd2yRlHgQHxQAmA0aHqsjRhWOiJ8,56952
283
+ snowflake/ml/modeling/linear_model/sgd_one_class_svm.py,sha256=xFkcwEL9cHCWDQrt8MMzc9JoAGli_mS7pujbrWL6IYE,51750
284
+ snowflake/ml/modeling/linear_model/sgd_regressor.py,sha256=Ke7nGiusplQDF9F1OjUI0Q9Sz-HKjDasAU7hFQVSXEc,54423
285
+ snowflake/ml/modeling/linear_model/theil_sen_regressor.py,sha256=MpNQb9Q_EA1IleQZiP92U1_FXuwA9-zJmVmPZnHP3lA,49901
286
+ snowflake/ml/modeling/linear_model/tweedie_regressor.py,sha256=OYT3gshbB2vxNseTpmVKtDVfeKhbK48Fe6utSlK47Ro,50857
287
+ snowflake/ml/modeling/manifold/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
288
+ snowflake/ml/modeling/manifold/isomap.py,sha256=ztBEcsRoyM0v9ckQJoYEUTsj5HwRGGXQOjMY3e-_UWQ,50084
289
+ snowflake/ml/modeling/manifold/mds.py,sha256=NlDzOMhCzHAU9cueoJzMT6qKyC_UV_PS_YnlIam58CI,49304
290
+ snowflake/ml/modeling/manifold/spectral_embedding.py,sha256=ojQQ9Pt_bUvRzPSBuLgd2BhjWPdPjAz80XtDJi4vlT8,50155
291
+ snowflake/ml/modeling/manifold/tsne.py,sha256=CpP4qv_V_ibyucBzTIsGq6N7BOPDtzFQ46C5HpJJSCE,53094
292
+ snowflake/ml/modeling/metrics/__init__.py,sha256=pyZnmdcefErGbbhQPIo-_nGps7B09veZtjKZn4lI8Tg,524
293
+ snowflake/ml/modeling/metrics/classification.py,sha256=5XbbpxYu9HXB7FUbBJfT7wVNMKBfzxwcaVzlMSyHAWg,66499
294
+ snowflake/ml/modeling/metrics/correlation.py,sha256=Roi17Sx5F81VlJaLQTeBAe5qZ7sZYc31UkIuC6z4qkQ,4803
295
+ snowflake/ml/modeling/metrics/covariance.py,sha256=HxJK1mwyt6lMSg8yonHFQ8IxAEa62MHeb1M3eHEtqlk,4672
296
+ snowflake/ml/modeling/metrics/metrics_utils.py,sha256=NETSOkhP9m_GZSywiDydCQXKuXOp3qltNgbabROtJAw,13114
297
+ snowflake/ml/modeling/metrics/ranking.py,sha256=gA1R1x1jUXA9bRrYn8IfJPM5BDY4DK1JCtoPQVsz5z4,17569
298
+ snowflake/ml/modeling/metrics/regression.py,sha256=OEawjdiMZHYlycQFXM_h2czIZmmGe5GKciEQD9MSWx4,25845
299
+ snowflake/ml/modeling/mixture/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
300
+ snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py,sha256=UV7nEG1H493qFZecZ0uI9JUh-ooeesZLcCPlH_UdDdQ,54657
301
+ snowflake/ml/modeling/mixture/gaussian_mixture.py,sha256=PPCRLAnDcLdMP190UjV6VGhU28rIHg7wkliaV8EARBI,52558
302
+ snowflake/ml/modeling/model_selection/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
303
+ snowflake/ml/modeling/model_selection/grid_search_cv.py,sha256=B18rb0gh4TK9z2G5XVCx5nav_a9jWDH7q7XdLzAkRwI,38125
304
+ snowflake/ml/modeling/model_selection/randomized_search_cv.py,sha256=ipnRe8z3G09wTy1I2s33CzRsit8pIBfGaZGy4IZfjdM,38867
305
+ snowflake/ml/modeling/multiclass/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
306
+ snowflake/ml/modeling/multiclass/one_vs_one_classifier.py,sha256=h9PDQMMXD9w1GF9nYrAzhOzlo9Tu9gqgm2euvBcmwyA,48160
307
+ snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py,sha256=RX7kdJmEdb_JUUfsie7Q44CFWaRate7N23kKyreT49k,49094
308
+ snowflake/ml/modeling/multiclass/output_code_classifier.py,sha256=dGQLuw7i7IXXv3VQnKxDSQaU8yUpphsVcwPxbpb3uf8,48430
309
+ snowflake/ml/modeling/naive_bayes/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
310
+ snowflake/ml/modeling/naive_bayes/bernoulli_nb.py,sha256=lrWiVXGFQpqbeF0g8va1cMhPyKxxqvgHddaBJLe_J5Y,48699
311
+ snowflake/ml/modeling/naive_bayes/categorical_nb.py,sha256=agWXHZNNV5AzhCH8g0HJFdCpg7qOF0CjRSejcknYwbs,49034
312
+ snowflake/ml/modeling/naive_bayes/complement_nb.py,sha256=dJ9hB8CjM9wOlax4i0yH82LnOeb6dUQRXvPhQX2zYzw,48714
313
+ snowflake/ml/modeling/naive_bayes/gaussian_nb.py,sha256=d-QpjpNF2QUVQQBt2sg-SF_WsidfZ8rQZmiXs-OE2T8,47843
314
+ snowflake/ml/modeling/naive_bayes/multinomial_nb.py,sha256=O36O12tu80hJLag6s34dmZpmf7VojUeuaVe6ceCtgts,48479
315
+ snowflake/ml/modeling/neighbors/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
316
+ snowflake/ml/modeling/neighbors/k_neighbors_classifier.py,sha256=5WC1on082prjxYQczW9wz1pK9EUmwAoNmGl1eWjZ_4w,51548
317
+ snowflake/ml/modeling/neighbors/k_neighbors_regressor.py,sha256=aYMLol69mzwGZLsT3rrVMSY8qauNPuNCBkwi5kFyKac,51019
318
+ snowflake/ml/modeling/neighbors/kernel_density.py,sha256=SqV1AsKmPWxSbob7EGiBu7c_xfk9DCIMU9e4_rto1dU,49377
319
+ snowflake/ml/modeling/neighbors/local_outlier_factor.py,sha256=7s3UKO1UCCVJ_14Kd8nH0kKpkK8BUJwaMT8f8ONSXoI,51955
320
+ snowflake/ml/modeling/neighbors/nearest_centroid.py,sha256=4CP51Ze9kXA7Ipd5z1ZMN-3l77hMjdpLFoll5jLoeYc,48037
321
+ snowflake/ml/modeling/neighbors/nearest_neighbors.py,sha256=QQMbsZGRge2dj0i-zXu7GwX1SYqxSuC90Alt4QppiW0,49846
322
+ snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py,sha256=-R2ifpMaDhOCcxL_ugnlC1Sp6iHxBqxJAmpVwPPpHU0,51509
323
+ snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py,sha256=oyejLj_noQhKnXnTLrThpAdSVfe7F6WnfrL8enAEKKs,51961
324
+ snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py,sha256=WS5xaHj91Ne6_jBDX8i79lRd4Xr0t_2YW7-c3PMd6xc,50842
325
+ snowflake/ml/modeling/neural_network/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
326
+ snowflake/ml/modeling/neural_network/bernoulli_rbm.py,sha256=sM6PA51sYbvJABIw8UiN7QrkcWIU9ajx7biKeswbIJU,48585
327
+ snowflake/ml/modeling/neural_network/mlp_classifier.py,sha256=XYFnxnnEmMa3jlUfKbjDU6U5rTjYMRjfL3-BHmr5Bbs,55921
328
+ snowflake/ml/modeling/neural_network/mlp_regressor.py,sha256=JYb6MziLoTHJvUvnInszDG9RlK17Nxw0SglJqydaP-k,55190
329
+ snowflake/ml/modeling/parameters/disable_distributed_hpo.py,sha256=jyjlLPrtnDSQxlTTM0ayMjWKVL_IP3snd--yeXK5htY,221
330
+ snowflake/ml/modeling/pipeline/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
331
+ snowflake/ml/modeling/pipeline/pipeline.py,sha256=KyA9a7CTTWYaONuB-BAn7dJ1PfXFKReNBKeM398qvi4,45360
332
+ snowflake/ml/modeling/preprocessing/__init__.py,sha256=dYtqk_GD_hAAZjGfH1maWlZQ30h4hu_KGaf-_y9_AD8,298
333
+ snowflake/ml/modeling/preprocessing/binarizer.py,sha256=noHrlTqpI7RRzYbCSuCjKHxhL8NUCDKNw-kDNTwyY_U,6999
334
+ snowflake/ml/modeling/preprocessing/k_bins_discretizer.py,sha256=g7kY0LHjnCaBzkslCkjdPV06eL2KRYwZuYKRmDef3ew,20970
335
+ snowflake/ml/modeling/preprocessing/label_encoder.py,sha256=C35I9biWxefltNmXzqaJoqVgOP8eOnTNP7NIsnfR2xE,7405
336
+ snowflake/ml/modeling/preprocessing/max_abs_scaler.py,sha256=xpuybHsjrL68u0qNe9DTrQOJsqzb8GOvHT0-_tIBzvM,8768
337
+ snowflake/ml/modeling/preprocessing/min_max_scaler.py,sha256=agZt9B37PsVhmS8AkH8ix0bZFsf-EGapeTp6-OD1pwI,12200
338
+ snowflake/ml/modeling/preprocessing/normalizer.py,sha256=iv3MgJZ4B9-X1fAlC0pWsrYuQvRz1iJrM0_f4XfZKc0,6584
339
+ snowflake/ml/modeling/preprocessing/one_hot_encoder.py,sha256=5kj3V48bYmXnorf0xnp5AqRbAiJtgswepgUicyNdFHM,72322
340
+ snowflake/ml/modeling/preprocessing/ordinal_encoder.py,sha256=3c6XnwnMpbHbAITzo5YoJoI86YI-Q_BBFajoEa-7q80,33276
341
+ snowflake/ml/modeling/preprocessing/polynomial_features.py,sha256=VTapvnHDxiUyNw48F0OwGY4xsPFWjst0t70Rm560WN4,48511
342
+ snowflake/ml/modeling/preprocessing/robust_scaler.py,sha256=iBwCP10CljdGmjEo-JEZMsHsk_3tccSXYbxN4xVq5Do,12398
343
+ snowflake/ml/modeling/preprocessing/standard_scaler.py,sha256=LxvcZ4a5xuHJLtIvkLafNjv0HsZd7mqzp_cdI378kkM,11395
344
+ snowflake/ml/modeling/semi_supervised/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
345
+ snowflake/ml/modeling/semi_supervised/label_propagation.py,sha256=ZAwWHQa2A24z9uLIXSucVFj1C7S0LhYT8eQwdLk3g9s,48936
346
+ snowflake/ml/modeling/semi_supervised/label_spreading.py,sha256=yMRrAJG80sM4l48DMqzpIYwQacvuRvDrxc-AflWAt-E,49285
347
+ snowflake/ml/modeling/svm/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
348
+ snowflake/ml/modeling/svm/linear_svc.py,sha256=zcfbzUtusA-a0b0dRTSbGfj8X5rrZ3W2LfoHj7IFqNQ,51746
349
+ snowflake/ml/modeling/svm/linear_svr.py,sha256=P8151xjFlLYj3YhQEbJKiOJEQHKAfrPntv2ufTJl5y4,50099
350
+ snowflake/ml/modeling/svm/nu_svc.py,sha256=me_YR4WL1sW8dRrIrO929p7vc8Ow7_jSftWf9YUHqhY,52058
351
+ snowflake/ml/modeling/svm/nu_svr.py,sha256=Nqyvvt_OsoVe_py602HtsaXnTmykhdQy0fb8YdHFB9s,49137
352
+ snowflake/ml/modeling/svm/svc.py,sha256=6efrAzY2u-5qPKMQb9__L5XNPf33rRFzzMHi4QJnYVA,52207
353
+ snowflake/ml/modeling/svm/svr.py,sha256=WSrWS4uPAVGfPAPiqB-FphSPuNVF43kYk9kyW1ACfx0,49326
354
+ snowflake/ml/modeling/tree/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
355
+ snowflake/ml/modeling/tree/decision_tree_classifier.py,sha256=4D2m5Xg1DNd12WF2-aPxCIdeIAkdO90psJOa5fy1Cc0,54483
356
+ snowflake/ml/modeling/tree/decision_tree_regressor.py,sha256=t5DOqtWJaDV1pSkjXHC66zSQcBFnXIlhrKSYriS38ec,53182
357
+ snowflake/ml/modeling/tree/extra_tree_classifier.py,sha256=Vvg7e0tBbJzjd7mxrNZoX_0xdlZcPVLSPb7-XTrVLnM,53825
358
+ snowflake/ml/modeling/tree/extra_tree_regressor.py,sha256=hJP9mnMF_B63Gj4XI87YgAXEH8KRGxzSTlgvA9gsBvk,52533
359
+ snowflake/ml/modeling/xgboost/__init__.py,sha256=rY5qSOkHj59bHiTV6LhBiEhUA0StoCb0ACNR2vkV4v0,297
360
+ snowflake/ml/modeling/xgboost/xgb_classifier.py,sha256=ntJc0lzSLuJHCTv9LhWrwLsj7_aKNK3uwaQNu5dedbA,59481
361
+ snowflake/ml/modeling/xgboost/xgb_regressor.py,sha256=BjwTmEJ0rhVWVnBoUw_i3A4cAKmXzzIxnsy80MHYzp4,58980
362
+ snowflake/ml/modeling/xgboost/xgbrf_classifier.py,sha256=47owolJMSu3veYvPIYwGyzrZpBXboJAJTMnidHFqYJo,59657
363
+ snowflake/ml/modeling/xgboost/xgbrf_regressor.py,sha256=oeZM8KLqILuM_uzPH8HGR3KtMpcHGTPz2VjVyAndn-c,59183
364
+ snowflake/ml/monitoring/monitor.py,sha256=M9IRk6bnVwKNEvCexEJ5Rf95zEFap4O5qjbwfwdXGS0,7135
365
+ snowflake/ml/monitoring/shap.py,sha256=Dp9nYquPEZjxMTW62YYA9g9qUdmCEFxcSk7ejvOP7PE,3597
366
+ snowflake/ml/registry/__init__.py,sha256=XdPQK9ejYkSJVrSQ7HD3jKQO0hKq2mC4bPCB6qrtH3U,76
367
+ snowflake/ml/registry/_initial_schema.py,sha256=KusBbu0vpgCh-dPHgC90xRSfP6Z79qC-eXTqT8GXpFI,5316
368
+ snowflake/ml/registry/_schema.py,sha256=GOA427_mVKkq9RWRENHuqDimRS0SmmP4EWThNCu1Kz4,3166
369
+ snowflake/ml/registry/_schema_upgrade_plans.py,sha256=LxZNXYGjGG-NmB7w7_SxgaJpZuXUO66XVMuh04oL6SI,4209
370
+ snowflake/ml/registry/_schema_version_manager.py,sha256=-9wGH-7ELSZxp7-fW7hXTMqkJSIebXdSpwwgzdvnoYs,6922
371
+ snowflake/ml/registry/model_registry.py,sha256=x42wR2lEyW99NnG8auNPOowg34bF87ksXQqrjMFd7Pw,84795
372
+ snowflake/ml/registry/registry.py,sha256=RxEM0xLWdF3kIPf5upJffaPPP9liNMMZOnVeSyYNIb8,10949
373
+ snowflake/ml/registry/_manager/model_manager.py,sha256=LYX_nS_egwum7F_LCbz_a3hibIHOTDK8LO1DPOWxPrE,5809
374
+ snowflake/ml/utils/connection_params.py,sha256=JRpQppuWRk6bhdLzVDhMfz3Y6yInobFNLHmIBaXD7po,8005
375
+ snowflake/ml/utils/sparse.py,sha256=XqDQkw39Ml6YIknswdkvFIwUwBk_GBXAbP8IACfPENg,3817
376
+ snowflake_ml_python-1.5.0.dist-info/LICENSE.txt,sha256=PdEp56Av5m3_kl21iFkVTX_EbHJKFGEdmYeIO1pL_Yk,11365
377
+ snowflake_ml_python-1.5.0.dist-info/METADATA,sha256=4_GHqJoiNYXF-WBWL6qwV6wA13ZlB6ySiGQZBLCPwRY,50050
378
+ snowflake_ml_python-1.5.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
379
+ snowflake_ml_python-1.5.0.dist-info/top_level.txt,sha256=TY0gFSHKDdZy3THb0FGomyikWQasEGldIR1O0HGOHVw,10
380
+ snowflake_ml_python-1.5.0.dist-info/RECORD,,
@@ -1,97 +0,0 @@
1
- import copy
2
- import pathlib
3
- from typing import List, Optional
4
-
5
- from packaging import requirements
6
-
7
- from snowflake.ml._internal import env as snowml_env, env_utils, file_utils
8
- from snowflake.ml.model._model_composer.model_manifest import model_manifest_schema
9
- from snowflake.ml.model._model_composer.model_runtime import _runtime_requirements
10
- from snowflake.ml.model._packager.model_env import model_env
11
- from snowflake.ml.model._packager.model_meta import model_meta as model_meta_api
12
- from snowflake.snowpark import session
13
-
14
- _UDF_INFERENCE_DEPENDENCIES = [
15
- str(env_utils.get_package_spec_with_supported_ops_only(requirements.Requirement(r)))
16
- for r in _runtime_requirements.REQUIREMENTS
17
- ]
18
-
19
-
20
- class ModelRuntime:
21
- """Class to represent runtime in a model, which controls the runtime and version, imports and dependencies.
22
-
23
- Attributes:
24
- model_meta: Model Metadata.
25
- runtime_env: ModelEnv object representing the actual environment when deploying. The environment is based on
26
- the environment from the packaged model with additional dependencies required to deploy.
27
- imports: List of files to be imported in the created functions. At least packed model should be imported.
28
- If the required Snowpark ML library is not available in the server-side, we will automatically pack the
29
- local version as well as "snowflake-ml-python.zip" and added into the imports.
30
- """
31
-
32
- RUNTIME_DIR_REL_PATH = "runtimes"
33
-
34
- def __init__(
35
- self,
36
- session: session.Session,
37
- name: str,
38
- model_meta: model_meta_api.ModelMetadata,
39
- imports: Optional[List[pathlib.PurePosixPath]] = None,
40
- ) -> None:
41
- self.name = name
42
- self.model_meta = model_meta
43
- self.runtime_env = copy.deepcopy(self.model_meta.env)
44
- self.imports = imports or []
45
-
46
- snowml_pkg_spec = f"{env_utils.SNOWPARK_ML_PKG_NAME}=={self.runtime_env.snowpark_ml_version}"
47
- if self.runtime_env._snowpark_ml_version.local:
48
- self.embed_local_ml_library = True
49
- else:
50
- snowml_server_availability = (
51
- len(
52
- env_utils.get_matched_package_versions_in_information_schema(
53
- session=session,
54
- reqs=[requirements.Requirement(snowml_pkg_spec)],
55
- python_version=snowml_env.PYTHON_VERSION,
56
- ).get(env_utils.SNOWPARK_ML_PKG_NAME, [])
57
- )
58
- >= 1
59
- )
60
- self.embed_local_ml_library = not snowml_server_availability
61
-
62
- if self.embed_local_ml_library:
63
- self.runtime_env.include_if_absent(
64
- [
65
- model_env.ModelDependency(requirement=dep, pip_name=requirements.Requirement(dep).name)
66
- for dep in _UDF_INFERENCE_DEPENDENCIES
67
- ],
68
- )
69
- else:
70
- self.runtime_env.include_if_absent(
71
- [
72
- model_env.ModelDependency(requirement=dep, pip_name=requirements.Requirement(dep).name)
73
- for dep in _UDF_INFERENCE_DEPENDENCIES + [snowml_pkg_spec]
74
- ],
75
- )
76
-
77
- def save(self, workspace_path: pathlib.Path) -> model_manifest_schema.ModelRuntimeDict:
78
- runtime_base_path = workspace_path / ModelRuntime.RUNTIME_DIR_REL_PATH / self.name
79
- runtime_base_path.mkdir(parents=True, exist_ok=True)
80
-
81
- if self.embed_local_ml_library:
82
- snowpark_ml_lib_path = runtime_base_path / "snowflake-ml-python.zip"
83
- file_utils.zip_python_package(str(snowpark_ml_lib_path), "snowflake.ml")
84
- snowpark_ml_lib_rel_path = pathlib.PurePosixPath(
85
- snowpark_ml_lib_path.relative_to(workspace_path).as_posix()
86
- )
87
- self.imports.append(snowpark_ml_lib_rel_path)
88
-
89
- env_dict = self.runtime_env.save_as_dict(runtime_base_path)
90
- return model_manifest_schema.ModelRuntimeDict(
91
- language="PYTHON",
92
- version=self.runtime_env.python_version,
93
- imports=list(map(str, self.imports)),
94
- dependencies=model_manifest_schema.ModelRuntimeDependenciesDict(
95
- conda=(runtime_base_path / env_dict["conda"]).relative_to(workspace_path).as_posix()
96
- ),
97
- )