snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn."
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class ExtraTreeClassifier(BaseTransformer):
71
64
  r"""An extremely randomized tree classifier
72
65
  For more details on this class, see [sklearn.tree.ExtraTreeClassifier]
@@ -322,12 +315,7 @@ class ExtraTreeClassifier(BaseTransformer):
322
315
  )
323
316
  return selected_cols
324
317
 
325
- @telemetry.send_api_usage_telemetry(
326
- project=_PROJECT,
327
- subproject=_SUBPROJECT,
328
- custom_tags=dict([("autogen", True)]),
329
- )
330
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeClassifier":
318
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreeClassifier":
331
319
  """Build a decision tree classifier from the training set (X, y)
332
320
  For more details on this function, see [sklearn.tree.ExtraTreeClassifier.fit]
333
321
  (https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html#sklearn.tree.ExtraTreeClassifier.fit)
@@ -354,12 +342,14 @@ class ExtraTreeClassifier(BaseTransformer):
354
342
 
355
343
  self._snowpark_cols = dataset.select(self.input_cols).columns
356
344
 
357
- # If we are already in a stored procedure, no need to kick off another one.
345
+ # If we are already in a stored procedure, no need to kick off another one.
358
346
  if SNOWML_SPROC_ENV in os.environ:
359
347
  statement_params = telemetry.get_function_usage_statement_params(
360
348
  project=_PROJECT,
361
349
  subproject=_SUBPROJECT,
362
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreeClassifier.__class__.__name__),
350
+ function_name=telemetry.get_statement_params_full_func_name(
351
+ inspect.currentframe(), ExtraTreeClassifier.__class__.__name__
352
+ ),
363
353
  api_calls=[Session.call],
364
354
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
365
355
  )
@@ -380,27 +370,24 @@ class ExtraTreeClassifier(BaseTransformer):
380
370
  )
381
371
  self._sklearn_object = model_trainer.train()
382
372
  self._is_fitted = True
383
- self._get_model_signatures(dataset)
373
+ self._generate_model_signatures(dataset)
384
374
  return self
385
375
 
386
376
  def _batch_inference_validate_snowpark(
387
377
  self,
388
378
  dataset: DataFrame,
389
379
  inference_method: str,
390
- ) -> List[str]:
391
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
392
- return the available package that exists in the snowflake anaconda channel
380
+ ) -> None:
381
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
393
382
 
394
383
  Args:
395
384
  dataset: snowpark dataframe
396
385
  inference_method: the inference method such as predict, score...
397
-
386
+
398
387
  Raises:
399
388
  SnowflakeMLException: If the estimator is not fitted, raise error
400
389
  SnowflakeMLException: If the session is None, raise error
401
390
 
402
- Returns:
403
- A list of available package that exists in the snowflake anaconda channel
404
391
  """
405
392
  if not self._is_fitted:
406
393
  raise exceptions.SnowflakeMLException(
@@ -418,9 +405,7 @@ class ExtraTreeClassifier(BaseTransformer):
418
405
  "Session must not specified for snowpark dataset."
419
406
  ),
420
407
  )
421
- # Validate that key package version in user workspace are supported in snowflake conda channel
422
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
423
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
408
+
424
409
 
425
410
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
426
411
  @telemetry.send_api_usage_telemetry(
@@ -456,7 +441,9 @@ class ExtraTreeClassifier(BaseTransformer):
456
441
  # when it is classifier, infer the datatype from label columns
457
442
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
458
443
  # Batch inference takes a single expected output column type. Use the first columns type for now.
459
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
444
+ label_cols_signatures = [
445
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
446
+ ]
460
447
  if len(label_cols_signatures) == 0:
461
448
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
462
449
  raise exceptions.SnowflakeMLException(
@@ -464,25 +451,23 @@ class ExtraTreeClassifier(BaseTransformer):
464
451
  original_exception=ValueError(error_str),
465
452
  )
466
453
 
467
- expected_type_inferred = convert_sp_to_sf_type(
468
- label_cols_signatures[0].as_snowpark_type()
469
- )
454
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
470
455
 
471
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
472
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
456
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
457
+ self._deps = self._get_dependencies()
458
+ assert isinstance(
459
+ dataset._session, Session
460
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
473
461
 
474
462
  transform_kwargs = dict(
475
- session = dataset._session,
476
- dependencies = self._deps,
477
- drop_input_cols = self._drop_input_cols,
478
- expected_output_cols_type = expected_type_inferred,
463
+ session=dataset._session,
464
+ dependencies=self._deps,
465
+ drop_input_cols=self._drop_input_cols,
466
+ expected_output_cols_type=expected_type_inferred,
479
467
  )
480
468
 
481
469
  elif isinstance(dataset, pd.DataFrame):
482
- transform_kwargs = dict(
483
- snowpark_input_cols = self._snowpark_cols,
484
- drop_input_cols = self._drop_input_cols
485
- )
470
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
486
471
 
487
472
  transform_handlers = ModelTransformerBuilder.build(
488
473
  dataset=dataset,
@@ -522,7 +507,7 @@ class ExtraTreeClassifier(BaseTransformer):
522
507
  Transformed dataset.
523
508
  """
524
509
  super()._check_dataset_type(dataset)
525
- inference_method="transform"
510
+ inference_method = "transform"
526
511
 
527
512
  # This dictionary contains optional kwargs for batch inference. These kwargs
528
513
  # are specific to the type of dataset used.
@@ -552,24 +537,19 @@ class ExtraTreeClassifier(BaseTransformer):
552
537
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
553
538
  expected_dtype = convert_sp_to_sf_type(output_types[0])
554
539
 
555
- self._deps = self._batch_inference_validate_snowpark(
556
- dataset=dataset,
557
- inference_method=inference_method,
558
- )
540
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
541
+ self._deps = self._get_dependencies()
559
542
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
560
543
 
561
544
  transform_kwargs = dict(
562
- session = dataset._session,
563
- dependencies = self._deps,
564
- drop_input_cols = self._drop_input_cols,
565
- expected_output_cols_type = expected_dtype,
545
+ session=dataset._session,
546
+ dependencies=self._deps,
547
+ drop_input_cols=self._drop_input_cols,
548
+ expected_output_cols_type=expected_dtype,
566
549
  )
567
550
 
568
551
  elif isinstance(dataset, pd.DataFrame):
569
- transform_kwargs = dict(
570
- snowpark_input_cols = self._snowpark_cols,
571
- drop_input_cols = self._drop_input_cols
572
- )
552
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
573
553
 
574
554
  transform_handlers = ModelTransformerBuilder.build(
575
555
  dataset=dataset,
@@ -588,7 +568,11 @@ class ExtraTreeClassifier(BaseTransformer):
588
568
  return output_df
589
569
 
590
570
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
591
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
571
+ def fit_predict(
572
+ self,
573
+ dataset: Union[DataFrame, pd.DataFrame],
574
+ output_cols_prefix: str = "fit_predict_",
575
+ ) -> Union[DataFrame, pd.DataFrame]:
592
576
  """ Method not supported for this class.
593
577
 
594
578
 
@@ -613,22 +597,104 @@ class ExtraTreeClassifier(BaseTransformer):
613
597
  )
614
598
  output_result, fitted_estimator = model_trainer.train_fit_predict(
615
599
  drop_input_cols=self._drop_input_cols,
616
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
600
+ expected_output_cols_list=(
601
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
602
+ ),
617
603
  )
618
604
  self._sklearn_object = fitted_estimator
619
605
  self._is_fitted = True
620
606
  return output_result
621
607
 
608
+
609
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
610
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
611
+ """ Method not supported for this class.
612
+
622
613
 
623
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
624
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
625
- """
614
+ Raises:
615
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
616
+
617
+ Args:
618
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
619
+ Snowpark or Pandas DataFrame.
620
+ output_cols_prefix: Prefix for the response columns
626
621
  Returns:
627
622
  Transformed dataset.
628
623
  """
629
- self.fit(dataset)
630
- assert self._sklearn_object is not None
631
- return self._sklearn_object.embedding_
624
+ self._infer_input_output_cols(dataset)
625
+ super()._check_dataset_type(dataset)
626
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
627
+ estimator=self._sklearn_object,
628
+ dataset=dataset,
629
+ input_cols=self.input_cols,
630
+ label_cols=self.label_cols,
631
+ sample_weight_col=self.sample_weight_col,
632
+ autogenerated=self._autogenerated,
633
+ subproject=_SUBPROJECT,
634
+ )
635
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
636
+ drop_input_cols=self._drop_input_cols,
637
+ expected_output_cols_list=self.output_cols,
638
+ )
639
+ self._sklearn_object = fitted_estimator
640
+ self._is_fitted = True
641
+ return output_result
642
+
643
+
644
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
645
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
646
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
647
+ """
648
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
649
+ # The following condition is introduced for kneighbors methods, and not used in other methods
650
+ if output_cols:
651
+ output_cols = [
652
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
653
+ for c in output_cols
654
+ ]
655
+ elif getattr(self._sklearn_object, "classes_", None) is None:
656
+ output_cols = [output_cols_prefix]
657
+ elif self._sklearn_object is not None:
658
+ classes = self._sklearn_object.classes_
659
+ if isinstance(classes, numpy.ndarray):
660
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
661
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
662
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
663
+ output_cols = []
664
+ for i, cl in enumerate(classes):
665
+ # For binary classification, there is only one output column for each class
666
+ # ndarray as the two classes are complementary.
667
+ if len(cl) == 2:
668
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
669
+ else:
670
+ output_cols.extend([
671
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
672
+ ])
673
+ else:
674
+ output_cols = []
675
+
676
+ # Make sure column names are valid snowflake identifiers.
677
+ assert output_cols is not None # Make MyPy happy
678
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
679
+
680
+ return rv
681
+
682
+ def _align_expected_output_names(
683
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
684
+ ) -> List[str]:
685
+ # in case the inferred output column names dimension is different
686
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
687
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
688
+ output_df_columns = list(output_df_pd.columns)
689
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
690
+ if self.sample_weight_col:
691
+ output_df_columns_set -= set(self.sample_weight_col)
692
+ # if the dimension of inferred output column names is correct; use it
693
+ if len(expected_output_cols_list) == len(output_df_columns_set):
694
+ return expected_output_cols_list
695
+ # otherwise, use the sklearn estimator's output
696
+ else:
697
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
632
698
 
633
699
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
634
700
  @telemetry.send_api_usage_telemetry(
@@ -662,24 +728,26 @@ class ExtraTreeClassifier(BaseTransformer):
662
728
  # are specific to the type of dataset used.
663
729
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
664
730
 
731
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
732
+
665
733
  if isinstance(dataset, DataFrame):
666
- self._deps = self._batch_inference_validate_snowpark(
667
- dataset=dataset,
668
- inference_method=inference_method,
669
- )
670
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
734
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
735
+ self._deps = self._get_dependencies()
736
+ assert isinstance(
737
+ dataset._session, Session
738
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
739
  transform_kwargs = dict(
672
740
  session=dataset._session,
673
741
  dependencies=self._deps,
674
- drop_input_cols = self._drop_input_cols,
742
+ drop_input_cols=self._drop_input_cols,
675
743
  expected_output_cols_type="float",
676
744
  )
745
+ expected_output_cols = self._align_expected_output_names(
746
+ inference_method, dataset, expected_output_cols, output_cols_prefix
747
+ )
677
748
 
678
749
  elif isinstance(dataset, pd.DataFrame):
679
- transform_kwargs = dict(
680
- snowpark_input_cols = self._snowpark_cols,
681
- drop_input_cols = self._drop_input_cols
682
- )
750
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
683
751
 
684
752
  transform_handlers = ModelTransformerBuilder.build(
685
753
  dataset=dataset,
@@ -691,7 +759,7 @@ class ExtraTreeClassifier(BaseTransformer):
691
759
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
692
760
  inference_method=inference_method,
693
761
  input_cols=self.input_cols,
694
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
762
+ expected_output_cols=expected_output_cols,
695
763
  **transform_kwargs
696
764
  )
697
765
  return output_df
@@ -723,29 +791,30 @@ class ExtraTreeClassifier(BaseTransformer):
723
791
  Output dataset with log probability of the sample for each class in the model.
724
792
  """
725
793
  super()._check_dataset_type(dataset)
726
- inference_method="predict_log_proba"
794
+ inference_method = "predict_log_proba"
795
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
727
796
 
728
797
  # This dictionary contains optional kwargs for batch inference. These kwargs
729
798
  # are specific to the type of dataset used.
730
799
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
731
800
 
732
801
  if isinstance(dataset, DataFrame):
733
- self._deps = self._batch_inference_validate_snowpark(
734
- dataset=dataset,
735
- inference_method=inference_method,
736
- )
737
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
802
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
803
+ self._deps = self._get_dependencies()
804
+ assert isinstance(
805
+ dataset._session, Session
806
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
738
807
  transform_kwargs = dict(
739
808
  session=dataset._session,
740
809
  dependencies=self._deps,
741
- drop_input_cols = self._drop_input_cols,
810
+ drop_input_cols=self._drop_input_cols,
742
811
  expected_output_cols_type="float",
743
812
  )
813
+ expected_output_cols = self._align_expected_output_names(
814
+ inference_method, dataset, expected_output_cols, output_cols_prefix
815
+ )
744
816
  elif isinstance(dataset, pd.DataFrame):
745
- transform_kwargs = dict(
746
- snowpark_input_cols = self._snowpark_cols,
747
- drop_input_cols = self._drop_input_cols
748
- )
817
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
749
818
 
750
819
  transform_handlers = ModelTransformerBuilder.build(
751
820
  dataset=dataset,
@@ -758,7 +827,7 @@ class ExtraTreeClassifier(BaseTransformer):
758
827
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
759
828
  inference_method=inference_method,
760
829
  input_cols=self.input_cols,
761
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
830
+ expected_output_cols=expected_output_cols,
762
831
  **transform_kwargs
763
832
  )
764
833
  return output_df
@@ -784,30 +853,32 @@ class ExtraTreeClassifier(BaseTransformer):
784
853
  Output dataset with results of the decision function for the samples in input dataset.
785
854
  """
786
855
  super()._check_dataset_type(dataset)
787
- inference_method="decision_function"
856
+ inference_method = "decision_function"
788
857
 
789
858
  # This dictionary contains optional kwargs for batch inference. These kwargs
790
859
  # are specific to the type of dataset used.
791
860
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
792
861
 
862
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
863
+
793
864
  if isinstance(dataset, DataFrame):
794
- self._deps = self._batch_inference_validate_snowpark(
795
- dataset=dataset,
796
- inference_method=inference_method,
797
- )
798
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
865
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
866
+ self._deps = self._get_dependencies()
867
+ assert isinstance(
868
+ dataset._session, Session
869
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
799
870
  transform_kwargs = dict(
800
871
  session=dataset._session,
801
872
  dependencies=self._deps,
802
- drop_input_cols = self._drop_input_cols,
873
+ drop_input_cols=self._drop_input_cols,
803
874
  expected_output_cols_type="float",
804
875
  )
876
+ expected_output_cols = self._align_expected_output_names(
877
+ inference_method, dataset, expected_output_cols, output_cols_prefix
878
+ )
805
879
 
806
880
  elif isinstance(dataset, pd.DataFrame):
807
- transform_kwargs = dict(
808
- snowpark_input_cols = self._snowpark_cols,
809
- drop_input_cols = self._drop_input_cols
810
- )
881
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
811
882
 
812
883
  transform_handlers = ModelTransformerBuilder.build(
813
884
  dataset=dataset,
@@ -820,7 +891,7 @@ class ExtraTreeClassifier(BaseTransformer):
820
891
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
821
892
  inference_method=inference_method,
822
893
  input_cols=self.input_cols,
823
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
894
+ expected_output_cols=expected_output_cols,
824
895
  **transform_kwargs
825
896
  )
826
897
  return output_df
@@ -849,17 +920,17 @@ class ExtraTreeClassifier(BaseTransformer):
849
920
  Output dataset with probability of the sample for each class in the model.
850
921
  """
851
922
  super()._check_dataset_type(dataset)
852
- inference_method="score_samples"
923
+ inference_method = "score_samples"
853
924
 
854
925
  # This dictionary contains optional kwargs for batch inference. These kwargs
855
926
  # are specific to the type of dataset used.
856
927
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
857
928
 
929
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
930
+
858
931
  if isinstance(dataset, DataFrame):
859
- self._deps = self._batch_inference_validate_snowpark(
860
- dataset=dataset,
861
- inference_method=inference_method,
862
- )
932
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
933
+ self._deps = self._get_dependencies()
863
934
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
864
935
  transform_kwargs = dict(
865
936
  session=dataset._session,
@@ -867,6 +938,9 @@ class ExtraTreeClassifier(BaseTransformer):
867
938
  drop_input_cols = self._drop_input_cols,
868
939
  expected_output_cols_type="float",
869
940
  )
941
+ expected_output_cols = self._align_expected_output_names(
942
+ inference_method, dataset, expected_output_cols, output_cols_prefix
943
+ )
870
944
 
871
945
  elif isinstance(dataset, pd.DataFrame):
872
946
  transform_kwargs = dict(
@@ -885,7 +959,7 @@ class ExtraTreeClassifier(BaseTransformer):
885
959
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
886
960
  inference_method=inference_method,
887
961
  input_cols=self.input_cols,
888
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
962
+ expected_output_cols=expected_output_cols,
889
963
  **transform_kwargs
890
964
  )
891
965
  return output_df
@@ -920,17 +994,15 @@ class ExtraTreeClassifier(BaseTransformer):
920
994
  transform_kwargs: ScoreKwargsTypedDict = dict()
921
995
 
922
996
  if isinstance(dataset, DataFrame):
923
- self._deps = self._batch_inference_validate_snowpark(
924
- dataset=dataset,
925
- inference_method="score",
926
- )
997
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
998
+ self._deps = self._get_dependencies()
927
999
  selected_cols = self._get_active_columns()
928
1000
  if len(selected_cols) > 0:
929
1001
  dataset = dataset.select(selected_cols)
930
1002
  assert isinstance(dataset._session, Session) # keep mypy happy
931
1003
  transform_kwargs = dict(
932
1004
  session=dataset._session,
933
- dependencies=["snowflake-snowpark-python"] + self._deps,
1005
+ dependencies=self._deps,
934
1006
  score_sproc_imports=['sklearn'],
935
1007
  )
936
1008
  elif isinstance(dataset, pd.DataFrame):
@@ -995,11 +1067,8 @@ class ExtraTreeClassifier(BaseTransformer):
995
1067
 
996
1068
  if isinstance(dataset, DataFrame):
997
1069
 
998
- self._deps = self._batch_inference_validate_snowpark(
999
- dataset=dataset,
1000
- inference_method=inference_method,
1001
-
1002
- )
1070
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1071
+ self._deps = self._get_dependencies()
1003
1072
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1004
1073
  transform_kwargs = dict(
1005
1074
  session = dataset._session,
@@ -1032,50 +1101,84 @@ class ExtraTreeClassifier(BaseTransformer):
1032
1101
  )
1033
1102
  return output_df
1034
1103
 
1104
+
1105
+
1106
+ def to_sklearn(self) -> Any:
1107
+ """Get sklearn.tree.ExtraTreeClassifier object.
1108
+ """
1109
+ if self._sklearn_object is None:
1110
+ self._sklearn_object = self._create_sklearn_object()
1111
+ return self._sklearn_object
1112
+
1113
+ def to_xgboost(self) -> Any:
1114
+ raise exceptions.SnowflakeMLException(
1115
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1116
+ original_exception=AttributeError(
1117
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1118
+ "to_xgboost()",
1119
+ "to_sklearn()"
1120
+ )
1121
+ ),
1122
+ )
1123
+
1124
+ def to_lightgbm(self) -> Any:
1125
+ raise exceptions.SnowflakeMLException(
1126
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1127
+ original_exception=AttributeError(
1128
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1129
+ "to_lightgbm()",
1130
+ "to_sklearn()"
1131
+ )
1132
+ ),
1133
+ )
1134
+
1135
+ def _get_dependencies(self) -> List[str]:
1136
+ return self._deps
1137
+
1035
1138
 
1036
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1139
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1037
1140
  self._model_signature_dict = dict()
1038
1141
 
1039
1142
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1040
1143
 
1041
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1144
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1042
1145
  outputs: List[BaseFeatureSpec] = []
1043
1146
  if hasattr(self, "predict"):
1044
1147
  # keep mypy happy
1045
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1148
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1046
1149
  # For classifier, the type of predict is the same as the type of label
1047
- if self._sklearn_object._estimator_type == 'classifier':
1048
- # label columns is the desired type for output
1150
+ if self._sklearn_object._estimator_type == "classifier":
1151
+ # label columns is the desired type for output
1049
1152
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1050
1153
  # rename the output columns
1051
1154
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1052
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1053
- ([] if self._drop_input_cols else inputs)
1054
- + outputs)
1155
+ self._model_signature_dict["predict"] = ModelSignature(
1156
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1157
+ )
1055
1158
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1056
1159
  # For outlier models, returns -1 for outliers and 1 for inliers.
1057
- # Clusterer returns int64 cluster labels.
1160
+ # Clusterer returns int64 cluster labels.
1058
1161
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1059
1162
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1060
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1061
- ([] if self._drop_input_cols else inputs)
1062
- + outputs)
1063
-
1163
+ self._model_signature_dict["predict"] = ModelSignature(
1164
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1165
+ )
1166
+
1064
1167
  # For regressor, the type of predict is float64
1065
- elif self._sklearn_object._estimator_type == 'regressor':
1168
+ elif self._sklearn_object._estimator_type == "regressor":
1066
1169
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1067
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1068
- ([] if self._drop_input_cols else inputs)
1069
- + outputs)
1070
-
1170
+ self._model_signature_dict["predict"] = ModelSignature(
1171
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1172
+ )
1173
+
1071
1174
  for prob_func in PROB_FUNCTIONS:
1072
1175
  if hasattr(self, prob_func):
1073
1176
  output_cols_prefix: str = f"{prob_func}_"
1074
1177
  output_column_names = self._get_output_column_names(output_cols_prefix)
1075
1178
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1076
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1077
- ([] if self._drop_input_cols else inputs)
1078
- + outputs)
1179
+ self._model_signature_dict[prob_func] = ModelSignature(
1180
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1181
+ )
1079
1182
 
1080
1183
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1081
1184
  items = list(self._model_signature_dict.items())
@@ -1088,10 +1191,10 @@ class ExtraTreeClassifier(BaseTransformer):
1088
1191
  """Returns model signature of current class.
1089
1192
 
1090
1193
  Raises:
1091
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1194
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1092
1195
 
1093
1196
  Returns:
1094
- Dict[str, ModelSignature]: each method and its input output signature
1197
+ Dict with each method and its input output signature
1095
1198
  """
1096
1199
  if self._model_signature_dict is None:
1097
1200
  raise exceptions.SnowflakeMLException(
@@ -1099,35 +1202,3 @@ class ExtraTreeClassifier(BaseTransformer):
1099
1202
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1100
1203
  )
1101
1204
  return self._model_signature_dict
1102
-
1103
- def to_sklearn(self) -> Any:
1104
- """Get sklearn.tree.ExtraTreeClassifier object.
1105
- """
1106
- if self._sklearn_object is None:
1107
- self._sklearn_object = self._create_sklearn_object()
1108
- return self._sklearn_object
1109
-
1110
- def to_xgboost(self) -> Any:
1111
- raise exceptions.SnowflakeMLException(
1112
- error_code=error_codes.METHOD_NOT_ALLOWED,
1113
- original_exception=AttributeError(
1114
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1115
- "to_xgboost()",
1116
- "to_sklearn()"
1117
- )
1118
- ),
1119
- )
1120
-
1121
- def to_lightgbm(self) -> Any:
1122
- raise exceptions.SnowflakeMLException(
1123
- error_code=error_codes.METHOD_NOT_ALLOWED,
1124
- original_exception=AttributeError(
1125
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1126
- "to_lightgbm()",
1127
- "to_sklearn()"
1128
- )
1129
- ),
1130
- )
1131
-
1132
- def _get_dependencies(self) -> List[str]:
1133
- return self._deps