snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class MiniBatchKMeans(BaseTransformer):
71
64
  r"""Mini-Batch K-Means clustering
72
65
  For more details on this class, see [sklearn.cluster.MiniBatchKMeans]
@@ -303,12 +296,7 @@ class MiniBatchKMeans(BaseTransformer):
303
296
  )
304
297
  return selected_cols
305
298
 
306
- @telemetry.send_api_usage_telemetry(
307
- project=_PROJECT,
308
- subproject=_SUBPROJECT,
309
- custom_tags=dict([("autogen", True)]),
310
- )
311
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MiniBatchKMeans":
299
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MiniBatchKMeans":
312
300
  """Compute the centroids on X by chunking it into mini-batches
313
301
  For more details on this function, see [sklearn.cluster.MiniBatchKMeans.fit]
314
302
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans.fit)
@@ -335,12 +323,14 @@ class MiniBatchKMeans(BaseTransformer):
335
323
 
336
324
  self._snowpark_cols = dataset.select(self.input_cols).columns
337
325
 
338
- # If we are already in a stored procedure, no need to kick off another one.
326
+ # If we are already in a stored procedure, no need to kick off another one.
339
327
  if SNOWML_SPROC_ENV in os.environ:
340
328
  statement_params = telemetry.get_function_usage_statement_params(
341
329
  project=_PROJECT,
342
330
  subproject=_SUBPROJECT,
343
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchKMeans.__class__.__name__),
331
+ function_name=telemetry.get_statement_params_full_func_name(
332
+ inspect.currentframe(), MiniBatchKMeans.__class__.__name__
333
+ ),
344
334
  api_calls=[Session.call],
345
335
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
346
336
  )
@@ -361,27 +351,24 @@ class MiniBatchKMeans(BaseTransformer):
361
351
  )
362
352
  self._sklearn_object = model_trainer.train()
363
353
  self._is_fitted = True
364
- self._get_model_signatures(dataset)
354
+ self._generate_model_signatures(dataset)
365
355
  return self
366
356
 
367
357
  def _batch_inference_validate_snowpark(
368
358
  self,
369
359
  dataset: DataFrame,
370
360
  inference_method: str,
371
- ) -> List[str]:
372
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
373
- return the available package that exists in the snowflake anaconda channel
361
+ ) -> None:
362
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
374
363
 
375
364
  Args:
376
365
  dataset: snowpark dataframe
377
366
  inference_method: the inference method such as predict, score...
378
-
367
+
379
368
  Raises:
380
369
  SnowflakeMLException: If the estimator is not fitted, raise error
381
370
  SnowflakeMLException: If the session is None, raise error
382
371
 
383
- Returns:
384
- A list of available package that exists in the snowflake anaconda channel
385
372
  """
386
373
  if not self._is_fitted:
387
374
  raise exceptions.SnowflakeMLException(
@@ -399,9 +386,7 @@ class MiniBatchKMeans(BaseTransformer):
399
386
  "Session must not specified for snowpark dataset."
400
387
  ),
401
388
  )
402
- # Validate that key package version in user workspace are supported in snowflake conda channel
403
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
404
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
389
+
405
390
 
406
391
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
407
392
  @telemetry.send_api_usage_telemetry(
@@ -437,7 +422,9 @@ class MiniBatchKMeans(BaseTransformer):
437
422
  # when it is classifier, infer the datatype from label columns
438
423
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
439
424
  # Batch inference takes a single expected output column type. Use the first columns type for now.
440
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
425
+ label_cols_signatures = [
426
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
427
+ ]
441
428
  if len(label_cols_signatures) == 0:
442
429
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
443
430
  raise exceptions.SnowflakeMLException(
@@ -445,25 +432,23 @@ class MiniBatchKMeans(BaseTransformer):
445
432
  original_exception=ValueError(error_str),
446
433
  )
447
434
 
448
- expected_type_inferred = convert_sp_to_sf_type(
449
- label_cols_signatures[0].as_snowpark_type()
450
- )
435
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
451
436
 
452
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
453
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
437
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
438
+ self._deps = self._get_dependencies()
439
+ assert isinstance(
440
+ dataset._session, Session
441
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
454
442
 
455
443
  transform_kwargs = dict(
456
- session = dataset._session,
457
- dependencies = self._deps,
458
- drop_input_cols = self._drop_input_cols,
459
- expected_output_cols_type = expected_type_inferred,
444
+ session=dataset._session,
445
+ dependencies=self._deps,
446
+ drop_input_cols=self._drop_input_cols,
447
+ expected_output_cols_type=expected_type_inferred,
460
448
  )
461
449
 
462
450
  elif isinstance(dataset, pd.DataFrame):
463
- transform_kwargs = dict(
464
- snowpark_input_cols = self._snowpark_cols,
465
- drop_input_cols = self._drop_input_cols
466
- )
451
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
467
452
 
468
453
  transform_handlers = ModelTransformerBuilder.build(
469
454
  dataset=dataset,
@@ -505,7 +490,7 @@ class MiniBatchKMeans(BaseTransformer):
505
490
  Transformed dataset.
506
491
  """
507
492
  super()._check_dataset_type(dataset)
508
- inference_method="transform"
493
+ inference_method = "transform"
509
494
 
510
495
  # This dictionary contains optional kwargs for batch inference. These kwargs
511
496
  # are specific to the type of dataset used.
@@ -535,24 +520,19 @@ class MiniBatchKMeans(BaseTransformer):
535
520
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
536
521
  expected_dtype = convert_sp_to_sf_type(output_types[0])
537
522
 
538
- self._deps = self._batch_inference_validate_snowpark(
539
- dataset=dataset,
540
- inference_method=inference_method,
541
- )
523
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
524
+ self._deps = self._get_dependencies()
542
525
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
543
526
 
544
527
  transform_kwargs = dict(
545
- session = dataset._session,
546
- dependencies = self._deps,
547
- drop_input_cols = self._drop_input_cols,
548
- expected_output_cols_type = expected_dtype,
528
+ session=dataset._session,
529
+ dependencies=self._deps,
530
+ drop_input_cols=self._drop_input_cols,
531
+ expected_output_cols_type=expected_dtype,
549
532
  )
550
533
 
551
534
  elif isinstance(dataset, pd.DataFrame):
552
- transform_kwargs = dict(
553
- snowpark_input_cols = self._snowpark_cols,
554
- drop_input_cols = self._drop_input_cols
555
- )
535
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
556
536
 
557
537
  transform_handlers = ModelTransformerBuilder.build(
558
538
  dataset=dataset,
@@ -571,7 +551,11 @@ class MiniBatchKMeans(BaseTransformer):
571
551
  return output_df
572
552
 
573
553
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
574
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
554
+ def fit_predict(
555
+ self,
556
+ dataset: Union[DataFrame, pd.DataFrame],
557
+ output_cols_prefix: str = "fit_predict_",
558
+ ) -> Union[DataFrame, pd.DataFrame]:
575
559
  """ Compute cluster centers and predict cluster index for each sample
576
560
  For more details on this function, see [sklearn.cluster.MiniBatchKMeans.fit_predict]
577
561
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans.fit_predict)
@@ -598,22 +582,106 @@ class MiniBatchKMeans(BaseTransformer):
598
582
  )
599
583
  output_result, fitted_estimator = model_trainer.train_fit_predict(
600
584
  drop_input_cols=self._drop_input_cols,
601
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
585
+ expected_output_cols_list=(
586
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
587
+ ),
602
588
  )
603
589
  self._sklearn_object = fitted_estimator
604
590
  self._is_fitted = True
605
591
  return output_result
606
592
 
593
+
594
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
595
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
596
+ """ Compute clustering and transform X to cluster-distance space
597
+ For more details on this function, see [sklearn.cluster.MiniBatchKMeans.fit_transform]
598
+ (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.MiniBatchKMeans.html#sklearn.cluster.MiniBatchKMeans.fit_transform)
599
+
600
+
601
+ Raises:
602
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
607
603
 
608
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
609
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
610
- """
604
+ Args:
605
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
606
+ Snowpark or Pandas DataFrame.
607
+ output_cols_prefix: Prefix for the response columns
611
608
  Returns:
612
609
  Transformed dataset.
613
610
  """
614
- self.fit(dataset)
615
- assert self._sklearn_object is not None
616
- return self._sklearn_object.embedding_
611
+ self._infer_input_output_cols(dataset)
612
+ super()._check_dataset_type(dataset)
613
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
614
+ estimator=self._sklearn_object,
615
+ dataset=dataset,
616
+ input_cols=self.input_cols,
617
+ label_cols=self.label_cols,
618
+ sample_weight_col=self.sample_weight_col,
619
+ autogenerated=self._autogenerated,
620
+ subproject=_SUBPROJECT,
621
+ )
622
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
623
+ drop_input_cols=self._drop_input_cols,
624
+ expected_output_cols_list=self.output_cols,
625
+ )
626
+ self._sklearn_object = fitted_estimator
627
+ self._is_fitted = True
628
+ return output_result
629
+
630
+
631
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
632
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
633
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
634
+ """
635
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
636
+ # The following condition is introduced for kneighbors methods, and not used in other methods
637
+ if output_cols:
638
+ output_cols = [
639
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
640
+ for c in output_cols
641
+ ]
642
+ elif getattr(self._sklearn_object, "classes_", None) is None:
643
+ output_cols = [output_cols_prefix]
644
+ elif self._sklearn_object is not None:
645
+ classes = self._sklearn_object.classes_
646
+ if isinstance(classes, numpy.ndarray):
647
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
648
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
649
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
650
+ output_cols = []
651
+ for i, cl in enumerate(classes):
652
+ # For binary classification, there is only one output column for each class
653
+ # ndarray as the two classes are complementary.
654
+ if len(cl) == 2:
655
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
656
+ else:
657
+ output_cols.extend([
658
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
659
+ ])
660
+ else:
661
+ output_cols = []
662
+
663
+ # Make sure column names are valid snowflake identifiers.
664
+ assert output_cols is not None # Make MyPy happy
665
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
666
+
667
+ return rv
668
+
669
+ def _align_expected_output_names(
670
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
671
+ ) -> List[str]:
672
+ # in case the inferred output column names dimension is different
673
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
674
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
675
+ output_df_columns = list(output_df_pd.columns)
676
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
677
+ if self.sample_weight_col:
678
+ output_df_columns_set -= set(self.sample_weight_col)
679
+ # if the dimension of inferred output column names is correct; use it
680
+ if len(expected_output_cols_list) == len(output_df_columns_set):
681
+ return expected_output_cols_list
682
+ # otherwise, use the sklearn estimator's output
683
+ else:
684
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
617
685
 
618
686
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
619
687
  @telemetry.send_api_usage_telemetry(
@@ -645,24 +713,26 @@ class MiniBatchKMeans(BaseTransformer):
645
713
  # are specific to the type of dataset used.
646
714
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
647
715
 
716
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
717
+
648
718
  if isinstance(dataset, DataFrame):
649
- self._deps = self._batch_inference_validate_snowpark(
650
- dataset=dataset,
651
- inference_method=inference_method,
652
- )
653
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
719
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
720
+ self._deps = self._get_dependencies()
721
+ assert isinstance(
722
+ dataset._session, Session
723
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
654
724
  transform_kwargs = dict(
655
725
  session=dataset._session,
656
726
  dependencies=self._deps,
657
- drop_input_cols = self._drop_input_cols,
727
+ drop_input_cols=self._drop_input_cols,
658
728
  expected_output_cols_type="float",
659
729
  )
730
+ expected_output_cols = self._align_expected_output_names(
731
+ inference_method, dataset, expected_output_cols, output_cols_prefix
732
+ )
660
733
 
661
734
  elif isinstance(dataset, pd.DataFrame):
662
- transform_kwargs = dict(
663
- snowpark_input_cols = self._snowpark_cols,
664
- drop_input_cols = self._drop_input_cols
665
- )
735
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
666
736
 
667
737
  transform_handlers = ModelTransformerBuilder.build(
668
738
  dataset=dataset,
@@ -674,7 +744,7 @@ class MiniBatchKMeans(BaseTransformer):
674
744
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
675
745
  inference_method=inference_method,
676
746
  input_cols=self.input_cols,
677
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
747
+ expected_output_cols=expected_output_cols,
678
748
  **transform_kwargs
679
749
  )
680
750
  return output_df
@@ -704,29 +774,30 @@ class MiniBatchKMeans(BaseTransformer):
704
774
  Output dataset with log probability of the sample for each class in the model.
705
775
  """
706
776
  super()._check_dataset_type(dataset)
707
- inference_method="predict_log_proba"
777
+ inference_method = "predict_log_proba"
778
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
708
779
 
709
780
  # This dictionary contains optional kwargs for batch inference. These kwargs
710
781
  # are specific to the type of dataset used.
711
782
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
712
783
 
713
784
  if isinstance(dataset, DataFrame):
714
- self._deps = self._batch_inference_validate_snowpark(
715
- dataset=dataset,
716
- inference_method=inference_method,
717
- )
718
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
785
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
786
+ self._deps = self._get_dependencies()
787
+ assert isinstance(
788
+ dataset._session, Session
789
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
719
790
  transform_kwargs = dict(
720
791
  session=dataset._session,
721
792
  dependencies=self._deps,
722
- drop_input_cols = self._drop_input_cols,
793
+ drop_input_cols=self._drop_input_cols,
723
794
  expected_output_cols_type="float",
724
795
  )
796
+ expected_output_cols = self._align_expected_output_names(
797
+ inference_method, dataset, expected_output_cols, output_cols_prefix
798
+ )
725
799
  elif isinstance(dataset, pd.DataFrame):
726
- transform_kwargs = dict(
727
- snowpark_input_cols = self._snowpark_cols,
728
- drop_input_cols = self._drop_input_cols
729
- )
800
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
730
801
 
731
802
  transform_handlers = ModelTransformerBuilder.build(
732
803
  dataset=dataset,
@@ -739,7 +810,7 @@ class MiniBatchKMeans(BaseTransformer):
739
810
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
740
811
  inference_method=inference_method,
741
812
  input_cols=self.input_cols,
742
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
813
+ expected_output_cols=expected_output_cols,
743
814
  **transform_kwargs
744
815
  )
745
816
  return output_df
@@ -765,30 +836,32 @@ class MiniBatchKMeans(BaseTransformer):
765
836
  Output dataset with results of the decision function for the samples in input dataset.
766
837
  """
767
838
  super()._check_dataset_type(dataset)
768
- inference_method="decision_function"
839
+ inference_method = "decision_function"
769
840
 
770
841
  # This dictionary contains optional kwargs for batch inference. These kwargs
771
842
  # are specific to the type of dataset used.
772
843
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
773
844
 
845
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
846
+
774
847
  if isinstance(dataset, DataFrame):
775
- self._deps = self._batch_inference_validate_snowpark(
776
- dataset=dataset,
777
- inference_method=inference_method,
778
- )
779
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
848
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
849
+ self._deps = self._get_dependencies()
850
+ assert isinstance(
851
+ dataset._session, Session
852
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
780
853
  transform_kwargs = dict(
781
854
  session=dataset._session,
782
855
  dependencies=self._deps,
783
- drop_input_cols = self._drop_input_cols,
856
+ drop_input_cols=self._drop_input_cols,
784
857
  expected_output_cols_type="float",
785
858
  )
859
+ expected_output_cols = self._align_expected_output_names(
860
+ inference_method, dataset, expected_output_cols, output_cols_prefix
861
+ )
786
862
 
787
863
  elif isinstance(dataset, pd.DataFrame):
788
- transform_kwargs = dict(
789
- snowpark_input_cols = self._snowpark_cols,
790
- drop_input_cols = self._drop_input_cols
791
- )
864
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
792
865
 
793
866
  transform_handlers = ModelTransformerBuilder.build(
794
867
  dataset=dataset,
@@ -801,7 +874,7 @@ class MiniBatchKMeans(BaseTransformer):
801
874
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
802
875
  inference_method=inference_method,
803
876
  input_cols=self.input_cols,
804
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
877
+ expected_output_cols=expected_output_cols,
805
878
  **transform_kwargs
806
879
  )
807
880
  return output_df
@@ -830,17 +903,17 @@ class MiniBatchKMeans(BaseTransformer):
830
903
  Output dataset with probability of the sample for each class in the model.
831
904
  """
832
905
  super()._check_dataset_type(dataset)
833
- inference_method="score_samples"
906
+ inference_method = "score_samples"
834
907
 
835
908
  # This dictionary contains optional kwargs for batch inference. These kwargs
836
909
  # are specific to the type of dataset used.
837
910
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
838
911
 
912
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
913
+
839
914
  if isinstance(dataset, DataFrame):
840
- self._deps = self._batch_inference_validate_snowpark(
841
- dataset=dataset,
842
- inference_method=inference_method,
843
- )
915
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
916
+ self._deps = self._get_dependencies()
844
917
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
845
918
  transform_kwargs = dict(
846
919
  session=dataset._session,
@@ -848,6 +921,9 @@ class MiniBatchKMeans(BaseTransformer):
848
921
  drop_input_cols = self._drop_input_cols,
849
922
  expected_output_cols_type="float",
850
923
  )
924
+ expected_output_cols = self._align_expected_output_names(
925
+ inference_method, dataset, expected_output_cols, output_cols_prefix
926
+ )
851
927
 
852
928
  elif isinstance(dataset, pd.DataFrame):
853
929
  transform_kwargs = dict(
@@ -866,7 +942,7 @@ class MiniBatchKMeans(BaseTransformer):
866
942
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
867
943
  inference_method=inference_method,
868
944
  input_cols=self.input_cols,
869
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
945
+ expected_output_cols=expected_output_cols,
870
946
  **transform_kwargs
871
947
  )
872
948
  return output_df
@@ -901,17 +977,15 @@ class MiniBatchKMeans(BaseTransformer):
901
977
  transform_kwargs: ScoreKwargsTypedDict = dict()
902
978
 
903
979
  if isinstance(dataset, DataFrame):
904
- self._deps = self._batch_inference_validate_snowpark(
905
- dataset=dataset,
906
- inference_method="score",
907
- )
980
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
981
+ self._deps = self._get_dependencies()
908
982
  selected_cols = self._get_active_columns()
909
983
  if len(selected_cols) > 0:
910
984
  dataset = dataset.select(selected_cols)
911
985
  assert isinstance(dataset._session, Session) # keep mypy happy
912
986
  transform_kwargs = dict(
913
987
  session=dataset._session,
914
- dependencies=["snowflake-snowpark-python"] + self._deps,
988
+ dependencies=self._deps,
915
989
  score_sproc_imports=['sklearn'],
916
990
  )
917
991
  elif isinstance(dataset, pd.DataFrame):
@@ -976,11 +1050,8 @@ class MiniBatchKMeans(BaseTransformer):
976
1050
 
977
1051
  if isinstance(dataset, DataFrame):
978
1052
 
979
- self._deps = self._batch_inference_validate_snowpark(
980
- dataset=dataset,
981
- inference_method=inference_method,
982
-
983
- )
1053
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1054
+ self._deps = self._get_dependencies()
984
1055
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
985
1056
  transform_kwargs = dict(
986
1057
  session = dataset._session,
@@ -1013,50 +1084,84 @@ class MiniBatchKMeans(BaseTransformer):
1013
1084
  )
1014
1085
  return output_df
1015
1086
 
1087
+
1088
+
1089
+ def to_sklearn(self) -> Any:
1090
+ """Get sklearn.cluster.MiniBatchKMeans object.
1091
+ """
1092
+ if self._sklearn_object is None:
1093
+ self._sklearn_object = self._create_sklearn_object()
1094
+ return self._sklearn_object
1095
+
1096
+ def to_xgboost(self) -> Any:
1097
+ raise exceptions.SnowflakeMLException(
1098
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1099
+ original_exception=AttributeError(
1100
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1101
+ "to_xgboost()",
1102
+ "to_sklearn()"
1103
+ )
1104
+ ),
1105
+ )
1016
1106
 
1017
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1107
+ def to_lightgbm(self) -> Any:
1108
+ raise exceptions.SnowflakeMLException(
1109
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1110
+ original_exception=AttributeError(
1111
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1112
+ "to_lightgbm()",
1113
+ "to_sklearn()"
1114
+ )
1115
+ ),
1116
+ )
1117
+
1118
+ def _get_dependencies(self) -> List[str]:
1119
+ return self._deps
1120
+
1121
+
1122
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1018
1123
  self._model_signature_dict = dict()
1019
1124
 
1020
1125
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1021
1126
 
1022
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1127
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1023
1128
  outputs: List[BaseFeatureSpec] = []
1024
1129
  if hasattr(self, "predict"):
1025
1130
  # keep mypy happy
1026
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1131
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1027
1132
  # For classifier, the type of predict is the same as the type of label
1028
- if self._sklearn_object._estimator_type == 'classifier':
1029
- # label columns is the desired type for output
1133
+ if self._sklearn_object._estimator_type == "classifier":
1134
+ # label columns is the desired type for output
1030
1135
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1031
1136
  # rename the output columns
1032
1137
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1033
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1034
- ([] if self._drop_input_cols else inputs)
1035
- + outputs)
1138
+ self._model_signature_dict["predict"] = ModelSignature(
1139
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1140
+ )
1036
1141
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1037
1142
  # For outlier models, returns -1 for outliers and 1 for inliers.
1038
- # Clusterer returns int64 cluster labels.
1143
+ # Clusterer returns int64 cluster labels.
1039
1144
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1040
1145
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1041
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1042
- ([] if self._drop_input_cols else inputs)
1043
- + outputs)
1044
-
1146
+ self._model_signature_dict["predict"] = ModelSignature(
1147
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1148
+ )
1149
+
1045
1150
  # For regressor, the type of predict is float64
1046
- elif self._sklearn_object._estimator_type == 'regressor':
1151
+ elif self._sklearn_object._estimator_type == "regressor":
1047
1152
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1048
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1049
- ([] if self._drop_input_cols else inputs)
1050
- + outputs)
1051
-
1153
+ self._model_signature_dict["predict"] = ModelSignature(
1154
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1155
+ )
1156
+
1052
1157
  for prob_func in PROB_FUNCTIONS:
1053
1158
  if hasattr(self, prob_func):
1054
1159
  output_cols_prefix: str = f"{prob_func}_"
1055
1160
  output_column_names = self._get_output_column_names(output_cols_prefix)
1056
1161
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1057
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1058
- ([] if self._drop_input_cols else inputs)
1059
- + outputs)
1162
+ self._model_signature_dict[prob_func] = ModelSignature(
1163
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1164
+ )
1060
1165
 
1061
1166
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1062
1167
  items = list(self._model_signature_dict.items())
@@ -1069,10 +1174,10 @@ class MiniBatchKMeans(BaseTransformer):
1069
1174
  """Returns model signature of current class.
1070
1175
 
1071
1176
  Raises:
1072
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1177
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1073
1178
 
1074
1179
  Returns:
1075
- Dict[str, ModelSignature]: each method and its input output signature
1180
+ Dict with each method and its input output signature
1076
1181
  """
1077
1182
  if self._model_signature_dict is None:
1078
1183
  raise exceptions.SnowflakeMLException(
@@ -1080,35 +1185,3 @@ class MiniBatchKMeans(BaseTransformer):
1080
1185
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1081
1186
  )
1082
1187
  return self._model_signature_dict
1083
-
1084
- def to_sklearn(self) -> Any:
1085
- """Get sklearn.cluster.MiniBatchKMeans object.
1086
- """
1087
- if self._sklearn_object is None:
1088
- self._sklearn_object = self._create_sklearn_object()
1089
- return self._sklearn_object
1090
-
1091
- def to_xgboost(self) -> Any:
1092
- raise exceptions.SnowflakeMLException(
1093
- error_code=error_codes.METHOD_NOT_ALLOWED,
1094
- original_exception=AttributeError(
1095
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1096
- "to_xgboost()",
1097
- "to_sklearn()"
1098
- )
1099
- ),
1100
- )
1101
-
1102
- def to_lightgbm(self) -> Any:
1103
- raise exceptions.SnowflakeMLException(
1104
- error_code=error_codes.METHOD_NOT_ALLOWED,
1105
- original_exception=AttributeError(
1106
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1107
- "to_lightgbm()",
1108
- "to_sklearn()"
1109
- )
1110
- ),
1111
- )
1112
-
1113
- def _get_dependencies(self) -> List[str]:
1114
- return self._deps