snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SparsePCA(BaseTransformer):
71
64
  r"""Sparse Principal Components Analysis (SparsePCA)
72
65
  For more details on this class, see [sklearn.decomposition.SparsePCA]
@@ -259,12 +252,7 @@ class SparsePCA(BaseTransformer):
259
252
  )
260
253
  return selected_cols
261
254
 
262
- @telemetry.send_api_usage_telemetry(
263
- project=_PROJECT,
264
- subproject=_SUBPROJECT,
265
- custom_tags=dict([("autogen", True)]),
266
- )
267
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SparsePCA":
255
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SparsePCA":
268
256
  """Fit the model from data in X
269
257
  For more details on this function, see [sklearn.decomposition.SparsePCA.fit]
270
258
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html#sklearn.decomposition.SparsePCA.fit)
@@ -291,12 +279,14 @@ class SparsePCA(BaseTransformer):
291
279
 
292
280
  self._snowpark_cols = dataset.select(self.input_cols).columns
293
281
 
294
- # If we are already in a stored procedure, no need to kick off another one.
282
+ # If we are already in a stored procedure, no need to kick off another one.
295
283
  if SNOWML_SPROC_ENV in os.environ:
296
284
  statement_params = telemetry.get_function_usage_statement_params(
297
285
  project=_PROJECT,
298
286
  subproject=_SUBPROJECT,
299
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SparsePCA.__class__.__name__),
287
+ function_name=telemetry.get_statement_params_full_func_name(
288
+ inspect.currentframe(), SparsePCA.__class__.__name__
289
+ ),
300
290
  api_calls=[Session.call],
301
291
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
302
292
  )
@@ -317,27 +307,24 @@ class SparsePCA(BaseTransformer):
317
307
  )
318
308
  self._sklearn_object = model_trainer.train()
319
309
  self._is_fitted = True
320
- self._get_model_signatures(dataset)
310
+ self._generate_model_signatures(dataset)
321
311
  return self
322
312
 
323
313
  def _batch_inference_validate_snowpark(
324
314
  self,
325
315
  dataset: DataFrame,
326
316
  inference_method: str,
327
- ) -> List[str]:
328
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
329
- return the available package that exists in the snowflake anaconda channel
317
+ ) -> None:
318
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
330
319
 
331
320
  Args:
332
321
  dataset: snowpark dataframe
333
322
  inference_method: the inference method such as predict, score...
334
-
323
+
335
324
  Raises:
336
325
  SnowflakeMLException: If the estimator is not fitted, raise error
337
326
  SnowflakeMLException: If the session is None, raise error
338
327
 
339
- Returns:
340
- A list of available package that exists in the snowflake anaconda channel
341
328
  """
342
329
  if not self._is_fitted:
343
330
  raise exceptions.SnowflakeMLException(
@@ -355,9 +342,7 @@ class SparsePCA(BaseTransformer):
355
342
  "Session must not specified for snowpark dataset."
356
343
  ),
357
344
  )
358
- # Validate that key package version in user workspace are supported in snowflake conda channel
359
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
360
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
345
+
361
346
 
362
347
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
363
348
  @telemetry.send_api_usage_telemetry(
@@ -391,7 +376,9 @@ class SparsePCA(BaseTransformer):
391
376
  # when it is classifier, infer the datatype from label columns
392
377
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
393
378
  # Batch inference takes a single expected output column type. Use the first columns type for now.
394
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
379
+ label_cols_signatures = [
380
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
381
+ ]
395
382
  if len(label_cols_signatures) == 0:
396
383
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
397
384
  raise exceptions.SnowflakeMLException(
@@ -399,25 +386,23 @@ class SparsePCA(BaseTransformer):
399
386
  original_exception=ValueError(error_str),
400
387
  )
401
388
 
402
- expected_type_inferred = convert_sp_to_sf_type(
403
- label_cols_signatures[0].as_snowpark_type()
404
- )
389
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
405
390
 
406
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
407
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
391
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
392
+ self._deps = self._get_dependencies()
393
+ assert isinstance(
394
+ dataset._session, Session
395
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
408
396
 
409
397
  transform_kwargs = dict(
410
- session = dataset._session,
411
- dependencies = self._deps,
412
- drop_input_cols = self._drop_input_cols,
413
- expected_output_cols_type = expected_type_inferred,
398
+ session=dataset._session,
399
+ dependencies=self._deps,
400
+ drop_input_cols=self._drop_input_cols,
401
+ expected_output_cols_type=expected_type_inferred,
414
402
  )
415
403
 
416
404
  elif isinstance(dataset, pd.DataFrame):
417
- transform_kwargs = dict(
418
- snowpark_input_cols = self._snowpark_cols,
419
- drop_input_cols = self._drop_input_cols
420
- )
405
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
421
406
 
422
407
  transform_handlers = ModelTransformerBuilder.build(
423
408
  dataset=dataset,
@@ -459,7 +444,7 @@ class SparsePCA(BaseTransformer):
459
444
  Transformed dataset.
460
445
  """
461
446
  super()._check_dataset_type(dataset)
462
- inference_method="transform"
447
+ inference_method = "transform"
463
448
 
464
449
  # This dictionary contains optional kwargs for batch inference. These kwargs
465
450
  # are specific to the type of dataset used.
@@ -489,24 +474,19 @@ class SparsePCA(BaseTransformer):
489
474
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
490
475
  expected_dtype = convert_sp_to_sf_type(output_types[0])
491
476
 
492
- self._deps = self._batch_inference_validate_snowpark(
493
- dataset=dataset,
494
- inference_method=inference_method,
495
- )
477
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
478
+ self._deps = self._get_dependencies()
496
479
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
497
480
 
498
481
  transform_kwargs = dict(
499
- session = dataset._session,
500
- dependencies = self._deps,
501
- drop_input_cols = self._drop_input_cols,
502
- expected_output_cols_type = expected_dtype,
482
+ session=dataset._session,
483
+ dependencies=self._deps,
484
+ drop_input_cols=self._drop_input_cols,
485
+ expected_output_cols_type=expected_dtype,
503
486
  )
504
487
 
505
488
  elif isinstance(dataset, pd.DataFrame):
506
- transform_kwargs = dict(
507
- snowpark_input_cols = self._snowpark_cols,
508
- drop_input_cols = self._drop_input_cols
509
- )
489
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
510
490
 
511
491
  transform_handlers = ModelTransformerBuilder.build(
512
492
  dataset=dataset,
@@ -525,7 +505,11 @@ class SparsePCA(BaseTransformer):
525
505
  return output_df
526
506
 
527
507
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
528
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
508
+ def fit_predict(
509
+ self,
510
+ dataset: Union[DataFrame, pd.DataFrame],
511
+ output_cols_prefix: str = "fit_predict_",
512
+ ) -> Union[DataFrame, pd.DataFrame]:
529
513
  """ Method not supported for this class.
530
514
 
531
515
 
@@ -550,22 +534,106 @@ class SparsePCA(BaseTransformer):
550
534
  )
551
535
  output_result, fitted_estimator = model_trainer.train_fit_predict(
552
536
  drop_input_cols=self._drop_input_cols,
553
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
537
+ expected_output_cols_list=(
538
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
539
+ ),
554
540
  )
555
541
  self._sklearn_object = fitted_estimator
556
542
  self._is_fitted = True
557
543
  return output_result
558
544
 
545
+
546
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
547
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
548
+ """ Fit to data, then transform it
549
+ For more details on this function, see [sklearn.decomposition.SparsePCA.fit_transform]
550
+ (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.SparsePCA.html#sklearn.decomposition.SparsePCA.fit_transform)
551
+
552
+
553
+ Raises:
554
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
559
555
 
560
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
561
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
562
- """
556
+ Args:
557
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
558
+ Snowpark or Pandas DataFrame.
559
+ output_cols_prefix: Prefix for the response columns
563
560
  Returns:
564
561
  Transformed dataset.
565
562
  """
566
- self.fit(dataset)
567
- assert self._sklearn_object is not None
568
- return self._sklearn_object.embedding_
563
+ self._infer_input_output_cols(dataset)
564
+ super()._check_dataset_type(dataset)
565
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
566
+ estimator=self._sklearn_object,
567
+ dataset=dataset,
568
+ input_cols=self.input_cols,
569
+ label_cols=self.label_cols,
570
+ sample_weight_col=self.sample_weight_col,
571
+ autogenerated=self._autogenerated,
572
+ subproject=_SUBPROJECT,
573
+ )
574
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
575
+ drop_input_cols=self._drop_input_cols,
576
+ expected_output_cols_list=self.output_cols,
577
+ )
578
+ self._sklearn_object = fitted_estimator
579
+ self._is_fitted = True
580
+ return output_result
581
+
582
+
583
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
584
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
585
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
586
+ """
587
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
588
+ # The following condition is introduced for kneighbors methods, and not used in other methods
589
+ if output_cols:
590
+ output_cols = [
591
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
592
+ for c in output_cols
593
+ ]
594
+ elif getattr(self._sklearn_object, "classes_", None) is None:
595
+ output_cols = [output_cols_prefix]
596
+ elif self._sklearn_object is not None:
597
+ classes = self._sklearn_object.classes_
598
+ if isinstance(classes, numpy.ndarray):
599
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
600
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
601
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
602
+ output_cols = []
603
+ for i, cl in enumerate(classes):
604
+ # For binary classification, there is only one output column for each class
605
+ # ndarray as the two classes are complementary.
606
+ if len(cl) == 2:
607
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
608
+ else:
609
+ output_cols.extend([
610
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
611
+ ])
612
+ else:
613
+ output_cols = []
614
+
615
+ # Make sure column names are valid snowflake identifiers.
616
+ assert output_cols is not None # Make MyPy happy
617
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
618
+
619
+ return rv
620
+
621
+ def _align_expected_output_names(
622
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
623
+ ) -> List[str]:
624
+ # in case the inferred output column names dimension is different
625
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
626
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
627
+ output_df_columns = list(output_df_pd.columns)
628
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
629
+ if self.sample_weight_col:
630
+ output_df_columns_set -= set(self.sample_weight_col)
631
+ # if the dimension of inferred output column names is correct; use it
632
+ if len(expected_output_cols_list) == len(output_df_columns_set):
633
+ return expected_output_cols_list
634
+ # otherwise, use the sklearn estimator's output
635
+ else:
636
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
569
637
 
570
638
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
571
639
  @telemetry.send_api_usage_telemetry(
@@ -597,24 +665,26 @@ class SparsePCA(BaseTransformer):
597
665
  # are specific to the type of dataset used.
598
666
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
599
667
 
668
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
669
+
600
670
  if isinstance(dataset, DataFrame):
601
- self._deps = self._batch_inference_validate_snowpark(
602
- dataset=dataset,
603
- inference_method=inference_method,
604
- )
605
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
672
+ self._deps = self._get_dependencies()
673
+ assert isinstance(
674
+ dataset._session, Session
675
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
606
676
  transform_kwargs = dict(
607
677
  session=dataset._session,
608
678
  dependencies=self._deps,
609
- drop_input_cols = self._drop_input_cols,
679
+ drop_input_cols=self._drop_input_cols,
610
680
  expected_output_cols_type="float",
611
681
  )
682
+ expected_output_cols = self._align_expected_output_names(
683
+ inference_method, dataset, expected_output_cols, output_cols_prefix
684
+ )
612
685
 
613
686
  elif isinstance(dataset, pd.DataFrame):
614
- transform_kwargs = dict(
615
- snowpark_input_cols = self._snowpark_cols,
616
- drop_input_cols = self._drop_input_cols
617
- )
687
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
618
688
 
619
689
  transform_handlers = ModelTransformerBuilder.build(
620
690
  dataset=dataset,
@@ -626,7 +696,7 @@ class SparsePCA(BaseTransformer):
626
696
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
627
697
  inference_method=inference_method,
628
698
  input_cols=self.input_cols,
629
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
699
+ expected_output_cols=expected_output_cols,
630
700
  **transform_kwargs
631
701
  )
632
702
  return output_df
@@ -656,29 +726,30 @@ class SparsePCA(BaseTransformer):
656
726
  Output dataset with log probability of the sample for each class in the model.
657
727
  """
658
728
  super()._check_dataset_type(dataset)
659
- inference_method="predict_log_proba"
729
+ inference_method = "predict_log_proba"
730
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
660
731
 
661
732
  # This dictionary contains optional kwargs for batch inference. These kwargs
662
733
  # are specific to the type of dataset used.
663
734
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
664
735
 
665
736
  if isinstance(dataset, DataFrame):
666
- self._deps = self._batch_inference_validate_snowpark(
667
- dataset=dataset,
668
- inference_method=inference_method,
669
- )
670
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
737
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
738
+ self._deps = self._get_dependencies()
739
+ assert isinstance(
740
+ dataset._session, Session
741
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
671
742
  transform_kwargs = dict(
672
743
  session=dataset._session,
673
744
  dependencies=self._deps,
674
- drop_input_cols = self._drop_input_cols,
745
+ drop_input_cols=self._drop_input_cols,
675
746
  expected_output_cols_type="float",
676
747
  )
748
+ expected_output_cols = self._align_expected_output_names(
749
+ inference_method, dataset, expected_output_cols, output_cols_prefix
750
+ )
677
751
  elif isinstance(dataset, pd.DataFrame):
678
- transform_kwargs = dict(
679
- snowpark_input_cols = self._snowpark_cols,
680
- drop_input_cols = self._drop_input_cols
681
- )
752
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
682
753
 
683
754
  transform_handlers = ModelTransformerBuilder.build(
684
755
  dataset=dataset,
@@ -691,7 +762,7 @@ class SparsePCA(BaseTransformer):
691
762
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
692
763
  inference_method=inference_method,
693
764
  input_cols=self.input_cols,
694
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
765
+ expected_output_cols=expected_output_cols,
695
766
  **transform_kwargs
696
767
  )
697
768
  return output_df
@@ -717,30 +788,32 @@ class SparsePCA(BaseTransformer):
717
788
  Output dataset with results of the decision function for the samples in input dataset.
718
789
  """
719
790
  super()._check_dataset_type(dataset)
720
- inference_method="decision_function"
791
+ inference_method = "decision_function"
721
792
 
722
793
  # This dictionary contains optional kwargs for batch inference. These kwargs
723
794
  # are specific to the type of dataset used.
724
795
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
725
796
 
797
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
798
+
726
799
  if isinstance(dataset, DataFrame):
727
- self._deps = self._batch_inference_validate_snowpark(
728
- dataset=dataset,
729
- inference_method=inference_method,
730
- )
731
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
800
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
801
+ self._deps = self._get_dependencies()
802
+ assert isinstance(
803
+ dataset._session, Session
804
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
732
805
  transform_kwargs = dict(
733
806
  session=dataset._session,
734
807
  dependencies=self._deps,
735
- drop_input_cols = self._drop_input_cols,
808
+ drop_input_cols=self._drop_input_cols,
736
809
  expected_output_cols_type="float",
737
810
  )
811
+ expected_output_cols = self._align_expected_output_names(
812
+ inference_method, dataset, expected_output_cols, output_cols_prefix
813
+ )
738
814
 
739
815
  elif isinstance(dataset, pd.DataFrame):
740
- transform_kwargs = dict(
741
- snowpark_input_cols = self._snowpark_cols,
742
- drop_input_cols = self._drop_input_cols
743
- )
816
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
744
817
 
745
818
  transform_handlers = ModelTransformerBuilder.build(
746
819
  dataset=dataset,
@@ -753,7 +826,7 @@ class SparsePCA(BaseTransformer):
753
826
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
754
827
  inference_method=inference_method,
755
828
  input_cols=self.input_cols,
756
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
829
+ expected_output_cols=expected_output_cols,
757
830
  **transform_kwargs
758
831
  )
759
832
  return output_df
@@ -782,17 +855,17 @@ class SparsePCA(BaseTransformer):
782
855
  Output dataset with probability of the sample for each class in the model.
783
856
  """
784
857
  super()._check_dataset_type(dataset)
785
- inference_method="score_samples"
858
+ inference_method = "score_samples"
786
859
 
787
860
  # This dictionary contains optional kwargs for batch inference. These kwargs
788
861
  # are specific to the type of dataset used.
789
862
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
790
863
 
864
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
865
+
791
866
  if isinstance(dataset, DataFrame):
792
- self._deps = self._batch_inference_validate_snowpark(
793
- dataset=dataset,
794
- inference_method=inference_method,
795
- )
867
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
868
+ self._deps = self._get_dependencies()
796
869
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
797
870
  transform_kwargs = dict(
798
871
  session=dataset._session,
@@ -800,6 +873,9 @@ class SparsePCA(BaseTransformer):
800
873
  drop_input_cols = self._drop_input_cols,
801
874
  expected_output_cols_type="float",
802
875
  )
876
+ expected_output_cols = self._align_expected_output_names(
877
+ inference_method, dataset, expected_output_cols, output_cols_prefix
878
+ )
803
879
 
804
880
  elif isinstance(dataset, pd.DataFrame):
805
881
  transform_kwargs = dict(
@@ -818,7 +894,7 @@ class SparsePCA(BaseTransformer):
818
894
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
819
895
  inference_method=inference_method,
820
896
  input_cols=self.input_cols,
821
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
897
+ expected_output_cols=expected_output_cols,
822
898
  **transform_kwargs
823
899
  )
824
900
  return output_df
@@ -851,17 +927,15 @@ class SparsePCA(BaseTransformer):
851
927
  transform_kwargs: ScoreKwargsTypedDict = dict()
852
928
 
853
929
  if isinstance(dataset, DataFrame):
854
- self._deps = self._batch_inference_validate_snowpark(
855
- dataset=dataset,
856
- inference_method="score",
857
- )
930
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
931
+ self._deps = self._get_dependencies()
858
932
  selected_cols = self._get_active_columns()
859
933
  if len(selected_cols) > 0:
860
934
  dataset = dataset.select(selected_cols)
861
935
  assert isinstance(dataset._session, Session) # keep mypy happy
862
936
  transform_kwargs = dict(
863
937
  session=dataset._session,
864
- dependencies=["snowflake-snowpark-python"] + self._deps,
938
+ dependencies=self._deps,
865
939
  score_sproc_imports=['sklearn'],
866
940
  )
867
941
  elif isinstance(dataset, pd.DataFrame):
@@ -926,11 +1000,8 @@ class SparsePCA(BaseTransformer):
926
1000
 
927
1001
  if isinstance(dataset, DataFrame):
928
1002
 
929
- self._deps = self._batch_inference_validate_snowpark(
930
- dataset=dataset,
931
- inference_method=inference_method,
932
-
933
- )
1003
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1004
+ self._deps = self._get_dependencies()
934
1005
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
935
1006
  transform_kwargs = dict(
936
1007
  session = dataset._session,
@@ -963,50 +1034,84 @@ class SparsePCA(BaseTransformer):
963
1034
  )
964
1035
  return output_df
965
1036
 
1037
+
1038
+
1039
+ def to_sklearn(self) -> Any:
1040
+ """Get sklearn.decomposition.SparsePCA object.
1041
+ """
1042
+ if self._sklearn_object is None:
1043
+ self._sklearn_object = self._create_sklearn_object()
1044
+ return self._sklearn_object
1045
+
1046
+ def to_xgboost(self) -> Any:
1047
+ raise exceptions.SnowflakeMLException(
1048
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1049
+ original_exception=AttributeError(
1050
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1051
+ "to_xgboost()",
1052
+ "to_sklearn()"
1053
+ )
1054
+ ),
1055
+ )
966
1056
 
967
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1057
+ def to_lightgbm(self) -> Any:
1058
+ raise exceptions.SnowflakeMLException(
1059
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1060
+ original_exception=AttributeError(
1061
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1062
+ "to_lightgbm()",
1063
+ "to_sklearn()"
1064
+ )
1065
+ ),
1066
+ )
1067
+
1068
+ def _get_dependencies(self) -> List[str]:
1069
+ return self._deps
1070
+
1071
+
1072
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
968
1073
  self._model_signature_dict = dict()
969
1074
 
970
1075
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
971
1076
 
972
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1077
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
973
1078
  outputs: List[BaseFeatureSpec] = []
974
1079
  if hasattr(self, "predict"):
975
1080
  # keep mypy happy
976
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1081
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
977
1082
  # For classifier, the type of predict is the same as the type of label
978
- if self._sklearn_object._estimator_type == 'classifier':
979
- # label columns is the desired type for output
1083
+ if self._sklearn_object._estimator_type == "classifier":
1084
+ # label columns is the desired type for output
980
1085
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
981
1086
  # rename the output columns
982
1087
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
983
- self._model_signature_dict["predict"] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
1088
+ self._model_signature_dict["predict"] = ModelSignature(
1089
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1090
+ )
986
1091
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
987
1092
  # For outlier models, returns -1 for outliers and 1 for inliers.
988
- # Clusterer returns int64 cluster labels.
1093
+ # Clusterer returns int64 cluster labels.
989
1094
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
990
1095
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
994
-
1096
+ self._model_signature_dict["predict"] = ModelSignature(
1097
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1098
+ )
1099
+
995
1100
  # For regressor, the type of predict is float64
996
- elif self._sklearn_object._estimator_type == 'regressor':
1101
+ elif self._sklearn_object._estimator_type == "regressor":
997
1102
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
998
- self._model_signature_dict["predict"] = ModelSignature(inputs,
999
- ([] if self._drop_input_cols else inputs)
1000
- + outputs)
1001
-
1103
+ self._model_signature_dict["predict"] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1106
+
1002
1107
  for prob_func in PROB_FUNCTIONS:
1003
1108
  if hasattr(self, prob_func):
1004
1109
  output_cols_prefix: str = f"{prob_func}_"
1005
1110
  output_column_names = self._get_output_column_names(output_cols_prefix)
1006
1111
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1007
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1008
- ([] if self._drop_input_cols else inputs)
1009
- + outputs)
1112
+ self._model_signature_dict[prob_func] = ModelSignature(
1113
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1114
+ )
1010
1115
 
1011
1116
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1012
1117
  items = list(self._model_signature_dict.items())
@@ -1019,10 +1124,10 @@ class SparsePCA(BaseTransformer):
1019
1124
  """Returns model signature of current class.
1020
1125
 
1021
1126
  Raises:
1022
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1127
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1023
1128
 
1024
1129
  Returns:
1025
- Dict[str, ModelSignature]: each method and its input output signature
1130
+ Dict with each method and its input output signature
1026
1131
  """
1027
1132
  if self._model_signature_dict is None:
1028
1133
  raise exceptions.SnowflakeMLException(
@@ -1030,35 +1135,3 @@ class SparsePCA(BaseTransformer):
1030
1135
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1031
1136
  )
1032
1137
  return self._model_signature_dict
1033
-
1034
- def to_sklearn(self) -> Any:
1035
- """Get sklearn.decomposition.SparsePCA object.
1036
- """
1037
- if self._sklearn_object is None:
1038
- self._sklearn_object = self._create_sklearn_object()
1039
- return self._sklearn_object
1040
-
1041
- def to_xgboost(self) -> Any:
1042
- raise exceptions.SnowflakeMLException(
1043
- error_code=error_codes.METHOD_NOT_ALLOWED,
1044
- original_exception=AttributeError(
1045
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1046
- "to_xgboost()",
1047
- "to_sklearn()"
1048
- )
1049
- ),
1050
- )
1051
-
1052
- def to_lightgbm(self) -> Any:
1053
- raise exceptions.SnowflakeMLException(
1054
- error_code=error_codes.METHOD_NOT_ALLOWED,
1055
- original_exception=AttributeError(
1056
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
- "to_lightgbm()",
1058
- "to_sklearn()"
1059
- )
1060
- ),
1061
- )
1062
-
1063
- def _get_dependencies(self) -> List[str]:
1064
- return self._deps