snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SGDClassifier(BaseTransformer):
71
64
  r"""Linear classifiers (SVM, logistic regression, etc
72
65
  For more details on this class, see [sklearn.linear_model.SGDClassifier]
@@ -388,12 +381,7 @@ class SGDClassifier(BaseTransformer):
388
381
  )
389
382
  return selected_cols
390
383
 
391
- @telemetry.send_api_usage_telemetry(
392
- project=_PROJECT,
393
- subproject=_SUBPROJECT,
394
- custom_tags=dict([("autogen", True)]),
395
- )
396
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDClassifier":
384
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SGDClassifier":
397
385
  """Fit linear model with Stochastic Gradient Descent
398
386
  For more details on this function, see [sklearn.linear_model.SGDClassifier.fit]
399
387
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html#sklearn.linear_model.SGDClassifier.fit)
@@ -420,12 +408,14 @@ class SGDClassifier(BaseTransformer):
420
408
 
421
409
  self._snowpark_cols = dataset.select(self.input_cols).columns
422
410
 
423
- # If we are already in a stored procedure, no need to kick off another one.
411
+ # If we are already in a stored procedure, no need to kick off another one.
424
412
  if SNOWML_SPROC_ENV in os.environ:
425
413
  statement_params = telemetry.get_function_usage_statement_params(
426
414
  project=_PROJECT,
427
415
  subproject=_SUBPROJECT,
428
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SGDClassifier.__class__.__name__),
416
+ function_name=telemetry.get_statement_params_full_func_name(
417
+ inspect.currentframe(), SGDClassifier.__class__.__name__
418
+ ),
429
419
  api_calls=[Session.call],
430
420
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
431
421
  )
@@ -446,27 +436,24 @@ class SGDClassifier(BaseTransformer):
446
436
  )
447
437
  self._sklearn_object = model_trainer.train()
448
438
  self._is_fitted = True
449
- self._get_model_signatures(dataset)
439
+ self._generate_model_signatures(dataset)
450
440
  return self
451
441
 
452
442
  def _batch_inference_validate_snowpark(
453
443
  self,
454
444
  dataset: DataFrame,
455
445
  inference_method: str,
456
- ) -> List[str]:
457
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
458
- return the available package that exists in the snowflake anaconda channel
446
+ ) -> None:
447
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
459
448
 
460
449
  Args:
461
450
  dataset: snowpark dataframe
462
451
  inference_method: the inference method such as predict, score...
463
-
452
+
464
453
  Raises:
465
454
  SnowflakeMLException: If the estimator is not fitted, raise error
466
455
  SnowflakeMLException: If the session is None, raise error
467
456
 
468
- Returns:
469
- A list of available package that exists in the snowflake anaconda channel
470
457
  """
471
458
  if not self._is_fitted:
472
459
  raise exceptions.SnowflakeMLException(
@@ -484,9 +471,7 @@ class SGDClassifier(BaseTransformer):
484
471
  "Session must not specified for snowpark dataset."
485
472
  ),
486
473
  )
487
- # Validate that key package version in user workspace are supported in snowflake conda channel
488
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
489
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
474
+
490
475
 
491
476
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
492
477
  @telemetry.send_api_usage_telemetry(
@@ -522,7 +507,9 @@ class SGDClassifier(BaseTransformer):
522
507
  # when it is classifier, infer the datatype from label columns
523
508
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
524
509
  # Batch inference takes a single expected output column type. Use the first columns type for now.
525
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
510
+ label_cols_signatures = [
511
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
512
+ ]
526
513
  if len(label_cols_signatures) == 0:
527
514
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
528
515
  raise exceptions.SnowflakeMLException(
@@ -530,25 +517,23 @@ class SGDClassifier(BaseTransformer):
530
517
  original_exception=ValueError(error_str),
531
518
  )
532
519
 
533
- expected_type_inferred = convert_sp_to_sf_type(
534
- label_cols_signatures[0].as_snowpark_type()
535
- )
520
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
536
521
 
537
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
538
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
522
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
523
+ self._deps = self._get_dependencies()
524
+ assert isinstance(
525
+ dataset._session, Session
526
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
539
527
 
540
528
  transform_kwargs = dict(
541
- session = dataset._session,
542
- dependencies = self._deps,
543
- drop_input_cols = self._drop_input_cols,
544
- expected_output_cols_type = expected_type_inferred,
529
+ session=dataset._session,
530
+ dependencies=self._deps,
531
+ drop_input_cols=self._drop_input_cols,
532
+ expected_output_cols_type=expected_type_inferred,
545
533
  )
546
534
 
547
535
  elif isinstance(dataset, pd.DataFrame):
548
- transform_kwargs = dict(
549
- snowpark_input_cols = self._snowpark_cols,
550
- drop_input_cols = self._drop_input_cols
551
- )
536
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
552
537
 
553
538
  transform_handlers = ModelTransformerBuilder.build(
554
539
  dataset=dataset,
@@ -588,7 +573,7 @@ class SGDClassifier(BaseTransformer):
588
573
  Transformed dataset.
589
574
  """
590
575
  super()._check_dataset_type(dataset)
591
- inference_method="transform"
576
+ inference_method = "transform"
592
577
 
593
578
  # This dictionary contains optional kwargs for batch inference. These kwargs
594
579
  # are specific to the type of dataset used.
@@ -618,24 +603,19 @@ class SGDClassifier(BaseTransformer):
618
603
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
619
604
  expected_dtype = convert_sp_to_sf_type(output_types[0])
620
605
 
621
- self._deps = self._batch_inference_validate_snowpark(
622
- dataset=dataset,
623
- inference_method=inference_method,
624
- )
606
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
607
+ self._deps = self._get_dependencies()
625
608
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
626
609
 
627
610
  transform_kwargs = dict(
628
- session = dataset._session,
629
- dependencies = self._deps,
630
- drop_input_cols = self._drop_input_cols,
631
- expected_output_cols_type = expected_dtype,
611
+ session=dataset._session,
612
+ dependencies=self._deps,
613
+ drop_input_cols=self._drop_input_cols,
614
+ expected_output_cols_type=expected_dtype,
632
615
  )
633
616
 
634
617
  elif isinstance(dataset, pd.DataFrame):
635
- transform_kwargs = dict(
636
- snowpark_input_cols = self._snowpark_cols,
637
- drop_input_cols = self._drop_input_cols
638
- )
618
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
639
619
 
640
620
  transform_handlers = ModelTransformerBuilder.build(
641
621
  dataset=dataset,
@@ -654,7 +634,11 @@ class SGDClassifier(BaseTransformer):
654
634
  return output_df
655
635
 
656
636
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
657
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
637
+ def fit_predict(
638
+ self,
639
+ dataset: Union[DataFrame, pd.DataFrame],
640
+ output_cols_prefix: str = "fit_predict_",
641
+ ) -> Union[DataFrame, pd.DataFrame]:
658
642
  """ Method not supported for this class.
659
643
 
660
644
 
@@ -679,22 +663,104 @@ class SGDClassifier(BaseTransformer):
679
663
  )
680
664
  output_result, fitted_estimator = model_trainer.train_fit_predict(
681
665
  drop_input_cols=self._drop_input_cols,
682
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
666
+ expected_output_cols_list=(
667
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
668
+ ),
683
669
  )
684
670
  self._sklearn_object = fitted_estimator
685
671
  self._is_fitted = True
686
672
  return output_result
687
673
 
674
+
675
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
676
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
677
+ """ Method not supported for this class.
678
+
688
679
 
689
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
690
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
691
- """
680
+ Raises:
681
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
682
+
683
+ Args:
684
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
685
+ Snowpark or Pandas DataFrame.
686
+ output_cols_prefix: Prefix for the response columns
692
687
  Returns:
693
688
  Transformed dataset.
694
689
  """
695
- self.fit(dataset)
696
- assert self._sklearn_object is not None
697
- return self._sklearn_object.embedding_
690
+ self._infer_input_output_cols(dataset)
691
+ super()._check_dataset_type(dataset)
692
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
693
+ estimator=self._sklearn_object,
694
+ dataset=dataset,
695
+ input_cols=self.input_cols,
696
+ label_cols=self.label_cols,
697
+ sample_weight_col=self.sample_weight_col,
698
+ autogenerated=self._autogenerated,
699
+ subproject=_SUBPROJECT,
700
+ )
701
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
702
+ drop_input_cols=self._drop_input_cols,
703
+ expected_output_cols_list=self.output_cols,
704
+ )
705
+ self._sklearn_object = fitted_estimator
706
+ self._is_fitted = True
707
+ return output_result
708
+
709
+
710
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
711
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
712
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
713
+ """
714
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
715
+ # The following condition is introduced for kneighbors methods, and not used in other methods
716
+ if output_cols:
717
+ output_cols = [
718
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
719
+ for c in output_cols
720
+ ]
721
+ elif getattr(self._sklearn_object, "classes_", None) is None:
722
+ output_cols = [output_cols_prefix]
723
+ elif self._sklearn_object is not None:
724
+ classes = self._sklearn_object.classes_
725
+ if isinstance(classes, numpy.ndarray):
726
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
727
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
728
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
729
+ output_cols = []
730
+ for i, cl in enumerate(classes):
731
+ # For binary classification, there is only one output column for each class
732
+ # ndarray as the two classes are complementary.
733
+ if len(cl) == 2:
734
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
735
+ else:
736
+ output_cols.extend([
737
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
738
+ ])
739
+ else:
740
+ output_cols = []
741
+
742
+ # Make sure column names are valid snowflake identifiers.
743
+ assert output_cols is not None # Make MyPy happy
744
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
745
+
746
+ return rv
747
+
748
+ def _align_expected_output_names(
749
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
750
+ ) -> List[str]:
751
+ # in case the inferred output column names dimension is different
752
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
753
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
754
+ output_df_columns = list(output_df_pd.columns)
755
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
756
+ if self.sample_weight_col:
757
+ output_df_columns_set -= set(self.sample_weight_col)
758
+ # if the dimension of inferred output column names is correct; use it
759
+ if len(expected_output_cols_list) == len(output_df_columns_set):
760
+ return expected_output_cols_list
761
+ # otherwise, use the sklearn estimator's output
762
+ else:
763
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
698
764
 
699
765
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
700
766
  @telemetry.send_api_usage_telemetry(
@@ -728,24 +794,26 @@ class SGDClassifier(BaseTransformer):
728
794
  # are specific to the type of dataset used.
729
795
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
730
796
 
797
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
798
+
731
799
  if isinstance(dataset, DataFrame):
732
- self._deps = self._batch_inference_validate_snowpark(
733
- dataset=dataset,
734
- inference_method=inference_method,
735
- )
736
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
800
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
801
+ self._deps = self._get_dependencies()
802
+ assert isinstance(
803
+ dataset._session, Session
804
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
737
805
  transform_kwargs = dict(
738
806
  session=dataset._session,
739
807
  dependencies=self._deps,
740
- drop_input_cols = self._drop_input_cols,
808
+ drop_input_cols=self._drop_input_cols,
741
809
  expected_output_cols_type="float",
742
810
  )
811
+ expected_output_cols = self._align_expected_output_names(
812
+ inference_method, dataset, expected_output_cols, output_cols_prefix
813
+ )
743
814
 
744
815
  elif isinstance(dataset, pd.DataFrame):
745
- transform_kwargs = dict(
746
- snowpark_input_cols = self._snowpark_cols,
747
- drop_input_cols = self._drop_input_cols
748
- )
816
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
749
817
 
750
818
  transform_handlers = ModelTransformerBuilder.build(
751
819
  dataset=dataset,
@@ -757,7 +825,7 @@ class SGDClassifier(BaseTransformer):
757
825
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
758
826
  inference_method=inference_method,
759
827
  input_cols=self.input_cols,
760
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
828
+ expected_output_cols=expected_output_cols,
761
829
  **transform_kwargs
762
830
  )
763
831
  return output_df
@@ -789,29 +857,30 @@ class SGDClassifier(BaseTransformer):
789
857
  Output dataset with log probability of the sample for each class in the model.
790
858
  """
791
859
  super()._check_dataset_type(dataset)
792
- inference_method="predict_log_proba"
860
+ inference_method = "predict_log_proba"
861
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
793
862
 
794
863
  # This dictionary contains optional kwargs for batch inference. These kwargs
795
864
  # are specific to the type of dataset used.
796
865
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
797
866
 
798
867
  if isinstance(dataset, DataFrame):
799
- self._deps = self._batch_inference_validate_snowpark(
800
- dataset=dataset,
801
- inference_method=inference_method,
802
- )
803
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
868
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
869
+ self._deps = self._get_dependencies()
870
+ assert isinstance(
871
+ dataset._session, Session
872
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
804
873
  transform_kwargs = dict(
805
874
  session=dataset._session,
806
875
  dependencies=self._deps,
807
- drop_input_cols = self._drop_input_cols,
876
+ drop_input_cols=self._drop_input_cols,
808
877
  expected_output_cols_type="float",
809
878
  )
879
+ expected_output_cols = self._align_expected_output_names(
880
+ inference_method, dataset, expected_output_cols, output_cols_prefix
881
+ )
810
882
  elif isinstance(dataset, pd.DataFrame):
811
- transform_kwargs = dict(
812
- snowpark_input_cols = self._snowpark_cols,
813
- drop_input_cols = self._drop_input_cols
814
- )
883
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
815
884
 
816
885
  transform_handlers = ModelTransformerBuilder.build(
817
886
  dataset=dataset,
@@ -824,7 +893,7 @@ class SGDClassifier(BaseTransformer):
824
893
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
825
894
  inference_method=inference_method,
826
895
  input_cols=self.input_cols,
827
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
896
+ expected_output_cols=expected_output_cols,
828
897
  **transform_kwargs
829
898
  )
830
899
  return output_df
@@ -852,30 +921,32 @@ class SGDClassifier(BaseTransformer):
852
921
  Output dataset with results of the decision function for the samples in input dataset.
853
922
  """
854
923
  super()._check_dataset_type(dataset)
855
- inference_method="decision_function"
924
+ inference_method = "decision_function"
856
925
 
857
926
  # This dictionary contains optional kwargs for batch inference. These kwargs
858
927
  # are specific to the type of dataset used.
859
928
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
860
929
 
930
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
931
+
861
932
  if isinstance(dataset, DataFrame):
862
- self._deps = self._batch_inference_validate_snowpark(
863
- dataset=dataset,
864
- inference_method=inference_method,
865
- )
866
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
933
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
934
+ self._deps = self._get_dependencies()
935
+ assert isinstance(
936
+ dataset._session, Session
937
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
867
938
  transform_kwargs = dict(
868
939
  session=dataset._session,
869
940
  dependencies=self._deps,
870
- drop_input_cols = self._drop_input_cols,
941
+ drop_input_cols=self._drop_input_cols,
871
942
  expected_output_cols_type="float",
872
943
  )
944
+ expected_output_cols = self._align_expected_output_names(
945
+ inference_method, dataset, expected_output_cols, output_cols_prefix
946
+ )
873
947
 
874
948
  elif isinstance(dataset, pd.DataFrame):
875
- transform_kwargs = dict(
876
- snowpark_input_cols = self._snowpark_cols,
877
- drop_input_cols = self._drop_input_cols
878
- )
949
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
879
950
 
880
951
  transform_handlers = ModelTransformerBuilder.build(
881
952
  dataset=dataset,
@@ -888,7 +959,7 @@ class SGDClassifier(BaseTransformer):
888
959
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
889
960
  inference_method=inference_method,
890
961
  input_cols=self.input_cols,
891
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
962
+ expected_output_cols=expected_output_cols,
892
963
  **transform_kwargs
893
964
  )
894
965
  return output_df
@@ -917,17 +988,17 @@ class SGDClassifier(BaseTransformer):
917
988
  Output dataset with probability of the sample for each class in the model.
918
989
  """
919
990
  super()._check_dataset_type(dataset)
920
- inference_method="score_samples"
991
+ inference_method = "score_samples"
921
992
 
922
993
  # This dictionary contains optional kwargs for batch inference. These kwargs
923
994
  # are specific to the type of dataset used.
924
995
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
925
996
 
997
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
998
+
926
999
  if isinstance(dataset, DataFrame):
927
- self._deps = self._batch_inference_validate_snowpark(
928
- dataset=dataset,
929
- inference_method=inference_method,
930
- )
1000
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1001
+ self._deps = self._get_dependencies()
931
1002
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
932
1003
  transform_kwargs = dict(
933
1004
  session=dataset._session,
@@ -935,6 +1006,9 @@ class SGDClassifier(BaseTransformer):
935
1006
  drop_input_cols = self._drop_input_cols,
936
1007
  expected_output_cols_type="float",
937
1008
  )
1009
+ expected_output_cols = self._align_expected_output_names(
1010
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1011
+ )
938
1012
 
939
1013
  elif isinstance(dataset, pd.DataFrame):
940
1014
  transform_kwargs = dict(
@@ -953,7 +1027,7 @@ class SGDClassifier(BaseTransformer):
953
1027
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
954
1028
  inference_method=inference_method,
955
1029
  input_cols=self.input_cols,
956
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1030
+ expected_output_cols=expected_output_cols,
957
1031
  **transform_kwargs
958
1032
  )
959
1033
  return output_df
@@ -988,17 +1062,15 @@ class SGDClassifier(BaseTransformer):
988
1062
  transform_kwargs: ScoreKwargsTypedDict = dict()
989
1063
 
990
1064
  if isinstance(dataset, DataFrame):
991
- self._deps = self._batch_inference_validate_snowpark(
992
- dataset=dataset,
993
- inference_method="score",
994
- )
1065
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1066
+ self._deps = self._get_dependencies()
995
1067
  selected_cols = self._get_active_columns()
996
1068
  if len(selected_cols) > 0:
997
1069
  dataset = dataset.select(selected_cols)
998
1070
  assert isinstance(dataset._session, Session) # keep mypy happy
999
1071
  transform_kwargs = dict(
1000
1072
  session=dataset._session,
1001
- dependencies=["snowflake-snowpark-python"] + self._deps,
1073
+ dependencies=self._deps,
1002
1074
  score_sproc_imports=['sklearn'],
1003
1075
  )
1004
1076
  elif isinstance(dataset, pd.DataFrame):
@@ -1063,11 +1135,8 @@ class SGDClassifier(BaseTransformer):
1063
1135
 
1064
1136
  if isinstance(dataset, DataFrame):
1065
1137
 
1066
- self._deps = self._batch_inference_validate_snowpark(
1067
- dataset=dataset,
1068
- inference_method=inference_method,
1069
-
1070
- )
1138
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1139
+ self._deps = self._get_dependencies()
1071
1140
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1072
1141
  transform_kwargs = dict(
1073
1142
  session = dataset._session,
@@ -1100,50 +1169,84 @@ class SGDClassifier(BaseTransformer):
1100
1169
  )
1101
1170
  return output_df
1102
1171
 
1172
+
1173
+
1174
+ def to_sklearn(self) -> Any:
1175
+ """Get sklearn.linear_model.SGDClassifier object.
1176
+ """
1177
+ if self._sklearn_object is None:
1178
+ self._sklearn_object = self._create_sklearn_object()
1179
+ return self._sklearn_object
1180
+
1181
+ def to_xgboost(self) -> Any:
1182
+ raise exceptions.SnowflakeMLException(
1183
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1184
+ original_exception=AttributeError(
1185
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1186
+ "to_xgboost()",
1187
+ "to_sklearn()"
1188
+ )
1189
+ ),
1190
+ )
1191
+
1192
+ def to_lightgbm(self) -> Any:
1193
+ raise exceptions.SnowflakeMLException(
1194
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1195
+ original_exception=AttributeError(
1196
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1197
+ "to_lightgbm()",
1198
+ "to_sklearn()"
1199
+ )
1200
+ ),
1201
+ )
1202
+
1203
+ def _get_dependencies(self) -> List[str]:
1204
+ return self._deps
1205
+
1103
1206
 
1104
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1207
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1105
1208
  self._model_signature_dict = dict()
1106
1209
 
1107
1210
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1108
1211
 
1109
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1212
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1110
1213
  outputs: List[BaseFeatureSpec] = []
1111
1214
  if hasattr(self, "predict"):
1112
1215
  # keep mypy happy
1113
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1216
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1114
1217
  # For classifier, the type of predict is the same as the type of label
1115
- if self._sklearn_object._estimator_type == 'classifier':
1116
- # label columns is the desired type for output
1218
+ if self._sklearn_object._estimator_type == "classifier":
1219
+ # label columns is the desired type for output
1117
1220
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1118
1221
  # rename the output columns
1119
1222
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1120
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1121
- ([] if self._drop_input_cols else inputs)
1122
- + outputs)
1223
+ self._model_signature_dict["predict"] = ModelSignature(
1224
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1225
+ )
1123
1226
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1124
1227
  # For outlier models, returns -1 for outliers and 1 for inliers.
1125
- # Clusterer returns int64 cluster labels.
1228
+ # Clusterer returns int64 cluster labels.
1126
1229
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1127
1230
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1128
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1129
- ([] if self._drop_input_cols else inputs)
1130
- + outputs)
1131
-
1231
+ self._model_signature_dict["predict"] = ModelSignature(
1232
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1233
+ )
1234
+
1132
1235
  # For regressor, the type of predict is float64
1133
- elif self._sklearn_object._estimator_type == 'regressor':
1236
+ elif self._sklearn_object._estimator_type == "regressor":
1134
1237
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1135
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1136
- ([] if self._drop_input_cols else inputs)
1137
- + outputs)
1138
-
1238
+ self._model_signature_dict["predict"] = ModelSignature(
1239
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1240
+ )
1241
+
1139
1242
  for prob_func in PROB_FUNCTIONS:
1140
1243
  if hasattr(self, prob_func):
1141
1244
  output_cols_prefix: str = f"{prob_func}_"
1142
1245
  output_column_names = self._get_output_column_names(output_cols_prefix)
1143
1246
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1144
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1145
- ([] if self._drop_input_cols else inputs)
1146
- + outputs)
1247
+ self._model_signature_dict[prob_func] = ModelSignature(
1248
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1249
+ )
1147
1250
 
1148
1251
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1149
1252
  items = list(self._model_signature_dict.items())
@@ -1156,10 +1259,10 @@ class SGDClassifier(BaseTransformer):
1156
1259
  """Returns model signature of current class.
1157
1260
 
1158
1261
  Raises:
1159
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1262
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1160
1263
 
1161
1264
  Returns:
1162
- Dict[str, ModelSignature]: each method and its input output signature
1265
+ Dict with each method and its input output signature
1163
1266
  """
1164
1267
  if self._model_signature_dict is None:
1165
1268
  raise exceptions.SnowflakeMLException(
@@ -1167,35 +1270,3 @@ class SGDClassifier(BaseTransformer):
1167
1270
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1168
1271
  )
1169
1272
  return self._model_signature_dict
1170
-
1171
- def to_sklearn(self) -> Any:
1172
- """Get sklearn.linear_model.SGDClassifier object.
1173
- """
1174
- if self._sklearn_object is None:
1175
- self._sklearn_object = self._create_sklearn_object()
1176
- return self._sklearn_object
1177
-
1178
- def to_xgboost(self) -> Any:
1179
- raise exceptions.SnowflakeMLException(
1180
- error_code=error_codes.METHOD_NOT_ALLOWED,
1181
- original_exception=AttributeError(
1182
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1183
- "to_xgboost()",
1184
- "to_sklearn()"
1185
- )
1186
- ),
1187
- )
1188
-
1189
- def to_lightgbm(self) -> Any:
1190
- raise exceptions.SnowflakeMLException(
1191
- error_code=error_codes.METHOD_NOT_ALLOWED,
1192
- original_exception=AttributeError(
1193
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1194
- "to_lightgbm()",
1195
- "to_sklearn()"
1196
- )
1197
- ),
1198
- )
1199
-
1200
- def _get_dependencies(self) -> List[str]:
1201
- return self._deps