snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class ShrunkCovariance(BaseTransformer):
|
71
64
|
r"""Covariance estimator with shrinkage
|
72
65
|
For more details on this class, see [sklearn.covariance.ShrunkCovariance]
|
@@ -208,12 +201,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
208
201
|
)
|
209
202
|
return selected_cols
|
210
203
|
|
211
|
-
|
212
|
-
project=_PROJECT,
|
213
|
-
subproject=_SUBPROJECT,
|
214
|
-
custom_tags=dict([("autogen", True)]),
|
215
|
-
)
|
216
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ShrunkCovariance":
|
204
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ShrunkCovariance":
|
217
205
|
"""Fit the shrunk covariance model to X
|
218
206
|
For more details on this function, see [sklearn.covariance.ShrunkCovariance.fit]
|
219
207
|
(https://scikit-learn.org/stable/modules/generated/sklearn.covariance.ShrunkCovariance.html#sklearn.covariance.ShrunkCovariance.fit)
|
@@ -240,12 +228,14 @@ class ShrunkCovariance(BaseTransformer):
|
|
240
228
|
|
241
229
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
242
230
|
|
243
|
-
|
231
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
244
232
|
if SNOWML_SPROC_ENV in os.environ:
|
245
233
|
statement_params = telemetry.get_function_usage_statement_params(
|
246
234
|
project=_PROJECT,
|
247
235
|
subproject=_SUBPROJECT,
|
248
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
236
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
237
|
+
inspect.currentframe(), ShrunkCovariance.__class__.__name__
|
238
|
+
),
|
249
239
|
api_calls=[Session.call],
|
250
240
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
251
241
|
)
|
@@ -266,27 +256,24 @@ class ShrunkCovariance(BaseTransformer):
|
|
266
256
|
)
|
267
257
|
self._sklearn_object = model_trainer.train()
|
268
258
|
self._is_fitted = True
|
269
|
-
self.
|
259
|
+
self._generate_model_signatures(dataset)
|
270
260
|
return self
|
271
261
|
|
272
262
|
def _batch_inference_validate_snowpark(
|
273
263
|
self,
|
274
264
|
dataset: DataFrame,
|
275
265
|
inference_method: str,
|
276
|
-
) ->
|
277
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
278
|
-
return the available package that exists in the snowflake anaconda channel
|
266
|
+
) -> None:
|
267
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
279
268
|
|
280
269
|
Args:
|
281
270
|
dataset: snowpark dataframe
|
282
271
|
inference_method: the inference method such as predict, score...
|
283
|
-
|
272
|
+
|
284
273
|
Raises:
|
285
274
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
286
275
|
SnowflakeMLException: If the session is None, raise error
|
287
276
|
|
288
|
-
Returns:
|
289
|
-
A list of available package that exists in the snowflake anaconda channel
|
290
277
|
"""
|
291
278
|
if not self._is_fitted:
|
292
279
|
raise exceptions.SnowflakeMLException(
|
@@ -304,9 +291,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
304
291
|
"Session must not specified for snowpark dataset."
|
305
292
|
),
|
306
293
|
)
|
307
|
-
|
308
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
309
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
294
|
+
|
310
295
|
|
311
296
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
312
297
|
@telemetry.send_api_usage_telemetry(
|
@@ -340,7 +325,9 @@ class ShrunkCovariance(BaseTransformer):
|
|
340
325
|
# when it is classifier, infer the datatype from label columns
|
341
326
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
342
327
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
343
|
-
label_cols_signatures = [
|
328
|
+
label_cols_signatures = [
|
329
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
330
|
+
]
|
344
331
|
if len(label_cols_signatures) == 0:
|
345
332
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
346
333
|
raise exceptions.SnowflakeMLException(
|
@@ -348,25 +335,23 @@ class ShrunkCovariance(BaseTransformer):
|
|
348
335
|
original_exception=ValueError(error_str),
|
349
336
|
)
|
350
337
|
|
351
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
352
|
-
label_cols_signatures[0].as_snowpark_type()
|
353
|
-
)
|
338
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
354
339
|
|
355
|
-
self.
|
356
|
-
|
340
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
341
|
+
self._deps = self._get_dependencies()
|
342
|
+
assert isinstance(
|
343
|
+
dataset._session, Session
|
344
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
357
345
|
|
358
346
|
transform_kwargs = dict(
|
359
|
-
session
|
360
|
-
dependencies
|
361
|
-
drop_input_cols
|
362
|
-
expected_output_cols_type
|
347
|
+
session=dataset._session,
|
348
|
+
dependencies=self._deps,
|
349
|
+
drop_input_cols=self._drop_input_cols,
|
350
|
+
expected_output_cols_type=expected_type_inferred,
|
363
351
|
)
|
364
352
|
|
365
353
|
elif isinstance(dataset, pd.DataFrame):
|
366
|
-
transform_kwargs = dict(
|
367
|
-
snowpark_input_cols = self._snowpark_cols,
|
368
|
-
drop_input_cols = self._drop_input_cols
|
369
|
-
)
|
354
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
370
355
|
|
371
356
|
transform_handlers = ModelTransformerBuilder.build(
|
372
357
|
dataset=dataset,
|
@@ -406,7 +391,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
406
391
|
Transformed dataset.
|
407
392
|
"""
|
408
393
|
super()._check_dataset_type(dataset)
|
409
|
-
inference_method="transform"
|
394
|
+
inference_method = "transform"
|
410
395
|
|
411
396
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
412
397
|
# are specific to the type of dataset used.
|
@@ -436,24 +421,19 @@ class ShrunkCovariance(BaseTransformer):
|
|
436
421
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
437
422
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
438
423
|
|
439
|
-
self.
|
440
|
-
|
441
|
-
inference_method=inference_method,
|
442
|
-
)
|
424
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
425
|
+
self._deps = self._get_dependencies()
|
443
426
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
444
427
|
|
445
428
|
transform_kwargs = dict(
|
446
|
-
session
|
447
|
-
dependencies
|
448
|
-
drop_input_cols
|
449
|
-
expected_output_cols_type
|
429
|
+
session=dataset._session,
|
430
|
+
dependencies=self._deps,
|
431
|
+
drop_input_cols=self._drop_input_cols,
|
432
|
+
expected_output_cols_type=expected_dtype,
|
450
433
|
)
|
451
434
|
|
452
435
|
elif isinstance(dataset, pd.DataFrame):
|
453
|
-
transform_kwargs = dict(
|
454
|
-
snowpark_input_cols = self._snowpark_cols,
|
455
|
-
drop_input_cols = self._drop_input_cols
|
456
|
-
)
|
436
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
457
437
|
|
458
438
|
transform_handlers = ModelTransformerBuilder.build(
|
459
439
|
dataset=dataset,
|
@@ -472,7 +452,11 @@ class ShrunkCovariance(BaseTransformer):
|
|
472
452
|
return output_df
|
473
453
|
|
474
454
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
475
|
-
def fit_predict(
|
455
|
+
def fit_predict(
|
456
|
+
self,
|
457
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
458
|
+
output_cols_prefix: str = "fit_predict_",
|
459
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
476
460
|
""" Method not supported for this class.
|
477
461
|
|
478
462
|
|
@@ -497,22 +481,104 @@ class ShrunkCovariance(BaseTransformer):
|
|
497
481
|
)
|
498
482
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
499
483
|
drop_input_cols=self._drop_input_cols,
|
500
|
-
expected_output_cols_list=
|
484
|
+
expected_output_cols_list=(
|
485
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
486
|
+
),
|
501
487
|
)
|
502
488
|
self._sklearn_object = fitted_estimator
|
503
489
|
self._is_fitted = True
|
504
490
|
return output_result
|
505
491
|
|
492
|
+
|
493
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
494
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
495
|
+
""" Method not supported for this class.
|
496
|
+
|
506
497
|
|
507
|
-
|
508
|
-
|
509
|
-
|
498
|
+
Raises:
|
499
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
500
|
+
|
501
|
+
Args:
|
502
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
503
|
+
Snowpark or Pandas DataFrame.
|
504
|
+
output_cols_prefix: Prefix for the response columns
|
510
505
|
Returns:
|
511
506
|
Transformed dataset.
|
512
507
|
"""
|
513
|
-
self.
|
514
|
-
|
515
|
-
|
508
|
+
self._infer_input_output_cols(dataset)
|
509
|
+
super()._check_dataset_type(dataset)
|
510
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
511
|
+
estimator=self._sklearn_object,
|
512
|
+
dataset=dataset,
|
513
|
+
input_cols=self.input_cols,
|
514
|
+
label_cols=self.label_cols,
|
515
|
+
sample_weight_col=self.sample_weight_col,
|
516
|
+
autogenerated=self._autogenerated,
|
517
|
+
subproject=_SUBPROJECT,
|
518
|
+
)
|
519
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
520
|
+
drop_input_cols=self._drop_input_cols,
|
521
|
+
expected_output_cols_list=self.output_cols,
|
522
|
+
)
|
523
|
+
self._sklearn_object = fitted_estimator
|
524
|
+
self._is_fitted = True
|
525
|
+
return output_result
|
526
|
+
|
527
|
+
|
528
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
529
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
530
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
531
|
+
"""
|
532
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
533
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
534
|
+
if output_cols:
|
535
|
+
output_cols = [
|
536
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
537
|
+
for c in output_cols
|
538
|
+
]
|
539
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
540
|
+
output_cols = [output_cols_prefix]
|
541
|
+
elif self._sklearn_object is not None:
|
542
|
+
classes = self._sklearn_object.classes_
|
543
|
+
if isinstance(classes, numpy.ndarray):
|
544
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
545
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
546
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
547
|
+
output_cols = []
|
548
|
+
for i, cl in enumerate(classes):
|
549
|
+
# For binary classification, there is only one output column for each class
|
550
|
+
# ndarray as the two classes are complementary.
|
551
|
+
if len(cl) == 2:
|
552
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
553
|
+
else:
|
554
|
+
output_cols.extend([
|
555
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
556
|
+
])
|
557
|
+
else:
|
558
|
+
output_cols = []
|
559
|
+
|
560
|
+
# Make sure column names are valid snowflake identifiers.
|
561
|
+
assert output_cols is not None # Make MyPy happy
|
562
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
563
|
+
|
564
|
+
return rv
|
565
|
+
|
566
|
+
def _align_expected_output_names(
|
567
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
568
|
+
) -> List[str]:
|
569
|
+
# in case the inferred output column names dimension is different
|
570
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
571
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
572
|
+
output_df_columns = list(output_df_pd.columns)
|
573
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
574
|
+
if self.sample_weight_col:
|
575
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
576
|
+
# if the dimension of inferred output column names is correct; use it
|
577
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
578
|
+
return expected_output_cols_list
|
579
|
+
# otherwise, use the sklearn estimator's output
|
580
|
+
else:
|
581
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
516
582
|
|
517
583
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
518
584
|
@telemetry.send_api_usage_telemetry(
|
@@ -544,24 +610,26 @@ class ShrunkCovariance(BaseTransformer):
|
|
544
610
|
# are specific to the type of dataset used.
|
545
611
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
546
612
|
|
613
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
614
|
+
|
547
615
|
if isinstance(dataset, DataFrame):
|
548
|
-
self.
|
549
|
-
|
550
|
-
|
551
|
-
|
552
|
-
|
616
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
617
|
+
self._deps = self._get_dependencies()
|
618
|
+
assert isinstance(
|
619
|
+
dataset._session, Session
|
620
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
553
621
|
transform_kwargs = dict(
|
554
622
|
session=dataset._session,
|
555
623
|
dependencies=self._deps,
|
556
|
-
drop_input_cols
|
624
|
+
drop_input_cols=self._drop_input_cols,
|
557
625
|
expected_output_cols_type="float",
|
558
626
|
)
|
627
|
+
expected_output_cols = self._align_expected_output_names(
|
628
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
629
|
+
)
|
559
630
|
|
560
631
|
elif isinstance(dataset, pd.DataFrame):
|
561
|
-
transform_kwargs = dict(
|
562
|
-
snowpark_input_cols = self._snowpark_cols,
|
563
|
-
drop_input_cols = self._drop_input_cols
|
564
|
-
)
|
632
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
565
633
|
|
566
634
|
transform_handlers = ModelTransformerBuilder.build(
|
567
635
|
dataset=dataset,
|
@@ -573,7 +641,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
573
641
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
574
642
|
inference_method=inference_method,
|
575
643
|
input_cols=self.input_cols,
|
576
|
-
expected_output_cols=
|
644
|
+
expected_output_cols=expected_output_cols,
|
577
645
|
**transform_kwargs
|
578
646
|
)
|
579
647
|
return output_df
|
@@ -603,29 +671,30 @@ class ShrunkCovariance(BaseTransformer):
|
|
603
671
|
Output dataset with log probability of the sample for each class in the model.
|
604
672
|
"""
|
605
673
|
super()._check_dataset_type(dataset)
|
606
|
-
inference_method="predict_log_proba"
|
674
|
+
inference_method = "predict_log_proba"
|
675
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
607
676
|
|
608
677
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
609
678
|
# are specific to the type of dataset used.
|
610
679
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
611
680
|
|
612
681
|
if isinstance(dataset, DataFrame):
|
613
|
-
self.
|
614
|
-
|
615
|
-
|
616
|
-
|
617
|
-
|
682
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
683
|
+
self._deps = self._get_dependencies()
|
684
|
+
assert isinstance(
|
685
|
+
dataset._session, Session
|
686
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
618
687
|
transform_kwargs = dict(
|
619
688
|
session=dataset._session,
|
620
689
|
dependencies=self._deps,
|
621
|
-
drop_input_cols
|
690
|
+
drop_input_cols=self._drop_input_cols,
|
622
691
|
expected_output_cols_type="float",
|
623
692
|
)
|
693
|
+
expected_output_cols = self._align_expected_output_names(
|
694
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
695
|
+
)
|
624
696
|
elif isinstance(dataset, pd.DataFrame):
|
625
|
-
transform_kwargs = dict(
|
626
|
-
snowpark_input_cols = self._snowpark_cols,
|
627
|
-
drop_input_cols = self._drop_input_cols
|
628
|
-
)
|
697
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
629
698
|
|
630
699
|
transform_handlers = ModelTransformerBuilder.build(
|
631
700
|
dataset=dataset,
|
@@ -638,7 +707,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
638
707
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
639
708
|
inference_method=inference_method,
|
640
709
|
input_cols=self.input_cols,
|
641
|
-
expected_output_cols=
|
710
|
+
expected_output_cols=expected_output_cols,
|
642
711
|
**transform_kwargs
|
643
712
|
)
|
644
713
|
return output_df
|
@@ -664,30 +733,32 @@ class ShrunkCovariance(BaseTransformer):
|
|
664
733
|
Output dataset with results of the decision function for the samples in input dataset.
|
665
734
|
"""
|
666
735
|
super()._check_dataset_type(dataset)
|
667
|
-
inference_method="decision_function"
|
736
|
+
inference_method = "decision_function"
|
668
737
|
|
669
738
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
670
739
|
# are specific to the type of dataset used.
|
671
740
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
672
741
|
|
742
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
743
|
+
|
673
744
|
if isinstance(dataset, DataFrame):
|
674
|
-
self.
|
675
|
-
|
676
|
-
|
677
|
-
|
678
|
-
|
745
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
746
|
+
self._deps = self._get_dependencies()
|
747
|
+
assert isinstance(
|
748
|
+
dataset._session, Session
|
749
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
679
750
|
transform_kwargs = dict(
|
680
751
|
session=dataset._session,
|
681
752
|
dependencies=self._deps,
|
682
|
-
drop_input_cols
|
753
|
+
drop_input_cols=self._drop_input_cols,
|
683
754
|
expected_output_cols_type="float",
|
684
755
|
)
|
756
|
+
expected_output_cols = self._align_expected_output_names(
|
757
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
758
|
+
)
|
685
759
|
|
686
760
|
elif isinstance(dataset, pd.DataFrame):
|
687
|
-
transform_kwargs = dict(
|
688
|
-
snowpark_input_cols = self._snowpark_cols,
|
689
|
-
drop_input_cols = self._drop_input_cols
|
690
|
-
)
|
761
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
691
762
|
|
692
763
|
transform_handlers = ModelTransformerBuilder.build(
|
693
764
|
dataset=dataset,
|
@@ -700,7 +771,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
700
771
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
701
772
|
inference_method=inference_method,
|
702
773
|
input_cols=self.input_cols,
|
703
|
-
expected_output_cols=
|
774
|
+
expected_output_cols=expected_output_cols,
|
704
775
|
**transform_kwargs
|
705
776
|
)
|
706
777
|
return output_df
|
@@ -729,17 +800,17 @@ class ShrunkCovariance(BaseTransformer):
|
|
729
800
|
Output dataset with probability of the sample for each class in the model.
|
730
801
|
"""
|
731
802
|
super()._check_dataset_type(dataset)
|
732
|
-
inference_method="score_samples"
|
803
|
+
inference_method = "score_samples"
|
733
804
|
|
734
805
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
735
806
|
# are specific to the type of dataset used.
|
736
807
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
737
808
|
|
809
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
810
|
+
|
738
811
|
if isinstance(dataset, DataFrame):
|
739
|
-
self.
|
740
|
-
|
741
|
-
inference_method=inference_method,
|
742
|
-
)
|
812
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
813
|
+
self._deps = self._get_dependencies()
|
743
814
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
744
815
|
transform_kwargs = dict(
|
745
816
|
session=dataset._session,
|
@@ -747,6 +818,9 @@ class ShrunkCovariance(BaseTransformer):
|
|
747
818
|
drop_input_cols = self._drop_input_cols,
|
748
819
|
expected_output_cols_type="float",
|
749
820
|
)
|
821
|
+
expected_output_cols = self._align_expected_output_names(
|
822
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
823
|
+
)
|
750
824
|
|
751
825
|
elif isinstance(dataset, pd.DataFrame):
|
752
826
|
transform_kwargs = dict(
|
@@ -765,7 +839,7 @@ class ShrunkCovariance(BaseTransformer):
|
|
765
839
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
766
840
|
inference_method=inference_method,
|
767
841
|
input_cols=self.input_cols,
|
768
|
-
expected_output_cols=
|
842
|
+
expected_output_cols=expected_output_cols,
|
769
843
|
**transform_kwargs
|
770
844
|
)
|
771
845
|
return output_df
|
@@ -800,17 +874,15 @@ class ShrunkCovariance(BaseTransformer):
|
|
800
874
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
801
875
|
|
802
876
|
if isinstance(dataset, DataFrame):
|
803
|
-
self.
|
804
|
-
|
805
|
-
inference_method="score",
|
806
|
-
)
|
877
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
878
|
+
self._deps = self._get_dependencies()
|
807
879
|
selected_cols = self._get_active_columns()
|
808
880
|
if len(selected_cols) > 0:
|
809
881
|
dataset = dataset.select(selected_cols)
|
810
882
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
811
883
|
transform_kwargs = dict(
|
812
884
|
session=dataset._session,
|
813
|
-
dependencies=
|
885
|
+
dependencies=self._deps,
|
814
886
|
score_sproc_imports=['sklearn'],
|
815
887
|
)
|
816
888
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -875,11 +947,8 @@ class ShrunkCovariance(BaseTransformer):
|
|
875
947
|
|
876
948
|
if isinstance(dataset, DataFrame):
|
877
949
|
|
878
|
-
self.
|
879
|
-
|
880
|
-
inference_method=inference_method,
|
881
|
-
|
882
|
-
)
|
950
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
951
|
+
self._deps = self._get_dependencies()
|
883
952
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
884
953
|
transform_kwargs = dict(
|
885
954
|
session = dataset._session,
|
@@ -912,50 +981,84 @@ class ShrunkCovariance(BaseTransformer):
|
|
912
981
|
)
|
913
982
|
return output_df
|
914
983
|
|
984
|
+
|
985
|
+
|
986
|
+
def to_sklearn(self) -> Any:
|
987
|
+
"""Get sklearn.covariance.ShrunkCovariance object.
|
988
|
+
"""
|
989
|
+
if self._sklearn_object is None:
|
990
|
+
self._sklearn_object = self._create_sklearn_object()
|
991
|
+
return self._sklearn_object
|
992
|
+
|
993
|
+
def to_xgboost(self) -> Any:
|
994
|
+
raise exceptions.SnowflakeMLException(
|
995
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
996
|
+
original_exception=AttributeError(
|
997
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
998
|
+
"to_xgboost()",
|
999
|
+
"to_sklearn()"
|
1000
|
+
)
|
1001
|
+
),
|
1002
|
+
)
|
1003
|
+
|
1004
|
+
def to_lightgbm(self) -> Any:
|
1005
|
+
raise exceptions.SnowflakeMLException(
|
1006
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1007
|
+
original_exception=AttributeError(
|
1008
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1009
|
+
"to_lightgbm()",
|
1010
|
+
"to_sklearn()"
|
1011
|
+
)
|
1012
|
+
),
|
1013
|
+
)
|
1014
|
+
|
1015
|
+
def _get_dependencies(self) -> List[str]:
|
1016
|
+
return self._deps
|
1017
|
+
|
915
1018
|
|
916
|
-
def
|
1019
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
917
1020
|
self._model_signature_dict = dict()
|
918
1021
|
|
919
1022
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
920
1023
|
|
921
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1024
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
922
1025
|
outputs: List[BaseFeatureSpec] = []
|
923
1026
|
if hasattr(self, "predict"):
|
924
1027
|
# keep mypy happy
|
925
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1028
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
926
1029
|
# For classifier, the type of predict is the same as the type of label
|
927
|
-
if self._sklearn_object._estimator_type ==
|
928
|
-
|
1030
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1031
|
+
# label columns is the desired type for output
|
929
1032
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
930
1033
|
# rename the output columns
|
931
1034
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
932
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
933
|
-
|
934
|
-
|
1035
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1036
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1037
|
+
)
|
935
1038
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
936
1039
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
937
|
-
# Clusterer returns int64 cluster labels.
|
1040
|
+
# Clusterer returns int64 cluster labels.
|
938
1041
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
939
1042
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
940
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
941
|
-
|
942
|
-
|
943
|
-
|
1043
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1044
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1045
|
+
)
|
1046
|
+
|
944
1047
|
# For regressor, the type of predict is float64
|
945
|
-
elif self._sklearn_object._estimator_type ==
|
1048
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
946
1049
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
947
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
948
|
-
|
949
|
-
|
950
|
-
|
1050
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1051
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1052
|
+
)
|
1053
|
+
|
951
1054
|
for prob_func in PROB_FUNCTIONS:
|
952
1055
|
if hasattr(self, prob_func):
|
953
1056
|
output_cols_prefix: str = f"{prob_func}_"
|
954
1057
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
955
1058
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
956
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
957
|
-
|
958
|
-
|
1059
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1060
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1061
|
+
)
|
959
1062
|
|
960
1063
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
961
1064
|
items = list(self._model_signature_dict.items())
|
@@ -968,10 +1071,10 @@ class ShrunkCovariance(BaseTransformer):
|
|
968
1071
|
"""Returns model signature of current class.
|
969
1072
|
|
970
1073
|
Raises:
|
971
|
-
|
1074
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
972
1075
|
|
973
1076
|
Returns:
|
974
|
-
Dict
|
1077
|
+
Dict with each method and its input output signature
|
975
1078
|
"""
|
976
1079
|
if self._model_signature_dict is None:
|
977
1080
|
raise exceptions.SnowflakeMLException(
|
@@ -979,35 +1082,3 @@ class ShrunkCovariance(BaseTransformer):
|
|
979
1082
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
980
1083
|
)
|
981
1084
|
return self._model_signature_dict
|
982
|
-
|
983
|
-
def to_sklearn(self) -> Any:
|
984
|
-
"""Get sklearn.covariance.ShrunkCovariance object.
|
985
|
-
"""
|
986
|
-
if self._sklearn_object is None:
|
987
|
-
self._sklearn_object = self._create_sklearn_object()
|
988
|
-
return self._sklearn_object
|
989
|
-
|
990
|
-
def to_xgboost(self) -> Any:
|
991
|
-
raise exceptions.SnowflakeMLException(
|
992
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
993
|
-
original_exception=AttributeError(
|
994
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
995
|
-
"to_xgboost()",
|
996
|
-
"to_sklearn()"
|
997
|
-
)
|
998
|
-
),
|
999
|
-
)
|
1000
|
-
|
1001
|
-
def to_lightgbm(self) -> Any:
|
1002
|
-
raise exceptions.SnowflakeMLException(
|
1003
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1004
|
-
original_exception=AttributeError(
|
1005
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1006
|
-
"to_lightgbm()",
|
1007
|
-
"to_sklearn()"
|
1008
|
-
)
|
1009
|
-
),
|
1010
|
-
)
|
1011
|
-
|
1012
|
-
def _get_dependencies(self) -> List[str]:
|
1013
|
-
return self._deps
|