snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class ShrunkCovariance(BaseTransformer):
71
64
  r"""Covariance estimator with shrinkage
72
65
  For more details on this class, see [sklearn.covariance.ShrunkCovariance]
@@ -208,12 +201,7 @@ class ShrunkCovariance(BaseTransformer):
208
201
  )
209
202
  return selected_cols
210
203
 
211
- @telemetry.send_api_usage_telemetry(
212
- project=_PROJECT,
213
- subproject=_SUBPROJECT,
214
- custom_tags=dict([("autogen", True)]),
215
- )
216
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ShrunkCovariance":
204
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ShrunkCovariance":
217
205
  """Fit the shrunk covariance model to X
218
206
  For more details on this function, see [sklearn.covariance.ShrunkCovariance.fit]
219
207
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.ShrunkCovariance.html#sklearn.covariance.ShrunkCovariance.fit)
@@ -240,12 +228,14 @@ class ShrunkCovariance(BaseTransformer):
240
228
 
241
229
  self._snowpark_cols = dataset.select(self.input_cols).columns
242
230
 
243
- # If we are already in a stored procedure, no need to kick off another one.
231
+ # If we are already in a stored procedure, no need to kick off another one.
244
232
  if SNOWML_SPROC_ENV in os.environ:
245
233
  statement_params = telemetry.get_function_usage_statement_params(
246
234
  project=_PROJECT,
247
235
  subproject=_SUBPROJECT,
248
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ShrunkCovariance.__class__.__name__),
236
+ function_name=telemetry.get_statement_params_full_func_name(
237
+ inspect.currentframe(), ShrunkCovariance.__class__.__name__
238
+ ),
249
239
  api_calls=[Session.call],
250
240
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
251
241
  )
@@ -266,27 +256,24 @@ class ShrunkCovariance(BaseTransformer):
266
256
  )
267
257
  self._sklearn_object = model_trainer.train()
268
258
  self._is_fitted = True
269
- self._get_model_signatures(dataset)
259
+ self._generate_model_signatures(dataset)
270
260
  return self
271
261
 
272
262
  def _batch_inference_validate_snowpark(
273
263
  self,
274
264
  dataset: DataFrame,
275
265
  inference_method: str,
276
- ) -> List[str]:
277
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
278
- return the available package that exists in the snowflake anaconda channel
266
+ ) -> None:
267
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
279
268
 
280
269
  Args:
281
270
  dataset: snowpark dataframe
282
271
  inference_method: the inference method such as predict, score...
283
-
272
+
284
273
  Raises:
285
274
  SnowflakeMLException: If the estimator is not fitted, raise error
286
275
  SnowflakeMLException: If the session is None, raise error
287
276
 
288
- Returns:
289
- A list of available package that exists in the snowflake anaconda channel
290
277
  """
291
278
  if not self._is_fitted:
292
279
  raise exceptions.SnowflakeMLException(
@@ -304,9 +291,7 @@ class ShrunkCovariance(BaseTransformer):
304
291
  "Session must not specified for snowpark dataset."
305
292
  ),
306
293
  )
307
- # Validate that key package version in user workspace are supported in snowflake conda channel
308
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
309
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
294
+
310
295
 
311
296
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
312
297
  @telemetry.send_api_usage_telemetry(
@@ -340,7 +325,9 @@ class ShrunkCovariance(BaseTransformer):
340
325
  # when it is classifier, infer the datatype from label columns
341
326
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
342
327
  # Batch inference takes a single expected output column type. Use the first columns type for now.
343
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
328
+ label_cols_signatures = [
329
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
330
+ ]
344
331
  if len(label_cols_signatures) == 0:
345
332
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
346
333
  raise exceptions.SnowflakeMLException(
@@ -348,25 +335,23 @@ class ShrunkCovariance(BaseTransformer):
348
335
  original_exception=ValueError(error_str),
349
336
  )
350
337
 
351
- expected_type_inferred = convert_sp_to_sf_type(
352
- label_cols_signatures[0].as_snowpark_type()
353
- )
338
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
354
339
 
355
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
356
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
340
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
341
+ self._deps = self._get_dependencies()
342
+ assert isinstance(
343
+ dataset._session, Session
344
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
357
345
 
358
346
  transform_kwargs = dict(
359
- session = dataset._session,
360
- dependencies = self._deps,
361
- drop_input_cols = self._drop_input_cols,
362
- expected_output_cols_type = expected_type_inferred,
347
+ session=dataset._session,
348
+ dependencies=self._deps,
349
+ drop_input_cols=self._drop_input_cols,
350
+ expected_output_cols_type=expected_type_inferred,
363
351
  )
364
352
 
365
353
  elif isinstance(dataset, pd.DataFrame):
366
- transform_kwargs = dict(
367
- snowpark_input_cols = self._snowpark_cols,
368
- drop_input_cols = self._drop_input_cols
369
- )
354
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
370
355
 
371
356
  transform_handlers = ModelTransformerBuilder.build(
372
357
  dataset=dataset,
@@ -406,7 +391,7 @@ class ShrunkCovariance(BaseTransformer):
406
391
  Transformed dataset.
407
392
  """
408
393
  super()._check_dataset_type(dataset)
409
- inference_method="transform"
394
+ inference_method = "transform"
410
395
 
411
396
  # This dictionary contains optional kwargs for batch inference. These kwargs
412
397
  # are specific to the type of dataset used.
@@ -436,24 +421,19 @@ class ShrunkCovariance(BaseTransformer):
436
421
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
437
422
  expected_dtype = convert_sp_to_sf_type(output_types[0])
438
423
 
439
- self._deps = self._batch_inference_validate_snowpark(
440
- dataset=dataset,
441
- inference_method=inference_method,
442
- )
424
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
425
+ self._deps = self._get_dependencies()
443
426
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
444
427
 
445
428
  transform_kwargs = dict(
446
- session = dataset._session,
447
- dependencies = self._deps,
448
- drop_input_cols = self._drop_input_cols,
449
- expected_output_cols_type = expected_dtype,
429
+ session=dataset._session,
430
+ dependencies=self._deps,
431
+ drop_input_cols=self._drop_input_cols,
432
+ expected_output_cols_type=expected_dtype,
450
433
  )
451
434
 
452
435
  elif isinstance(dataset, pd.DataFrame):
453
- transform_kwargs = dict(
454
- snowpark_input_cols = self._snowpark_cols,
455
- drop_input_cols = self._drop_input_cols
456
- )
436
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
457
437
 
458
438
  transform_handlers = ModelTransformerBuilder.build(
459
439
  dataset=dataset,
@@ -472,7 +452,11 @@ class ShrunkCovariance(BaseTransformer):
472
452
  return output_df
473
453
 
474
454
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
475
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
455
+ def fit_predict(
456
+ self,
457
+ dataset: Union[DataFrame, pd.DataFrame],
458
+ output_cols_prefix: str = "fit_predict_",
459
+ ) -> Union[DataFrame, pd.DataFrame]:
476
460
  """ Method not supported for this class.
477
461
 
478
462
 
@@ -497,22 +481,104 @@ class ShrunkCovariance(BaseTransformer):
497
481
  )
498
482
  output_result, fitted_estimator = model_trainer.train_fit_predict(
499
483
  drop_input_cols=self._drop_input_cols,
500
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
484
+ expected_output_cols_list=(
485
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
486
+ ),
501
487
  )
502
488
  self._sklearn_object = fitted_estimator
503
489
  self._is_fitted = True
504
490
  return output_result
505
491
 
492
+
493
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
494
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
495
+ """ Method not supported for this class.
496
+
506
497
 
507
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
508
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
509
- """
498
+ Raises:
499
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
500
+
501
+ Args:
502
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
503
+ Snowpark or Pandas DataFrame.
504
+ output_cols_prefix: Prefix for the response columns
510
505
  Returns:
511
506
  Transformed dataset.
512
507
  """
513
- self.fit(dataset)
514
- assert self._sklearn_object is not None
515
- return self._sklearn_object.embedding_
508
+ self._infer_input_output_cols(dataset)
509
+ super()._check_dataset_type(dataset)
510
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
511
+ estimator=self._sklearn_object,
512
+ dataset=dataset,
513
+ input_cols=self.input_cols,
514
+ label_cols=self.label_cols,
515
+ sample_weight_col=self.sample_weight_col,
516
+ autogenerated=self._autogenerated,
517
+ subproject=_SUBPROJECT,
518
+ )
519
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
520
+ drop_input_cols=self._drop_input_cols,
521
+ expected_output_cols_list=self.output_cols,
522
+ )
523
+ self._sklearn_object = fitted_estimator
524
+ self._is_fitted = True
525
+ return output_result
526
+
527
+
528
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
529
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
530
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
531
+ """
532
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
533
+ # The following condition is introduced for kneighbors methods, and not used in other methods
534
+ if output_cols:
535
+ output_cols = [
536
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
537
+ for c in output_cols
538
+ ]
539
+ elif getattr(self._sklearn_object, "classes_", None) is None:
540
+ output_cols = [output_cols_prefix]
541
+ elif self._sklearn_object is not None:
542
+ classes = self._sklearn_object.classes_
543
+ if isinstance(classes, numpy.ndarray):
544
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
545
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
546
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
547
+ output_cols = []
548
+ for i, cl in enumerate(classes):
549
+ # For binary classification, there is only one output column for each class
550
+ # ndarray as the two classes are complementary.
551
+ if len(cl) == 2:
552
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
553
+ else:
554
+ output_cols.extend([
555
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
556
+ ])
557
+ else:
558
+ output_cols = []
559
+
560
+ # Make sure column names are valid snowflake identifiers.
561
+ assert output_cols is not None # Make MyPy happy
562
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
563
+
564
+ return rv
565
+
566
+ def _align_expected_output_names(
567
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
568
+ ) -> List[str]:
569
+ # in case the inferred output column names dimension is different
570
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
571
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
572
+ output_df_columns = list(output_df_pd.columns)
573
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
574
+ if self.sample_weight_col:
575
+ output_df_columns_set -= set(self.sample_weight_col)
576
+ # if the dimension of inferred output column names is correct; use it
577
+ if len(expected_output_cols_list) == len(output_df_columns_set):
578
+ return expected_output_cols_list
579
+ # otherwise, use the sklearn estimator's output
580
+ else:
581
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
516
582
 
517
583
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
518
584
  @telemetry.send_api_usage_telemetry(
@@ -544,24 +610,26 @@ class ShrunkCovariance(BaseTransformer):
544
610
  # are specific to the type of dataset used.
545
611
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
546
612
 
613
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
614
+
547
615
  if isinstance(dataset, DataFrame):
548
- self._deps = self._batch_inference_validate_snowpark(
549
- dataset=dataset,
550
- inference_method=inference_method,
551
- )
552
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
616
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
617
+ self._deps = self._get_dependencies()
618
+ assert isinstance(
619
+ dataset._session, Session
620
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
553
621
  transform_kwargs = dict(
554
622
  session=dataset._session,
555
623
  dependencies=self._deps,
556
- drop_input_cols = self._drop_input_cols,
624
+ drop_input_cols=self._drop_input_cols,
557
625
  expected_output_cols_type="float",
558
626
  )
627
+ expected_output_cols = self._align_expected_output_names(
628
+ inference_method, dataset, expected_output_cols, output_cols_prefix
629
+ )
559
630
 
560
631
  elif isinstance(dataset, pd.DataFrame):
561
- transform_kwargs = dict(
562
- snowpark_input_cols = self._snowpark_cols,
563
- drop_input_cols = self._drop_input_cols
564
- )
632
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
565
633
 
566
634
  transform_handlers = ModelTransformerBuilder.build(
567
635
  dataset=dataset,
@@ -573,7 +641,7 @@ class ShrunkCovariance(BaseTransformer):
573
641
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
574
642
  inference_method=inference_method,
575
643
  input_cols=self.input_cols,
576
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
644
+ expected_output_cols=expected_output_cols,
577
645
  **transform_kwargs
578
646
  )
579
647
  return output_df
@@ -603,29 +671,30 @@ class ShrunkCovariance(BaseTransformer):
603
671
  Output dataset with log probability of the sample for each class in the model.
604
672
  """
605
673
  super()._check_dataset_type(dataset)
606
- inference_method="predict_log_proba"
674
+ inference_method = "predict_log_proba"
675
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
607
676
 
608
677
  # This dictionary contains optional kwargs for batch inference. These kwargs
609
678
  # are specific to the type of dataset used.
610
679
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
611
680
 
612
681
  if isinstance(dataset, DataFrame):
613
- self._deps = self._batch_inference_validate_snowpark(
614
- dataset=dataset,
615
- inference_method=inference_method,
616
- )
617
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
682
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
683
+ self._deps = self._get_dependencies()
684
+ assert isinstance(
685
+ dataset._session, Session
686
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
618
687
  transform_kwargs = dict(
619
688
  session=dataset._session,
620
689
  dependencies=self._deps,
621
- drop_input_cols = self._drop_input_cols,
690
+ drop_input_cols=self._drop_input_cols,
622
691
  expected_output_cols_type="float",
623
692
  )
693
+ expected_output_cols = self._align_expected_output_names(
694
+ inference_method, dataset, expected_output_cols, output_cols_prefix
695
+ )
624
696
  elif isinstance(dataset, pd.DataFrame):
625
- transform_kwargs = dict(
626
- snowpark_input_cols = self._snowpark_cols,
627
- drop_input_cols = self._drop_input_cols
628
- )
697
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
629
698
 
630
699
  transform_handlers = ModelTransformerBuilder.build(
631
700
  dataset=dataset,
@@ -638,7 +707,7 @@ class ShrunkCovariance(BaseTransformer):
638
707
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
639
708
  inference_method=inference_method,
640
709
  input_cols=self.input_cols,
641
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
710
+ expected_output_cols=expected_output_cols,
642
711
  **transform_kwargs
643
712
  )
644
713
  return output_df
@@ -664,30 +733,32 @@ class ShrunkCovariance(BaseTransformer):
664
733
  Output dataset with results of the decision function for the samples in input dataset.
665
734
  """
666
735
  super()._check_dataset_type(dataset)
667
- inference_method="decision_function"
736
+ inference_method = "decision_function"
668
737
 
669
738
  # This dictionary contains optional kwargs for batch inference. These kwargs
670
739
  # are specific to the type of dataset used.
671
740
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
672
741
 
742
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
743
+
673
744
  if isinstance(dataset, DataFrame):
674
- self._deps = self._batch_inference_validate_snowpark(
675
- dataset=dataset,
676
- inference_method=inference_method,
677
- )
678
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
745
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
746
+ self._deps = self._get_dependencies()
747
+ assert isinstance(
748
+ dataset._session, Session
749
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
679
750
  transform_kwargs = dict(
680
751
  session=dataset._session,
681
752
  dependencies=self._deps,
682
- drop_input_cols = self._drop_input_cols,
753
+ drop_input_cols=self._drop_input_cols,
683
754
  expected_output_cols_type="float",
684
755
  )
756
+ expected_output_cols = self._align_expected_output_names(
757
+ inference_method, dataset, expected_output_cols, output_cols_prefix
758
+ )
685
759
 
686
760
  elif isinstance(dataset, pd.DataFrame):
687
- transform_kwargs = dict(
688
- snowpark_input_cols = self._snowpark_cols,
689
- drop_input_cols = self._drop_input_cols
690
- )
761
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
691
762
 
692
763
  transform_handlers = ModelTransformerBuilder.build(
693
764
  dataset=dataset,
@@ -700,7 +771,7 @@ class ShrunkCovariance(BaseTransformer):
700
771
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
701
772
  inference_method=inference_method,
702
773
  input_cols=self.input_cols,
703
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
774
+ expected_output_cols=expected_output_cols,
704
775
  **transform_kwargs
705
776
  )
706
777
  return output_df
@@ -729,17 +800,17 @@ class ShrunkCovariance(BaseTransformer):
729
800
  Output dataset with probability of the sample for each class in the model.
730
801
  """
731
802
  super()._check_dataset_type(dataset)
732
- inference_method="score_samples"
803
+ inference_method = "score_samples"
733
804
 
734
805
  # This dictionary contains optional kwargs for batch inference. These kwargs
735
806
  # are specific to the type of dataset used.
736
807
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
737
808
 
809
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
810
+
738
811
  if isinstance(dataset, DataFrame):
739
- self._deps = self._batch_inference_validate_snowpark(
740
- dataset=dataset,
741
- inference_method=inference_method,
742
- )
812
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
813
+ self._deps = self._get_dependencies()
743
814
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
744
815
  transform_kwargs = dict(
745
816
  session=dataset._session,
@@ -747,6 +818,9 @@ class ShrunkCovariance(BaseTransformer):
747
818
  drop_input_cols = self._drop_input_cols,
748
819
  expected_output_cols_type="float",
749
820
  )
821
+ expected_output_cols = self._align_expected_output_names(
822
+ inference_method, dataset, expected_output_cols, output_cols_prefix
823
+ )
750
824
 
751
825
  elif isinstance(dataset, pd.DataFrame):
752
826
  transform_kwargs = dict(
@@ -765,7 +839,7 @@ class ShrunkCovariance(BaseTransformer):
765
839
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
766
840
  inference_method=inference_method,
767
841
  input_cols=self.input_cols,
768
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
842
+ expected_output_cols=expected_output_cols,
769
843
  **transform_kwargs
770
844
  )
771
845
  return output_df
@@ -800,17 +874,15 @@ class ShrunkCovariance(BaseTransformer):
800
874
  transform_kwargs: ScoreKwargsTypedDict = dict()
801
875
 
802
876
  if isinstance(dataset, DataFrame):
803
- self._deps = self._batch_inference_validate_snowpark(
804
- dataset=dataset,
805
- inference_method="score",
806
- )
877
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
878
+ self._deps = self._get_dependencies()
807
879
  selected_cols = self._get_active_columns()
808
880
  if len(selected_cols) > 0:
809
881
  dataset = dataset.select(selected_cols)
810
882
  assert isinstance(dataset._session, Session) # keep mypy happy
811
883
  transform_kwargs = dict(
812
884
  session=dataset._session,
813
- dependencies=["snowflake-snowpark-python"] + self._deps,
885
+ dependencies=self._deps,
814
886
  score_sproc_imports=['sklearn'],
815
887
  )
816
888
  elif isinstance(dataset, pd.DataFrame):
@@ -875,11 +947,8 @@ class ShrunkCovariance(BaseTransformer):
875
947
 
876
948
  if isinstance(dataset, DataFrame):
877
949
 
878
- self._deps = self._batch_inference_validate_snowpark(
879
- dataset=dataset,
880
- inference_method=inference_method,
881
-
882
- )
950
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
951
+ self._deps = self._get_dependencies()
883
952
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
884
953
  transform_kwargs = dict(
885
954
  session = dataset._session,
@@ -912,50 +981,84 @@ class ShrunkCovariance(BaseTransformer):
912
981
  )
913
982
  return output_df
914
983
 
984
+
985
+
986
+ def to_sklearn(self) -> Any:
987
+ """Get sklearn.covariance.ShrunkCovariance object.
988
+ """
989
+ if self._sklearn_object is None:
990
+ self._sklearn_object = self._create_sklearn_object()
991
+ return self._sklearn_object
992
+
993
+ def to_xgboost(self) -> Any:
994
+ raise exceptions.SnowflakeMLException(
995
+ error_code=error_codes.METHOD_NOT_ALLOWED,
996
+ original_exception=AttributeError(
997
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
998
+ "to_xgboost()",
999
+ "to_sklearn()"
1000
+ )
1001
+ ),
1002
+ )
1003
+
1004
+ def to_lightgbm(self) -> Any:
1005
+ raise exceptions.SnowflakeMLException(
1006
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1007
+ original_exception=AttributeError(
1008
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1009
+ "to_lightgbm()",
1010
+ "to_sklearn()"
1011
+ )
1012
+ ),
1013
+ )
1014
+
1015
+ def _get_dependencies(self) -> List[str]:
1016
+ return self._deps
1017
+
915
1018
 
916
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1019
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
917
1020
  self._model_signature_dict = dict()
918
1021
 
919
1022
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
920
1023
 
921
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1024
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
922
1025
  outputs: List[BaseFeatureSpec] = []
923
1026
  if hasattr(self, "predict"):
924
1027
  # keep mypy happy
925
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1028
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
926
1029
  # For classifier, the type of predict is the same as the type of label
927
- if self._sklearn_object._estimator_type == 'classifier':
928
- # label columns is the desired type for output
1030
+ if self._sklearn_object._estimator_type == "classifier":
1031
+ # label columns is the desired type for output
929
1032
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
930
1033
  # rename the output columns
931
1034
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
932
- self._model_signature_dict["predict"] = ModelSignature(inputs,
933
- ([] if self._drop_input_cols else inputs)
934
- + outputs)
1035
+ self._model_signature_dict["predict"] = ModelSignature(
1036
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1037
+ )
935
1038
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
936
1039
  # For outlier models, returns -1 for outliers and 1 for inliers.
937
- # Clusterer returns int64 cluster labels.
1040
+ # Clusterer returns int64 cluster labels.
938
1041
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
939
1042
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
940
- self._model_signature_dict["predict"] = ModelSignature(inputs,
941
- ([] if self._drop_input_cols else inputs)
942
- + outputs)
943
-
1043
+ self._model_signature_dict["predict"] = ModelSignature(
1044
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1045
+ )
1046
+
944
1047
  # For regressor, the type of predict is float64
945
- elif self._sklearn_object._estimator_type == 'regressor':
1048
+ elif self._sklearn_object._estimator_type == "regressor":
946
1049
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
947
- self._model_signature_dict["predict"] = ModelSignature(inputs,
948
- ([] if self._drop_input_cols else inputs)
949
- + outputs)
950
-
1050
+ self._model_signature_dict["predict"] = ModelSignature(
1051
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1052
+ )
1053
+
951
1054
  for prob_func in PROB_FUNCTIONS:
952
1055
  if hasattr(self, prob_func):
953
1056
  output_cols_prefix: str = f"{prob_func}_"
954
1057
  output_column_names = self._get_output_column_names(output_cols_prefix)
955
1058
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
956
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
957
- ([] if self._drop_input_cols else inputs)
958
- + outputs)
1059
+ self._model_signature_dict[prob_func] = ModelSignature(
1060
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1061
+ )
959
1062
 
960
1063
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
961
1064
  items = list(self._model_signature_dict.items())
@@ -968,10 +1071,10 @@ class ShrunkCovariance(BaseTransformer):
968
1071
  """Returns model signature of current class.
969
1072
 
970
1073
  Raises:
971
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1074
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
972
1075
 
973
1076
  Returns:
974
- Dict[str, ModelSignature]: each method and its input output signature
1077
+ Dict with each method and its input output signature
975
1078
  """
976
1079
  if self._model_signature_dict is None:
977
1080
  raise exceptions.SnowflakeMLException(
@@ -979,35 +1082,3 @@ class ShrunkCovariance(BaseTransformer):
979
1082
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
980
1083
  )
981
1084
  return self._model_signature_dict
982
-
983
- def to_sklearn(self) -> Any:
984
- """Get sklearn.covariance.ShrunkCovariance object.
985
- """
986
- if self._sklearn_object is None:
987
- self._sklearn_object = self._create_sklearn_object()
988
- return self._sklearn_object
989
-
990
- def to_xgboost(self) -> Any:
991
- raise exceptions.SnowflakeMLException(
992
- error_code=error_codes.METHOD_NOT_ALLOWED,
993
- original_exception=AttributeError(
994
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
995
- "to_xgboost()",
996
- "to_sklearn()"
997
- )
998
- ),
999
- )
1000
-
1001
- def to_lightgbm(self) -> Any:
1002
- raise exceptions.SnowflakeMLException(
1003
- error_code=error_codes.METHOD_NOT_ALLOWED,
1004
- original_exception=AttributeError(
1005
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1006
- "to_lightgbm()",
1007
- "to_sklearn()"
1008
- )
1009
- ),
1010
- )
1011
-
1012
- def _get_dependencies(self) -> List[str]:
1013
- return self._deps