snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.",
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class NuSVC(BaseTransformer):
71
64
  r"""Nu-Support Vector Classification
72
65
  For more details on this class, see [sklearn.svm.NuSVC]
@@ -299,12 +292,7 @@ class NuSVC(BaseTransformer):
299
292
  )
300
293
  return selected_cols
301
294
 
302
- @telemetry.send_api_usage_telemetry(
303
- project=_PROJECT,
304
- subproject=_SUBPROJECT,
305
- custom_tags=dict([("autogen", True)]),
306
- )
307
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVC":
295
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVC":
308
296
  """Fit the SVM model according to the given training data
309
297
  For more details on this function, see [sklearn.svm.NuSVC.fit]
310
298
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC.fit)
@@ -331,12 +319,14 @@ class NuSVC(BaseTransformer):
331
319
 
332
320
  self._snowpark_cols = dataset.select(self.input_cols).columns
333
321
 
334
- # If we are already in a stored procedure, no need to kick off another one.
322
+ # If we are already in a stored procedure, no need to kick off another one.
335
323
  if SNOWML_SPROC_ENV in os.environ:
336
324
  statement_params = telemetry.get_function_usage_statement_params(
337
325
  project=_PROJECT,
338
326
  subproject=_SUBPROJECT,
339
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVC.__class__.__name__),
327
+ function_name=telemetry.get_statement_params_full_func_name(
328
+ inspect.currentframe(), NuSVC.__class__.__name__
329
+ ),
340
330
  api_calls=[Session.call],
341
331
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
342
332
  )
@@ -357,27 +347,24 @@ class NuSVC(BaseTransformer):
357
347
  )
358
348
  self._sklearn_object = model_trainer.train()
359
349
  self._is_fitted = True
360
- self._get_model_signatures(dataset)
350
+ self._generate_model_signatures(dataset)
361
351
  return self
362
352
 
363
353
  def _batch_inference_validate_snowpark(
364
354
  self,
365
355
  dataset: DataFrame,
366
356
  inference_method: str,
367
- ) -> List[str]:
368
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
369
- return the available package that exists in the snowflake anaconda channel
357
+ ) -> None:
358
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
370
359
 
371
360
  Args:
372
361
  dataset: snowpark dataframe
373
362
  inference_method: the inference method such as predict, score...
374
-
363
+
375
364
  Raises:
376
365
  SnowflakeMLException: If the estimator is not fitted, raise error
377
366
  SnowflakeMLException: If the session is None, raise error
378
367
 
379
- Returns:
380
- A list of available package that exists in the snowflake anaconda channel
381
368
  """
382
369
  if not self._is_fitted:
383
370
  raise exceptions.SnowflakeMLException(
@@ -395,9 +382,7 @@ class NuSVC(BaseTransformer):
395
382
  "Session must not specified for snowpark dataset."
396
383
  ),
397
384
  )
398
- # Validate that key package version in user workspace are supported in snowflake conda channel
399
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
400
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
385
+
401
386
 
402
387
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
403
388
  @telemetry.send_api_usage_telemetry(
@@ -433,7 +418,9 @@ class NuSVC(BaseTransformer):
433
418
  # when it is classifier, infer the datatype from label columns
434
419
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
435
420
  # Batch inference takes a single expected output column type. Use the first columns type for now.
436
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
421
+ label_cols_signatures = [
422
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
423
+ ]
437
424
  if len(label_cols_signatures) == 0:
438
425
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
439
426
  raise exceptions.SnowflakeMLException(
@@ -441,25 +428,23 @@ class NuSVC(BaseTransformer):
441
428
  original_exception=ValueError(error_str),
442
429
  )
443
430
 
444
- expected_type_inferred = convert_sp_to_sf_type(
445
- label_cols_signatures[0].as_snowpark_type()
446
- )
431
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
447
432
 
448
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
449
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
433
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
434
+ self._deps = self._get_dependencies()
435
+ assert isinstance(
436
+ dataset._session, Session
437
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
450
438
 
451
439
  transform_kwargs = dict(
452
- session = dataset._session,
453
- dependencies = self._deps,
454
- drop_input_cols = self._drop_input_cols,
455
- expected_output_cols_type = expected_type_inferred,
440
+ session=dataset._session,
441
+ dependencies=self._deps,
442
+ drop_input_cols=self._drop_input_cols,
443
+ expected_output_cols_type=expected_type_inferred,
456
444
  )
457
445
 
458
446
  elif isinstance(dataset, pd.DataFrame):
459
- transform_kwargs = dict(
460
- snowpark_input_cols = self._snowpark_cols,
461
- drop_input_cols = self._drop_input_cols
462
- )
447
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
463
448
 
464
449
  transform_handlers = ModelTransformerBuilder.build(
465
450
  dataset=dataset,
@@ -499,7 +484,7 @@ class NuSVC(BaseTransformer):
499
484
  Transformed dataset.
500
485
  """
501
486
  super()._check_dataset_type(dataset)
502
- inference_method="transform"
487
+ inference_method = "transform"
503
488
 
504
489
  # This dictionary contains optional kwargs for batch inference. These kwargs
505
490
  # are specific to the type of dataset used.
@@ -529,24 +514,19 @@ class NuSVC(BaseTransformer):
529
514
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
530
515
  expected_dtype = convert_sp_to_sf_type(output_types[0])
531
516
 
532
- self._deps = self._batch_inference_validate_snowpark(
533
- dataset=dataset,
534
- inference_method=inference_method,
535
- )
517
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
518
+ self._deps = self._get_dependencies()
536
519
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
537
520
 
538
521
  transform_kwargs = dict(
539
- session = dataset._session,
540
- dependencies = self._deps,
541
- drop_input_cols = self._drop_input_cols,
542
- expected_output_cols_type = expected_dtype,
522
+ session=dataset._session,
523
+ dependencies=self._deps,
524
+ drop_input_cols=self._drop_input_cols,
525
+ expected_output_cols_type=expected_dtype,
543
526
  )
544
527
 
545
528
  elif isinstance(dataset, pd.DataFrame):
546
- transform_kwargs = dict(
547
- snowpark_input_cols = self._snowpark_cols,
548
- drop_input_cols = self._drop_input_cols
549
- )
529
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
550
530
 
551
531
  transform_handlers = ModelTransformerBuilder.build(
552
532
  dataset=dataset,
@@ -565,7 +545,11 @@ class NuSVC(BaseTransformer):
565
545
  return output_df
566
546
 
567
547
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
568
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
548
+ def fit_predict(
549
+ self,
550
+ dataset: Union[DataFrame, pd.DataFrame],
551
+ output_cols_prefix: str = "fit_predict_",
552
+ ) -> Union[DataFrame, pd.DataFrame]:
569
553
  """ Method not supported for this class.
570
554
 
571
555
 
@@ -590,22 +574,104 @@ class NuSVC(BaseTransformer):
590
574
  )
591
575
  output_result, fitted_estimator = model_trainer.train_fit_predict(
592
576
  drop_input_cols=self._drop_input_cols,
593
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
577
+ expected_output_cols_list=(
578
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
579
+ ),
594
580
  )
595
581
  self._sklearn_object = fitted_estimator
596
582
  self._is_fitted = True
597
583
  return output_result
598
584
 
585
+
586
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
587
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
588
+ """ Method not supported for this class.
589
+
599
590
 
600
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
601
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
602
- """
591
+ Raises:
592
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
593
+
594
+ Args:
595
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
596
+ Snowpark or Pandas DataFrame.
597
+ output_cols_prefix: Prefix for the response columns
603
598
  Returns:
604
599
  Transformed dataset.
605
600
  """
606
- self.fit(dataset)
607
- assert self._sklearn_object is not None
608
- return self._sklearn_object.embedding_
601
+ self._infer_input_output_cols(dataset)
602
+ super()._check_dataset_type(dataset)
603
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
604
+ estimator=self._sklearn_object,
605
+ dataset=dataset,
606
+ input_cols=self.input_cols,
607
+ label_cols=self.label_cols,
608
+ sample_weight_col=self.sample_weight_col,
609
+ autogenerated=self._autogenerated,
610
+ subproject=_SUBPROJECT,
611
+ )
612
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
613
+ drop_input_cols=self._drop_input_cols,
614
+ expected_output_cols_list=self.output_cols,
615
+ )
616
+ self._sklearn_object = fitted_estimator
617
+ self._is_fitted = True
618
+ return output_result
619
+
620
+
621
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
622
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
623
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
624
+ """
625
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
626
+ # The following condition is introduced for kneighbors methods, and not used in other methods
627
+ if output_cols:
628
+ output_cols = [
629
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
630
+ for c in output_cols
631
+ ]
632
+ elif getattr(self._sklearn_object, "classes_", None) is None:
633
+ output_cols = [output_cols_prefix]
634
+ elif self._sklearn_object is not None:
635
+ classes = self._sklearn_object.classes_
636
+ if isinstance(classes, numpy.ndarray):
637
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
638
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
639
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
640
+ output_cols = []
641
+ for i, cl in enumerate(classes):
642
+ # For binary classification, there is only one output column for each class
643
+ # ndarray as the two classes are complementary.
644
+ if len(cl) == 2:
645
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
646
+ else:
647
+ output_cols.extend([
648
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
649
+ ])
650
+ else:
651
+ output_cols = []
652
+
653
+ # Make sure column names are valid snowflake identifiers.
654
+ assert output_cols is not None # Make MyPy happy
655
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
656
+
657
+ return rv
658
+
659
+ def _align_expected_output_names(
660
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
661
+ ) -> List[str]:
662
+ # in case the inferred output column names dimension is different
663
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
664
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
665
+ output_df_columns = list(output_df_pd.columns)
666
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
667
+ if self.sample_weight_col:
668
+ output_df_columns_set -= set(self.sample_weight_col)
669
+ # if the dimension of inferred output column names is correct; use it
670
+ if len(expected_output_cols_list) == len(output_df_columns_set):
671
+ return expected_output_cols_list
672
+ # otherwise, use the sklearn estimator's output
673
+ else:
674
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
609
675
 
610
676
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
611
677
  @telemetry.send_api_usage_telemetry(
@@ -639,24 +705,26 @@ class NuSVC(BaseTransformer):
639
705
  # are specific to the type of dataset used.
640
706
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
641
707
 
708
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
709
+
642
710
  if isinstance(dataset, DataFrame):
643
- self._deps = self._batch_inference_validate_snowpark(
644
- dataset=dataset,
645
- inference_method=inference_method,
646
- )
647
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
711
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
712
+ self._deps = self._get_dependencies()
713
+ assert isinstance(
714
+ dataset._session, Session
715
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
648
716
  transform_kwargs = dict(
649
717
  session=dataset._session,
650
718
  dependencies=self._deps,
651
- drop_input_cols = self._drop_input_cols,
719
+ drop_input_cols=self._drop_input_cols,
652
720
  expected_output_cols_type="float",
653
721
  )
722
+ expected_output_cols = self._align_expected_output_names(
723
+ inference_method, dataset, expected_output_cols, output_cols_prefix
724
+ )
654
725
 
655
726
  elif isinstance(dataset, pd.DataFrame):
656
- transform_kwargs = dict(
657
- snowpark_input_cols = self._snowpark_cols,
658
- drop_input_cols = self._drop_input_cols
659
- )
727
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
660
728
 
661
729
  transform_handlers = ModelTransformerBuilder.build(
662
730
  dataset=dataset,
@@ -668,7 +736,7 @@ class NuSVC(BaseTransformer):
668
736
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
669
737
  inference_method=inference_method,
670
738
  input_cols=self.input_cols,
671
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
739
+ expected_output_cols=expected_output_cols,
672
740
  **transform_kwargs
673
741
  )
674
742
  return output_df
@@ -700,29 +768,30 @@ class NuSVC(BaseTransformer):
700
768
  Output dataset with log probability of the sample for each class in the model.
701
769
  """
702
770
  super()._check_dataset_type(dataset)
703
- inference_method="predict_log_proba"
771
+ inference_method = "predict_log_proba"
772
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
704
773
 
705
774
  # This dictionary contains optional kwargs for batch inference. These kwargs
706
775
  # are specific to the type of dataset used.
707
776
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
708
777
 
709
778
  if isinstance(dataset, DataFrame):
710
- self._deps = self._batch_inference_validate_snowpark(
711
- dataset=dataset,
712
- inference_method=inference_method,
713
- )
714
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
779
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
780
+ self._deps = self._get_dependencies()
781
+ assert isinstance(
782
+ dataset._session, Session
783
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
715
784
  transform_kwargs = dict(
716
785
  session=dataset._session,
717
786
  dependencies=self._deps,
718
- drop_input_cols = self._drop_input_cols,
787
+ drop_input_cols=self._drop_input_cols,
719
788
  expected_output_cols_type="float",
720
789
  )
790
+ expected_output_cols = self._align_expected_output_names(
791
+ inference_method, dataset, expected_output_cols, output_cols_prefix
792
+ )
721
793
  elif isinstance(dataset, pd.DataFrame):
722
- transform_kwargs = dict(
723
- snowpark_input_cols = self._snowpark_cols,
724
- drop_input_cols = self._drop_input_cols
725
- )
794
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
726
795
 
727
796
  transform_handlers = ModelTransformerBuilder.build(
728
797
  dataset=dataset,
@@ -735,7 +804,7 @@ class NuSVC(BaseTransformer):
735
804
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
736
805
  inference_method=inference_method,
737
806
  input_cols=self.input_cols,
738
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
807
+ expected_output_cols=expected_output_cols,
739
808
  **transform_kwargs
740
809
  )
741
810
  return output_df
@@ -763,30 +832,32 @@ class NuSVC(BaseTransformer):
763
832
  Output dataset with results of the decision function for the samples in input dataset.
764
833
  """
765
834
  super()._check_dataset_type(dataset)
766
- inference_method="decision_function"
835
+ inference_method = "decision_function"
767
836
 
768
837
  # This dictionary contains optional kwargs for batch inference. These kwargs
769
838
  # are specific to the type of dataset used.
770
839
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
771
840
 
841
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
842
+
772
843
  if isinstance(dataset, DataFrame):
773
- self._deps = self._batch_inference_validate_snowpark(
774
- dataset=dataset,
775
- inference_method=inference_method,
776
- )
777
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
844
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
845
+ self._deps = self._get_dependencies()
846
+ assert isinstance(
847
+ dataset._session, Session
848
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
778
849
  transform_kwargs = dict(
779
850
  session=dataset._session,
780
851
  dependencies=self._deps,
781
- drop_input_cols = self._drop_input_cols,
852
+ drop_input_cols=self._drop_input_cols,
782
853
  expected_output_cols_type="float",
783
854
  )
855
+ expected_output_cols = self._align_expected_output_names(
856
+ inference_method, dataset, expected_output_cols, output_cols_prefix
857
+ )
784
858
 
785
859
  elif isinstance(dataset, pd.DataFrame):
786
- transform_kwargs = dict(
787
- snowpark_input_cols = self._snowpark_cols,
788
- drop_input_cols = self._drop_input_cols
789
- )
860
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
790
861
 
791
862
  transform_handlers = ModelTransformerBuilder.build(
792
863
  dataset=dataset,
@@ -799,7 +870,7 @@ class NuSVC(BaseTransformer):
799
870
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
800
871
  inference_method=inference_method,
801
872
  input_cols=self.input_cols,
802
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
873
+ expected_output_cols=expected_output_cols,
803
874
  **transform_kwargs
804
875
  )
805
876
  return output_df
@@ -828,17 +899,17 @@ class NuSVC(BaseTransformer):
828
899
  Output dataset with probability of the sample for each class in the model.
829
900
  """
830
901
  super()._check_dataset_type(dataset)
831
- inference_method="score_samples"
902
+ inference_method = "score_samples"
832
903
 
833
904
  # This dictionary contains optional kwargs for batch inference. These kwargs
834
905
  # are specific to the type of dataset used.
835
906
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
836
907
 
908
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
909
+
837
910
  if isinstance(dataset, DataFrame):
838
- self._deps = self._batch_inference_validate_snowpark(
839
- dataset=dataset,
840
- inference_method=inference_method,
841
- )
911
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
912
+ self._deps = self._get_dependencies()
842
913
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
843
914
  transform_kwargs = dict(
844
915
  session=dataset._session,
@@ -846,6 +917,9 @@ class NuSVC(BaseTransformer):
846
917
  drop_input_cols = self._drop_input_cols,
847
918
  expected_output_cols_type="float",
848
919
  )
920
+ expected_output_cols = self._align_expected_output_names(
921
+ inference_method, dataset, expected_output_cols, output_cols_prefix
922
+ )
849
923
 
850
924
  elif isinstance(dataset, pd.DataFrame):
851
925
  transform_kwargs = dict(
@@ -864,7 +938,7 @@ class NuSVC(BaseTransformer):
864
938
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
865
939
  inference_method=inference_method,
866
940
  input_cols=self.input_cols,
867
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
941
+ expected_output_cols=expected_output_cols,
868
942
  **transform_kwargs
869
943
  )
870
944
  return output_df
@@ -899,17 +973,15 @@ class NuSVC(BaseTransformer):
899
973
  transform_kwargs: ScoreKwargsTypedDict = dict()
900
974
 
901
975
  if isinstance(dataset, DataFrame):
902
- self._deps = self._batch_inference_validate_snowpark(
903
- dataset=dataset,
904
- inference_method="score",
905
- )
976
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
977
+ self._deps = self._get_dependencies()
906
978
  selected_cols = self._get_active_columns()
907
979
  if len(selected_cols) > 0:
908
980
  dataset = dataset.select(selected_cols)
909
981
  assert isinstance(dataset._session, Session) # keep mypy happy
910
982
  transform_kwargs = dict(
911
983
  session=dataset._session,
912
- dependencies=["snowflake-snowpark-python"] + self._deps,
984
+ dependencies=self._deps,
913
985
  score_sproc_imports=['sklearn'],
914
986
  )
915
987
  elif isinstance(dataset, pd.DataFrame):
@@ -974,11 +1046,8 @@ class NuSVC(BaseTransformer):
974
1046
 
975
1047
  if isinstance(dataset, DataFrame):
976
1048
 
977
- self._deps = self._batch_inference_validate_snowpark(
978
- dataset=dataset,
979
- inference_method=inference_method,
980
-
981
- )
1049
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1050
+ self._deps = self._get_dependencies()
982
1051
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
983
1052
  transform_kwargs = dict(
984
1053
  session = dataset._session,
@@ -1011,50 +1080,84 @@ class NuSVC(BaseTransformer):
1011
1080
  )
1012
1081
  return output_df
1013
1082
 
1083
+
1084
+
1085
+ def to_sklearn(self) -> Any:
1086
+ """Get sklearn.svm.NuSVC object.
1087
+ """
1088
+ if self._sklearn_object is None:
1089
+ self._sklearn_object = self._create_sklearn_object()
1090
+ return self._sklearn_object
1091
+
1092
+ def to_xgboost(self) -> Any:
1093
+ raise exceptions.SnowflakeMLException(
1094
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1095
+ original_exception=AttributeError(
1096
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1097
+ "to_xgboost()",
1098
+ "to_sklearn()"
1099
+ )
1100
+ ),
1101
+ )
1102
+
1103
+ def to_lightgbm(self) -> Any:
1104
+ raise exceptions.SnowflakeMLException(
1105
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1106
+ original_exception=AttributeError(
1107
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1108
+ "to_lightgbm()",
1109
+ "to_sklearn()"
1110
+ )
1111
+ ),
1112
+ )
1113
+
1114
+ def _get_dependencies(self) -> List[str]:
1115
+ return self._deps
1116
+
1014
1117
 
1015
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1118
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1016
1119
  self._model_signature_dict = dict()
1017
1120
 
1018
1121
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1019
1122
 
1020
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1123
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1021
1124
  outputs: List[BaseFeatureSpec] = []
1022
1125
  if hasattr(self, "predict"):
1023
1126
  # keep mypy happy
1024
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1127
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1025
1128
  # For classifier, the type of predict is the same as the type of label
1026
- if self._sklearn_object._estimator_type == 'classifier':
1027
- # label columns is the desired type for output
1129
+ if self._sklearn_object._estimator_type == "classifier":
1130
+ # label columns is the desired type for output
1028
1131
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1029
1132
  # rename the output columns
1030
1133
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1031
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1032
- ([] if self._drop_input_cols else inputs)
1033
- + outputs)
1134
+ self._model_signature_dict["predict"] = ModelSignature(
1135
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1136
+ )
1034
1137
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1035
1138
  # For outlier models, returns -1 for outliers and 1 for inliers.
1036
- # Clusterer returns int64 cluster labels.
1139
+ # Clusterer returns int64 cluster labels.
1037
1140
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1038
1141
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1039
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1040
- ([] if self._drop_input_cols else inputs)
1041
- + outputs)
1042
-
1142
+ self._model_signature_dict["predict"] = ModelSignature(
1143
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1144
+ )
1145
+
1043
1146
  # For regressor, the type of predict is float64
1044
- elif self._sklearn_object._estimator_type == 'regressor':
1147
+ elif self._sklearn_object._estimator_type == "regressor":
1045
1148
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1046
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1047
- ([] if self._drop_input_cols else inputs)
1048
- + outputs)
1049
-
1149
+ self._model_signature_dict["predict"] = ModelSignature(
1150
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1151
+ )
1152
+
1050
1153
  for prob_func in PROB_FUNCTIONS:
1051
1154
  if hasattr(self, prob_func):
1052
1155
  output_cols_prefix: str = f"{prob_func}_"
1053
1156
  output_column_names = self._get_output_column_names(output_cols_prefix)
1054
1157
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1055
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1056
- ([] if self._drop_input_cols else inputs)
1057
- + outputs)
1158
+ self._model_signature_dict[prob_func] = ModelSignature(
1159
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1160
+ )
1058
1161
 
1059
1162
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1060
1163
  items = list(self._model_signature_dict.items())
@@ -1067,10 +1170,10 @@ class NuSVC(BaseTransformer):
1067
1170
  """Returns model signature of current class.
1068
1171
 
1069
1172
  Raises:
1070
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1173
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1071
1174
 
1072
1175
  Returns:
1073
- Dict[str, ModelSignature]: each method and its input output signature
1176
+ Dict with each method and its input output signature
1074
1177
  """
1075
1178
  if self._model_signature_dict is None:
1076
1179
  raise exceptions.SnowflakeMLException(
@@ -1078,35 +1181,3 @@ class NuSVC(BaseTransformer):
1078
1181
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1079
1182
  )
1080
1183
  return self._model_signature_dict
1081
-
1082
- def to_sklearn(self) -> Any:
1083
- """Get sklearn.svm.NuSVC object.
1084
- """
1085
- if self._sklearn_object is None:
1086
- self._sklearn_object = self._create_sklearn_object()
1087
- return self._sklearn_object
1088
-
1089
- def to_xgboost(self) -> Any:
1090
- raise exceptions.SnowflakeMLException(
1091
- error_code=error_codes.METHOD_NOT_ALLOWED,
1092
- original_exception=AttributeError(
1093
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1094
- "to_xgboost()",
1095
- "to_sklearn()"
1096
- )
1097
- ),
1098
- )
1099
-
1100
- def to_lightgbm(self) -> Any:
1101
- raise exceptions.SnowflakeMLException(
1102
- error_code=error_codes.METHOD_NOT_ALLOWED,
1103
- original_exception=AttributeError(
1104
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1105
- "to_lightgbm()",
1106
- "to_sklearn()"
1107
- )
1108
- ),
1109
- )
1110
-
1111
- def _get_dependencies(self) -> List[str]:
1112
- return self._deps