snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.",
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class NuSVC(BaseTransformer):
|
71
64
|
r"""Nu-Support Vector Classification
|
72
65
|
For more details on this class, see [sklearn.svm.NuSVC]
|
@@ -299,12 +292,7 @@ class NuSVC(BaseTransformer):
|
|
299
292
|
)
|
300
293
|
return selected_cols
|
301
294
|
|
302
|
-
|
303
|
-
project=_PROJECT,
|
304
|
-
subproject=_SUBPROJECT,
|
305
|
-
custom_tags=dict([("autogen", True)]),
|
306
|
-
)
|
307
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVC":
|
295
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVC":
|
308
296
|
"""Fit the SVM model according to the given training data
|
309
297
|
For more details on this function, see [sklearn.svm.NuSVC.fit]
|
310
298
|
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVC.html#sklearn.svm.NuSVC.fit)
|
@@ -331,12 +319,14 @@ class NuSVC(BaseTransformer):
|
|
331
319
|
|
332
320
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
333
321
|
|
334
|
-
|
322
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
335
323
|
if SNOWML_SPROC_ENV in os.environ:
|
336
324
|
statement_params = telemetry.get_function_usage_statement_params(
|
337
325
|
project=_PROJECT,
|
338
326
|
subproject=_SUBPROJECT,
|
339
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
327
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
328
|
+
inspect.currentframe(), NuSVC.__class__.__name__
|
329
|
+
),
|
340
330
|
api_calls=[Session.call],
|
341
331
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
342
332
|
)
|
@@ -357,27 +347,24 @@ class NuSVC(BaseTransformer):
|
|
357
347
|
)
|
358
348
|
self._sklearn_object = model_trainer.train()
|
359
349
|
self._is_fitted = True
|
360
|
-
self.
|
350
|
+
self._generate_model_signatures(dataset)
|
361
351
|
return self
|
362
352
|
|
363
353
|
def _batch_inference_validate_snowpark(
|
364
354
|
self,
|
365
355
|
dataset: DataFrame,
|
366
356
|
inference_method: str,
|
367
|
-
) ->
|
368
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
369
|
-
return the available package that exists in the snowflake anaconda channel
|
357
|
+
) -> None:
|
358
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
370
359
|
|
371
360
|
Args:
|
372
361
|
dataset: snowpark dataframe
|
373
362
|
inference_method: the inference method such as predict, score...
|
374
|
-
|
363
|
+
|
375
364
|
Raises:
|
376
365
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
377
366
|
SnowflakeMLException: If the session is None, raise error
|
378
367
|
|
379
|
-
Returns:
|
380
|
-
A list of available package that exists in the snowflake anaconda channel
|
381
368
|
"""
|
382
369
|
if not self._is_fitted:
|
383
370
|
raise exceptions.SnowflakeMLException(
|
@@ -395,9 +382,7 @@ class NuSVC(BaseTransformer):
|
|
395
382
|
"Session must not specified for snowpark dataset."
|
396
383
|
),
|
397
384
|
)
|
398
|
-
|
399
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
400
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
385
|
+
|
401
386
|
|
402
387
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
403
388
|
@telemetry.send_api_usage_telemetry(
|
@@ -433,7 +418,9 @@ class NuSVC(BaseTransformer):
|
|
433
418
|
# when it is classifier, infer the datatype from label columns
|
434
419
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
435
420
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
436
|
-
label_cols_signatures = [
|
421
|
+
label_cols_signatures = [
|
422
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
423
|
+
]
|
437
424
|
if len(label_cols_signatures) == 0:
|
438
425
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
439
426
|
raise exceptions.SnowflakeMLException(
|
@@ -441,25 +428,23 @@ class NuSVC(BaseTransformer):
|
|
441
428
|
original_exception=ValueError(error_str),
|
442
429
|
)
|
443
430
|
|
444
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
445
|
-
label_cols_signatures[0].as_snowpark_type()
|
446
|
-
)
|
431
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
447
432
|
|
448
|
-
self.
|
449
|
-
|
433
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
434
|
+
self._deps = self._get_dependencies()
|
435
|
+
assert isinstance(
|
436
|
+
dataset._session, Session
|
437
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
450
438
|
|
451
439
|
transform_kwargs = dict(
|
452
|
-
session
|
453
|
-
dependencies
|
454
|
-
drop_input_cols
|
455
|
-
expected_output_cols_type
|
440
|
+
session=dataset._session,
|
441
|
+
dependencies=self._deps,
|
442
|
+
drop_input_cols=self._drop_input_cols,
|
443
|
+
expected_output_cols_type=expected_type_inferred,
|
456
444
|
)
|
457
445
|
|
458
446
|
elif isinstance(dataset, pd.DataFrame):
|
459
|
-
transform_kwargs = dict(
|
460
|
-
snowpark_input_cols = self._snowpark_cols,
|
461
|
-
drop_input_cols = self._drop_input_cols
|
462
|
-
)
|
447
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
463
448
|
|
464
449
|
transform_handlers = ModelTransformerBuilder.build(
|
465
450
|
dataset=dataset,
|
@@ -499,7 +484,7 @@ class NuSVC(BaseTransformer):
|
|
499
484
|
Transformed dataset.
|
500
485
|
"""
|
501
486
|
super()._check_dataset_type(dataset)
|
502
|
-
inference_method="transform"
|
487
|
+
inference_method = "transform"
|
503
488
|
|
504
489
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
505
490
|
# are specific to the type of dataset used.
|
@@ -529,24 +514,19 @@ class NuSVC(BaseTransformer):
|
|
529
514
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
530
515
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
531
516
|
|
532
|
-
self.
|
533
|
-
|
534
|
-
inference_method=inference_method,
|
535
|
-
)
|
517
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
518
|
+
self._deps = self._get_dependencies()
|
536
519
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
537
520
|
|
538
521
|
transform_kwargs = dict(
|
539
|
-
session
|
540
|
-
dependencies
|
541
|
-
drop_input_cols
|
542
|
-
expected_output_cols_type
|
522
|
+
session=dataset._session,
|
523
|
+
dependencies=self._deps,
|
524
|
+
drop_input_cols=self._drop_input_cols,
|
525
|
+
expected_output_cols_type=expected_dtype,
|
543
526
|
)
|
544
527
|
|
545
528
|
elif isinstance(dataset, pd.DataFrame):
|
546
|
-
transform_kwargs = dict(
|
547
|
-
snowpark_input_cols = self._snowpark_cols,
|
548
|
-
drop_input_cols = self._drop_input_cols
|
549
|
-
)
|
529
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
550
530
|
|
551
531
|
transform_handlers = ModelTransformerBuilder.build(
|
552
532
|
dataset=dataset,
|
@@ -565,7 +545,11 @@ class NuSVC(BaseTransformer):
|
|
565
545
|
return output_df
|
566
546
|
|
567
547
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
568
|
-
def fit_predict(
|
548
|
+
def fit_predict(
|
549
|
+
self,
|
550
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
551
|
+
output_cols_prefix: str = "fit_predict_",
|
552
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
569
553
|
""" Method not supported for this class.
|
570
554
|
|
571
555
|
|
@@ -590,22 +574,104 @@ class NuSVC(BaseTransformer):
|
|
590
574
|
)
|
591
575
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
592
576
|
drop_input_cols=self._drop_input_cols,
|
593
|
-
expected_output_cols_list=
|
577
|
+
expected_output_cols_list=(
|
578
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
579
|
+
),
|
594
580
|
)
|
595
581
|
self._sklearn_object = fitted_estimator
|
596
582
|
self._is_fitted = True
|
597
583
|
return output_result
|
598
584
|
|
585
|
+
|
586
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
587
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
588
|
+
""" Method not supported for this class.
|
589
|
+
|
599
590
|
|
600
|
-
|
601
|
-
|
602
|
-
|
591
|
+
Raises:
|
592
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
593
|
+
|
594
|
+
Args:
|
595
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
596
|
+
Snowpark or Pandas DataFrame.
|
597
|
+
output_cols_prefix: Prefix for the response columns
|
603
598
|
Returns:
|
604
599
|
Transformed dataset.
|
605
600
|
"""
|
606
|
-
self.
|
607
|
-
|
608
|
-
|
601
|
+
self._infer_input_output_cols(dataset)
|
602
|
+
super()._check_dataset_type(dataset)
|
603
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
604
|
+
estimator=self._sklearn_object,
|
605
|
+
dataset=dataset,
|
606
|
+
input_cols=self.input_cols,
|
607
|
+
label_cols=self.label_cols,
|
608
|
+
sample_weight_col=self.sample_weight_col,
|
609
|
+
autogenerated=self._autogenerated,
|
610
|
+
subproject=_SUBPROJECT,
|
611
|
+
)
|
612
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
613
|
+
drop_input_cols=self._drop_input_cols,
|
614
|
+
expected_output_cols_list=self.output_cols,
|
615
|
+
)
|
616
|
+
self._sklearn_object = fitted_estimator
|
617
|
+
self._is_fitted = True
|
618
|
+
return output_result
|
619
|
+
|
620
|
+
|
621
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
622
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
623
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
624
|
+
"""
|
625
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
626
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
627
|
+
if output_cols:
|
628
|
+
output_cols = [
|
629
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
630
|
+
for c in output_cols
|
631
|
+
]
|
632
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
633
|
+
output_cols = [output_cols_prefix]
|
634
|
+
elif self._sklearn_object is not None:
|
635
|
+
classes = self._sklearn_object.classes_
|
636
|
+
if isinstance(classes, numpy.ndarray):
|
637
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
638
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
639
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
640
|
+
output_cols = []
|
641
|
+
for i, cl in enumerate(classes):
|
642
|
+
# For binary classification, there is only one output column for each class
|
643
|
+
# ndarray as the two classes are complementary.
|
644
|
+
if len(cl) == 2:
|
645
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
646
|
+
else:
|
647
|
+
output_cols.extend([
|
648
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
649
|
+
])
|
650
|
+
else:
|
651
|
+
output_cols = []
|
652
|
+
|
653
|
+
# Make sure column names are valid snowflake identifiers.
|
654
|
+
assert output_cols is not None # Make MyPy happy
|
655
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
656
|
+
|
657
|
+
return rv
|
658
|
+
|
659
|
+
def _align_expected_output_names(
|
660
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
661
|
+
) -> List[str]:
|
662
|
+
# in case the inferred output column names dimension is different
|
663
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
664
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
665
|
+
output_df_columns = list(output_df_pd.columns)
|
666
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
667
|
+
if self.sample_weight_col:
|
668
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
669
|
+
# if the dimension of inferred output column names is correct; use it
|
670
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
671
|
+
return expected_output_cols_list
|
672
|
+
# otherwise, use the sklearn estimator's output
|
673
|
+
else:
|
674
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
609
675
|
|
610
676
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
611
677
|
@telemetry.send_api_usage_telemetry(
|
@@ -639,24 +705,26 @@ class NuSVC(BaseTransformer):
|
|
639
705
|
# are specific to the type of dataset used.
|
640
706
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
641
707
|
|
708
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
709
|
+
|
642
710
|
if isinstance(dataset, DataFrame):
|
643
|
-
self.
|
644
|
-
|
645
|
-
|
646
|
-
|
647
|
-
|
711
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
712
|
+
self._deps = self._get_dependencies()
|
713
|
+
assert isinstance(
|
714
|
+
dataset._session, Session
|
715
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
648
716
|
transform_kwargs = dict(
|
649
717
|
session=dataset._session,
|
650
718
|
dependencies=self._deps,
|
651
|
-
drop_input_cols
|
719
|
+
drop_input_cols=self._drop_input_cols,
|
652
720
|
expected_output_cols_type="float",
|
653
721
|
)
|
722
|
+
expected_output_cols = self._align_expected_output_names(
|
723
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
724
|
+
)
|
654
725
|
|
655
726
|
elif isinstance(dataset, pd.DataFrame):
|
656
|
-
transform_kwargs = dict(
|
657
|
-
snowpark_input_cols = self._snowpark_cols,
|
658
|
-
drop_input_cols = self._drop_input_cols
|
659
|
-
)
|
727
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
660
728
|
|
661
729
|
transform_handlers = ModelTransformerBuilder.build(
|
662
730
|
dataset=dataset,
|
@@ -668,7 +736,7 @@ class NuSVC(BaseTransformer):
|
|
668
736
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
669
737
|
inference_method=inference_method,
|
670
738
|
input_cols=self.input_cols,
|
671
|
-
expected_output_cols=
|
739
|
+
expected_output_cols=expected_output_cols,
|
672
740
|
**transform_kwargs
|
673
741
|
)
|
674
742
|
return output_df
|
@@ -700,29 +768,30 @@ class NuSVC(BaseTransformer):
|
|
700
768
|
Output dataset with log probability of the sample for each class in the model.
|
701
769
|
"""
|
702
770
|
super()._check_dataset_type(dataset)
|
703
|
-
inference_method="predict_log_proba"
|
771
|
+
inference_method = "predict_log_proba"
|
772
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
704
773
|
|
705
774
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
706
775
|
# are specific to the type of dataset used.
|
707
776
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
708
777
|
|
709
778
|
if isinstance(dataset, DataFrame):
|
710
|
-
self.
|
711
|
-
|
712
|
-
|
713
|
-
|
714
|
-
|
779
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
780
|
+
self._deps = self._get_dependencies()
|
781
|
+
assert isinstance(
|
782
|
+
dataset._session, Session
|
783
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
715
784
|
transform_kwargs = dict(
|
716
785
|
session=dataset._session,
|
717
786
|
dependencies=self._deps,
|
718
|
-
drop_input_cols
|
787
|
+
drop_input_cols=self._drop_input_cols,
|
719
788
|
expected_output_cols_type="float",
|
720
789
|
)
|
790
|
+
expected_output_cols = self._align_expected_output_names(
|
791
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
792
|
+
)
|
721
793
|
elif isinstance(dataset, pd.DataFrame):
|
722
|
-
transform_kwargs = dict(
|
723
|
-
snowpark_input_cols = self._snowpark_cols,
|
724
|
-
drop_input_cols = self._drop_input_cols
|
725
|
-
)
|
794
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
726
795
|
|
727
796
|
transform_handlers = ModelTransformerBuilder.build(
|
728
797
|
dataset=dataset,
|
@@ -735,7 +804,7 @@ class NuSVC(BaseTransformer):
|
|
735
804
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
736
805
|
inference_method=inference_method,
|
737
806
|
input_cols=self.input_cols,
|
738
|
-
expected_output_cols=
|
807
|
+
expected_output_cols=expected_output_cols,
|
739
808
|
**transform_kwargs
|
740
809
|
)
|
741
810
|
return output_df
|
@@ -763,30 +832,32 @@ class NuSVC(BaseTransformer):
|
|
763
832
|
Output dataset with results of the decision function for the samples in input dataset.
|
764
833
|
"""
|
765
834
|
super()._check_dataset_type(dataset)
|
766
|
-
inference_method="decision_function"
|
835
|
+
inference_method = "decision_function"
|
767
836
|
|
768
837
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
769
838
|
# are specific to the type of dataset used.
|
770
839
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
771
840
|
|
841
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
842
|
+
|
772
843
|
if isinstance(dataset, DataFrame):
|
773
|
-
self.
|
774
|
-
|
775
|
-
|
776
|
-
|
777
|
-
|
844
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
845
|
+
self._deps = self._get_dependencies()
|
846
|
+
assert isinstance(
|
847
|
+
dataset._session, Session
|
848
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
778
849
|
transform_kwargs = dict(
|
779
850
|
session=dataset._session,
|
780
851
|
dependencies=self._deps,
|
781
|
-
drop_input_cols
|
852
|
+
drop_input_cols=self._drop_input_cols,
|
782
853
|
expected_output_cols_type="float",
|
783
854
|
)
|
855
|
+
expected_output_cols = self._align_expected_output_names(
|
856
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
857
|
+
)
|
784
858
|
|
785
859
|
elif isinstance(dataset, pd.DataFrame):
|
786
|
-
transform_kwargs = dict(
|
787
|
-
snowpark_input_cols = self._snowpark_cols,
|
788
|
-
drop_input_cols = self._drop_input_cols
|
789
|
-
)
|
860
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
790
861
|
|
791
862
|
transform_handlers = ModelTransformerBuilder.build(
|
792
863
|
dataset=dataset,
|
@@ -799,7 +870,7 @@ class NuSVC(BaseTransformer):
|
|
799
870
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
800
871
|
inference_method=inference_method,
|
801
872
|
input_cols=self.input_cols,
|
802
|
-
expected_output_cols=
|
873
|
+
expected_output_cols=expected_output_cols,
|
803
874
|
**transform_kwargs
|
804
875
|
)
|
805
876
|
return output_df
|
@@ -828,17 +899,17 @@ class NuSVC(BaseTransformer):
|
|
828
899
|
Output dataset with probability of the sample for each class in the model.
|
829
900
|
"""
|
830
901
|
super()._check_dataset_type(dataset)
|
831
|
-
inference_method="score_samples"
|
902
|
+
inference_method = "score_samples"
|
832
903
|
|
833
904
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
834
905
|
# are specific to the type of dataset used.
|
835
906
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
836
907
|
|
908
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
909
|
+
|
837
910
|
if isinstance(dataset, DataFrame):
|
838
|
-
self.
|
839
|
-
|
840
|
-
inference_method=inference_method,
|
841
|
-
)
|
911
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
912
|
+
self._deps = self._get_dependencies()
|
842
913
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
843
914
|
transform_kwargs = dict(
|
844
915
|
session=dataset._session,
|
@@ -846,6 +917,9 @@ class NuSVC(BaseTransformer):
|
|
846
917
|
drop_input_cols = self._drop_input_cols,
|
847
918
|
expected_output_cols_type="float",
|
848
919
|
)
|
920
|
+
expected_output_cols = self._align_expected_output_names(
|
921
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
922
|
+
)
|
849
923
|
|
850
924
|
elif isinstance(dataset, pd.DataFrame):
|
851
925
|
transform_kwargs = dict(
|
@@ -864,7 +938,7 @@ class NuSVC(BaseTransformer):
|
|
864
938
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
865
939
|
inference_method=inference_method,
|
866
940
|
input_cols=self.input_cols,
|
867
|
-
expected_output_cols=
|
941
|
+
expected_output_cols=expected_output_cols,
|
868
942
|
**transform_kwargs
|
869
943
|
)
|
870
944
|
return output_df
|
@@ -899,17 +973,15 @@ class NuSVC(BaseTransformer):
|
|
899
973
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
900
974
|
|
901
975
|
if isinstance(dataset, DataFrame):
|
902
|
-
self.
|
903
|
-
|
904
|
-
inference_method="score",
|
905
|
-
)
|
976
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
977
|
+
self._deps = self._get_dependencies()
|
906
978
|
selected_cols = self._get_active_columns()
|
907
979
|
if len(selected_cols) > 0:
|
908
980
|
dataset = dataset.select(selected_cols)
|
909
981
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
910
982
|
transform_kwargs = dict(
|
911
983
|
session=dataset._session,
|
912
|
-
dependencies=
|
984
|
+
dependencies=self._deps,
|
913
985
|
score_sproc_imports=['sklearn'],
|
914
986
|
)
|
915
987
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -974,11 +1046,8 @@ class NuSVC(BaseTransformer):
|
|
974
1046
|
|
975
1047
|
if isinstance(dataset, DataFrame):
|
976
1048
|
|
977
|
-
self.
|
978
|
-
|
979
|
-
inference_method=inference_method,
|
980
|
-
|
981
|
-
)
|
1049
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1050
|
+
self._deps = self._get_dependencies()
|
982
1051
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
983
1052
|
transform_kwargs = dict(
|
984
1053
|
session = dataset._session,
|
@@ -1011,50 +1080,84 @@ class NuSVC(BaseTransformer):
|
|
1011
1080
|
)
|
1012
1081
|
return output_df
|
1013
1082
|
|
1083
|
+
|
1084
|
+
|
1085
|
+
def to_sklearn(self) -> Any:
|
1086
|
+
"""Get sklearn.svm.NuSVC object.
|
1087
|
+
"""
|
1088
|
+
if self._sklearn_object is None:
|
1089
|
+
self._sklearn_object = self._create_sklearn_object()
|
1090
|
+
return self._sklearn_object
|
1091
|
+
|
1092
|
+
def to_xgboost(self) -> Any:
|
1093
|
+
raise exceptions.SnowflakeMLException(
|
1094
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1095
|
+
original_exception=AttributeError(
|
1096
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1097
|
+
"to_xgboost()",
|
1098
|
+
"to_sklearn()"
|
1099
|
+
)
|
1100
|
+
),
|
1101
|
+
)
|
1102
|
+
|
1103
|
+
def to_lightgbm(self) -> Any:
|
1104
|
+
raise exceptions.SnowflakeMLException(
|
1105
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1106
|
+
original_exception=AttributeError(
|
1107
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1108
|
+
"to_lightgbm()",
|
1109
|
+
"to_sklearn()"
|
1110
|
+
)
|
1111
|
+
),
|
1112
|
+
)
|
1113
|
+
|
1114
|
+
def _get_dependencies(self) -> List[str]:
|
1115
|
+
return self._deps
|
1116
|
+
|
1014
1117
|
|
1015
|
-
def
|
1118
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1016
1119
|
self._model_signature_dict = dict()
|
1017
1120
|
|
1018
1121
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1019
1122
|
|
1020
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1123
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1021
1124
|
outputs: List[BaseFeatureSpec] = []
|
1022
1125
|
if hasattr(self, "predict"):
|
1023
1126
|
# keep mypy happy
|
1024
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1127
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1025
1128
|
# For classifier, the type of predict is the same as the type of label
|
1026
|
-
if self._sklearn_object._estimator_type ==
|
1027
|
-
|
1129
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1130
|
+
# label columns is the desired type for output
|
1028
1131
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1029
1132
|
# rename the output columns
|
1030
1133
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1031
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1032
|
-
|
1033
|
-
|
1134
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1135
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1136
|
+
)
|
1034
1137
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1035
1138
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1036
|
-
# Clusterer returns int64 cluster labels.
|
1139
|
+
# Clusterer returns int64 cluster labels.
|
1037
1140
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1038
1141
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1039
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1040
|
-
|
1041
|
-
|
1042
|
-
|
1142
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1143
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1144
|
+
)
|
1145
|
+
|
1043
1146
|
# For regressor, the type of predict is float64
|
1044
|
-
elif self._sklearn_object._estimator_type ==
|
1147
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1045
1148
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1046
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1047
|
-
|
1048
|
-
|
1049
|
-
|
1149
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1150
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1151
|
+
)
|
1152
|
+
|
1050
1153
|
for prob_func in PROB_FUNCTIONS:
|
1051
1154
|
if hasattr(self, prob_func):
|
1052
1155
|
output_cols_prefix: str = f"{prob_func}_"
|
1053
1156
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1054
1157
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1055
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1056
|
-
|
1057
|
-
|
1158
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1159
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1160
|
+
)
|
1058
1161
|
|
1059
1162
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1060
1163
|
items = list(self._model_signature_dict.items())
|
@@ -1067,10 +1170,10 @@ class NuSVC(BaseTransformer):
|
|
1067
1170
|
"""Returns model signature of current class.
|
1068
1171
|
|
1069
1172
|
Raises:
|
1070
|
-
|
1173
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1071
1174
|
|
1072
1175
|
Returns:
|
1073
|
-
Dict
|
1176
|
+
Dict with each method and its input output signature
|
1074
1177
|
"""
|
1075
1178
|
if self._model_signature_dict is None:
|
1076
1179
|
raise exceptions.SnowflakeMLException(
|
@@ -1078,35 +1181,3 @@ class NuSVC(BaseTransformer):
|
|
1078
1181
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1079
1182
|
)
|
1080
1183
|
return self._model_signature_dict
|
1081
|
-
|
1082
|
-
def to_sklearn(self) -> Any:
|
1083
|
-
"""Get sklearn.svm.NuSVC object.
|
1084
|
-
"""
|
1085
|
-
if self._sklearn_object is None:
|
1086
|
-
self._sklearn_object = self._create_sklearn_object()
|
1087
|
-
return self._sklearn_object
|
1088
|
-
|
1089
|
-
def to_xgboost(self) -> Any:
|
1090
|
-
raise exceptions.SnowflakeMLException(
|
1091
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1092
|
-
original_exception=AttributeError(
|
1093
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1094
|
-
"to_xgboost()",
|
1095
|
-
"to_sklearn()"
|
1096
|
-
)
|
1097
|
-
),
|
1098
|
-
)
|
1099
|
-
|
1100
|
-
def to_lightgbm(self) -> Any:
|
1101
|
-
raise exceptions.SnowflakeMLException(
|
1102
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1103
|
-
original_exception=AttributeError(
|
1104
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1105
|
-
"to_lightgbm()",
|
1106
|
-
"to_sklearn()"
|
1107
|
-
)
|
1108
|
-
),
|
1109
|
-
)
|
1110
|
-
|
1111
|
-
def _get_dependencies(self) -> List[str]:
|
1112
|
-
return self._deps
|