snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class DictionaryLearning(BaseTransformer):
71
64
  r"""Dictionary learning
72
65
  For more details on this class, see [sklearn.decomposition.DictionaryLearning]
@@ -314,12 +307,7 @@ class DictionaryLearning(BaseTransformer):
314
307
  )
315
308
  return selected_cols
316
309
 
317
- @telemetry.send_api_usage_telemetry(
318
- project=_PROJECT,
319
- subproject=_SUBPROJECT,
320
- custom_tags=dict([("autogen", True)]),
321
- )
322
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DictionaryLearning":
310
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DictionaryLearning":
323
311
  """Fit the model from data in X
324
312
  For more details on this function, see [sklearn.decomposition.DictionaryLearning.fit]
325
313
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.DictionaryLearning.html#sklearn.decomposition.DictionaryLearning.fit)
@@ -346,12 +334,14 @@ class DictionaryLearning(BaseTransformer):
346
334
 
347
335
  self._snowpark_cols = dataset.select(self.input_cols).columns
348
336
 
349
- # If we are already in a stored procedure, no need to kick off another one.
337
+ # If we are already in a stored procedure, no need to kick off another one.
350
338
  if SNOWML_SPROC_ENV in os.environ:
351
339
  statement_params = telemetry.get_function_usage_statement_params(
352
340
  project=_PROJECT,
353
341
  subproject=_SUBPROJECT,
354
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DictionaryLearning.__class__.__name__),
342
+ function_name=telemetry.get_statement_params_full_func_name(
343
+ inspect.currentframe(), DictionaryLearning.__class__.__name__
344
+ ),
355
345
  api_calls=[Session.call],
356
346
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
357
347
  )
@@ -372,27 +362,24 @@ class DictionaryLearning(BaseTransformer):
372
362
  )
373
363
  self._sklearn_object = model_trainer.train()
374
364
  self._is_fitted = True
375
- self._get_model_signatures(dataset)
365
+ self._generate_model_signatures(dataset)
376
366
  return self
377
367
 
378
368
  def _batch_inference_validate_snowpark(
379
369
  self,
380
370
  dataset: DataFrame,
381
371
  inference_method: str,
382
- ) -> List[str]:
383
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
384
- return the available package that exists in the snowflake anaconda channel
372
+ ) -> None:
373
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
385
374
 
386
375
  Args:
387
376
  dataset: snowpark dataframe
388
377
  inference_method: the inference method such as predict, score...
389
-
378
+
390
379
  Raises:
391
380
  SnowflakeMLException: If the estimator is not fitted, raise error
392
381
  SnowflakeMLException: If the session is None, raise error
393
382
 
394
- Returns:
395
- A list of available package that exists in the snowflake anaconda channel
396
383
  """
397
384
  if not self._is_fitted:
398
385
  raise exceptions.SnowflakeMLException(
@@ -410,9 +397,7 @@ class DictionaryLearning(BaseTransformer):
410
397
  "Session must not specified for snowpark dataset."
411
398
  ),
412
399
  )
413
- # Validate that key package version in user workspace are supported in snowflake conda channel
414
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
415
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
400
+
416
401
 
417
402
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
418
403
  @telemetry.send_api_usage_telemetry(
@@ -446,7 +431,9 @@ class DictionaryLearning(BaseTransformer):
446
431
  # when it is classifier, infer the datatype from label columns
447
432
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
448
433
  # Batch inference takes a single expected output column type. Use the first columns type for now.
449
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
434
+ label_cols_signatures = [
435
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
436
+ ]
450
437
  if len(label_cols_signatures) == 0:
451
438
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
452
439
  raise exceptions.SnowflakeMLException(
@@ -454,25 +441,23 @@ class DictionaryLearning(BaseTransformer):
454
441
  original_exception=ValueError(error_str),
455
442
  )
456
443
 
457
- expected_type_inferred = convert_sp_to_sf_type(
458
- label_cols_signatures[0].as_snowpark_type()
459
- )
444
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
460
445
 
461
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
462
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
446
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
447
+ self._deps = self._get_dependencies()
448
+ assert isinstance(
449
+ dataset._session, Session
450
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
463
451
 
464
452
  transform_kwargs = dict(
465
- session = dataset._session,
466
- dependencies = self._deps,
467
- drop_input_cols = self._drop_input_cols,
468
- expected_output_cols_type = expected_type_inferred,
453
+ session=dataset._session,
454
+ dependencies=self._deps,
455
+ drop_input_cols=self._drop_input_cols,
456
+ expected_output_cols_type=expected_type_inferred,
469
457
  )
470
458
 
471
459
  elif isinstance(dataset, pd.DataFrame):
472
- transform_kwargs = dict(
473
- snowpark_input_cols = self._snowpark_cols,
474
- drop_input_cols = self._drop_input_cols
475
- )
460
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
476
461
 
477
462
  transform_handlers = ModelTransformerBuilder.build(
478
463
  dataset=dataset,
@@ -514,7 +499,7 @@ class DictionaryLearning(BaseTransformer):
514
499
  Transformed dataset.
515
500
  """
516
501
  super()._check_dataset_type(dataset)
517
- inference_method="transform"
502
+ inference_method = "transform"
518
503
 
519
504
  # This dictionary contains optional kwargs for batch inference. These kwargs
520
505
  # are specific to the type of dataset used.
@@ -544,24 +529,19 @@ class DictionaryLearning(BaseTransformer):
544
529
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
545
530
  expected_dtype = convert_sp_to_sf_type(output_types[0])
546
531
 
547
- self._deps = self._batch_inference_validate_snowpark(
548
- dataset=dataset,
549
- inference_method=inference_method,
550
- )
532
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
533
+ self._deps = self._get_dependencies()
551
534
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
552
535
 
553
536
  transform_kwargs = dict(
554
- session = dataset._session,
555
- dependencies = self._deps,
556
- drop_input_cols = self._drop_input_cols,
557
- expected_output_cols_type = expected_dtype,
537
+ session=dataset._session,
538
+ dependencies=self._deps,
539
+ drop_input_cols=self._drop_input_cols,
540
+ expected_output_cols_type=expected_dtype,
558
541
  )
559
542
 
560
543
  elif isinstance(dataset, pd.DataFrame):
561
- transform_kwargs = dict(
562
- snowpark_input_cols = self._snowpark_cols,
563
- drop_input_cols = self._drop_input_cols
564
- )
544
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
565
545
 
566
546
  transform_handlers = ModelTransformerBuilder.build(
567
547
  dataset=dataset,
@@ -580,7 +560,11 @@ class DictionaryLearning(BaseTransformer):
580
560
  return output_df
581
561
 
582
562
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
583
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
563
+ def fit_predict(
564
+ self,
565
+ dataset: Union[DataFrame, pd.DataFrame],
566
+ output_cols_prefix: str = "fit_predict_",
567
+ ) -> Union[DataFrame, pd.DataFrame]:
584
568
  """ Method not supported for this class.
585
569
 
586
570
 
@@ -605,22 +589,106 @@ class DictionaryLearning(BaseTransformer):
605
589
  )
606
590
  output_result, fitted_estimator = model_trainer.train_fit_predict(
607
591
  drop_input_cols=self._drop_input_cols,
608
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
592
+ expected_output_cols_list=(
593
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
594
+ ),
609
595
  )
610
596
  self._sklearn_object = fitted_estimator
611
597
  self._is_fitted = True
612
598
  return output_result
613
599
 
600
+
601
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
602
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
603
+ """ Fit the model from data in X and return the transformed data
604
+ For more details on this function, see [sklearn.decomposition.DictionaryLearning.fit_transform]
605
+ (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.DictionaryLearning.html#sklearn.decomposition.DictionaryLearning.fit_transform)
606
+
607
+
608
+ Raises:
609
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
614
610
 
615
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
616
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
617
- """
611
+ Args:
612
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
613
+ Snowpark or Pandas DataFrame.
614
+ output_cols_prefix: Prefix for the response columns
618
615
  Returns:
619
616
  Transformed dataset.
620
617
  """
621
- self.fit(dataset)
622
- assert self._sklearn_object is not None
623
- return self._sklearn_object.embedding_
618
+ self._infer_input_output_cols(dataset)
619
+ super()._check_dataset_type(dataset)
620
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
621
+ estimator=self._sklearn_object,
622
+ dataset=dataset,
623
+ input_cols=self.input_cols,
624
+ label_cols=self.label_cols,
625
+ sample_weight_col=self.sample_weight_col,
626
+ autogenerated=self._autogenerated,
627
+ subproject=_SUBPROJECT,
628
+ )
629
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
630
+ drop_input_cols=self._drop_input_cols,
631
+ expected_output_cols_list=self.output_cols,
632
+ )
633
+ self._sklearn_object = fitted_estimator
634
+ self._is_fitted = True
635
+ return output_result
636
+
637
+
638
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
639
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
640
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
641
+ """
642
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
643
+ # The following condition is introduced for kneighbors methods, and not used in other methods
644
+ if output_cols:
645
+ output_cols = [
646
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
647
+ for c in output_cols
648
+ ]
649
+ elif getattr(self._sklearn_object, "classes_", None) is None:
650
+ output_cols = [output_cols_prefix]
651
+ elif self._sklearn_object is not None:
652
+ classes = self._sklearn_object.classes_
653
+ if isinstance(classes, numpy.ndarray):
654
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
655
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
656
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
657
+ output_cols = []
658
+ for i, cl in enumerate(classes):
659
+ # For binary classification, there is only one output column for each class
660
+ # ndarray as the two classes are complementary.
661
+ if len(cl) == 2:
662
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
663
+ else:
664
+ output_cols.extend([
665
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
666
+ ])
667
+ else:
668
+ output_cols = []
669
+
670
+ # Make sure column names are valid snowflake identifiers.
671
+ assert output_cols is not None # Make MyPy happy
672
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
673
+
674
+ return rv
675
+
676
+ def _align_expected_output_names(
677
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
678
+ ) -> List[str]:
679
+ # in case the inferred output column names dimension is different
680
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
681
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
682
+ output_df_columns = list(output_df_pd.columns)
683
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
684
+ if self.sample_weight_col:
685
+ output_df_columns_set -= set(self.sample_weight_col)
686
+ # if the dimension of inferred output column names is correct; use it
687
+ if len(expected_output_cols_list) == len(output_df_columns_set):
688
+ return expected_output_cols_list
689
+ # otherwise, use the sklearn estimator's output
690
+ else:
691
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
624
692
 
625
693
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
626
694
  @telemetry.send_api_usage_telemetry(
@@ -652,24 +720,26 @@ class DictionaryLearning(BaseTransformer):
652
720
  # are specific to the type of dataset used.
653
721
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
654
722
 
723
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
724
+
655
725
  if isinstance(dataset, DataFrame):
656
- self._deps = self._batch_inference_validate_snowpark(
657
- dataset=dataset,
658
- inference_method=inference_method,
659
- )
660
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
726
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
727
+ self._deps = self._get_dependencies()
728
+ assert isinstance(
729
+ dataset._session, Session
730
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
661
731
  transform_kwargs = dict(
662
732
  session=dataset._session,
663
733
  dependencies=self._deps,
664
- drop_input_cols = self._drop_input_cols,
734
+ drop_input_cols=self._drop_input_cols,
665
735
  expected_output_cols_type="float",
666
736
  )
737
+ expected_output_cols = self._align_expected_output_names(
738
+ inference_method, dataset, expected_output_cols, output_cols_prefix
739
+ )
667
740
 
668
741
  elif isinstance(dataset, pd.DataFrame):
669
- transform_kwargs = dict(
670
- snowpark_input_cols = self._snowpark_cols,
671
- drop_input_cols = self._drop_input_cols
672
- )
742
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
673
743
 
674
744
  transform_handlers = ModelTransformerBuilder.build(
675
745
  dataset=dataset,
@@ -681,7 +751,7 @@ class DictionaryLearning(BaseTransformer):
681
751
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
682
752
  inference_method=inference_method,
683
753
  input_cols=self.input_cols,
684
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
754
+ expected_output_cols=expected_output_cols,
685
755
  **transform_kwargs
686
756
  )
687
757
  return output_df
@@ -711,29 +781,30 @@ class DictionaryLearning(BaseTransformer):
711
781
  Output dataset with log probability of the sample for each class in the model.
712
782
  """
713
783
  super()._check_dataset_type(dataset)
714
- inference_method="predict_log_proba"
784
+ inference_method = "predict_log_proba"
785
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
715
786
 
716
787
  # This dictionary contains optional kwargs for batch inference. These kwargs
717
788
  # are specific to the type of dataset used.
718
789
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
719
790
 
720
791
  if isinstance(dataset, DataFrame):
721
- self._deps = self._batch_inference_validate_snowpark(
722
- dataset=dataset,
723
- inference_method=inference_method,
724
- )
725
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
792
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
793
+ self._deps = self._get_dependencies()
794
+ assert isinstance(
795
+ dataset._session, Session
796
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
726
797
  transform_kwargs = dict(
727
798
  session=dataset._session,
728
799
  dependencies=self._deps,
729
- drop_input_cols = self._drop_input_cols,
800
+ drop_input_cols=self._drop_input_cols,
730
801
  expected_output_cols_type="float",
731
802
  )
803
+ expected_output_cols = self._align_expected_output_names(
804
+ inference_method, dataset, expected_output_cols, output_cols_prefix
805
+ )
732
806
  elif isinstance(dataset, pd.DataFrame):
733
- transform_kwargs = dict(
734
- snowpark_input_cols = self._snowpark_cols,
735
- drop_input_cols = self._drop_input_cols
736
- )
807
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
737
808
 
738
809
  transform_handlers = ModelTransformerBuilder.build(
739
810
  dataset=dataset,
@@ -746,7 +817,7 @@ class DictionaryLearning(BaseTransformer):
746
817
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
747
818
  inference_method=inference_method,
748
819
  input_cols=self.input_cols,
749
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
820
+ expected_output_cols=expected_output_cols,
750
821
  **transform_kwargs
751
822
  )
752
823
  return output_df
@@ -772,30 +843,32 @@ class DictionaryLearning(BaseTransformer):
772
843
  Output dataset with results of the decision function for the samples in input dataset.
773
844
  """
774
845
  super()._check_dataset_type(dataset)
775
- inference_method="decision_function"
846
+ inference_method = "decision_function"
776
847
 
777
848
  # This dictionary contains optional kwargs for batch inference. These kwargs
778
849
  # are specific to the type of dataset used.
779
850
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
780
851
 
852
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
853
+
781
854
  if isinstance(dataset, DataFrame):
782
- self._deps = self._batch_inference_validate_snowpark(
783
- dataset=dataset,
784
- inference_method=inference_method,
785
- )
786
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
855
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
856
+ self._deps = self._get_dependencies()
857
+ assert isinstance(
858
+ dataset._session, Session
859
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
787
860
  transform_kwargs = dict(
788
861
  session=dataset._session,
789
862
  dependencies=self._deps,
790
- drop_input_cols = self._drop_input_cols,
863
+ drop_input_cols=self._drop_input_cols,
791
864
  expected_output_cols_type="float",
792
865
  )
866
+ expected_output_cols = self._align_expected_output_names(
867
+ inference_method, dataset, expected_output_cols, output_cols_prefix
868
+ )
793
869
 
794
870
  elif isinstance(dataset, pd.DataFrame):
795
- transform_kwargs = dict(
796
- snowpark_input_cols = self._snowpark_cols,
797
- drop_input_cols = self._drop_input_cols
798
- )
871
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
799
872
 
800
873
  transform_handlers = ModelTransformerBuilder.build(
801
874
  dataset=dataset,
@@ -808,7 +881,7 @@ class DictionaryLearning(BaseTransformer):
808
881
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
809
882
  inference_method=inference_method,
810
883
  input_cols=self.input_cols,
811
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
884
+ expected_output_cols=expected_output_cols,
812
885
  **transform_kwargs
813
886
  )
814
887
  return output_df
@@ -837,17 +910,17 @@ class DictionaryLearning(BaseTransformer):
837
910
  Output dataset with probability of the sample for each class in the model.
838
911
  """
839
912
  super()._check_dataset_type(dataset)
840
- inference_method="score_samples"
913
+ inference_method = "score_samples"
841
914
 
842
915
  # This dictionary contains optional kwargs for batch inference. These kwargs
843
916
  # are specific to the type of dataset used.
844
917
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
845
918
 
919
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
920
+
846
921
  if isinstance(dataset, DataFrame):
847
- self._deps = self._batch_inference_validate_snowpark(
848
- dataset=dataset,
849
- inference_method=inference_method,
850
- )
922
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
923
+ self._deps = self._get_dependencies()
851
924
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
852
925
  transform_kwargs = dict(
853
926
  session=dataset._session,
@@ -855,6 +928,9 @@ class DictionaryLearning(BaseTransformer):
855
928
  drop_input_cols = self._drop_input_cols,
856
929
  expected_output_cols_type="float",
857
930
  )
931
+ expected_output_cols = self._align_expected_output_names(
932
+ inference_method, dataset, expected_output_cols, output_cols_prefix
933
+ )
858
934
 
859
935
  elif isinstance(dataset, pd.DataFrame):
860
936
  transform_kwargs = dict(
@@ -873,7 +949,7 @@ class DictionaryLearning(BaseTransformer):
873
949
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
874
950
  inference_method=inference_method,
875
951
  input_cols=self.input_cols,
876
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
952
+ expected_output_cols=expected_output_cols,
877
953
  **transform_kwargs
878
954
  )
879
955
  return output_df
@@ -906,17 +982,15 @@ class DictionaryLearning(BaseTransformer):
906
982
  transform_kwargs: ScoreKwargsTypedDict = dict()
907
983
 
908
984
  if isinstance(dataset, DataFrame):
909
- self._deps = self._batch_inference_validate_snowpark(
910
- dataset=dataset,
911
- inference_method="score",
912
- )
985
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
986
+ self._deps = self._get_dependencies()
913
987
  selected_cols = self._get_active_columns()
914
988
  if len(selected_cols) > 0:
915
989
  dataset = dataset.select(selected_cols)
916
990
  assert isinstance(dataset._session, Session) # keep mypy happy
917
991
  transform_kwargs = dict(
918
992
  session=dataset._session,
919
- dependencies=["snowflake-snowpark-python"] + self._deps,
993
+ dependencies=self._deps,
920
994
  score_sproc_imports=['sklearn'],
921
995
  )
922
996
  elif isinstance(dataset, pd.DataFrame):
@@ -981,11 +1055,8 @@ class DictionaryLearning(BaseTransformer):
981
1055
 
982
1056
  if isinstance(dataset, DataFrame):
983
1057
 
984
- self._deps = self._batch_inference_validate_snowpark(
985
- dataset=dataset,
986
- inference_method=inference_method,
987
-
988
- )
1058
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1059
+ self._deps = self._get_dependencies()
989
1060
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
990
1061
  transform_kwargs = dict(
991
1062
  session = dataset._session,
@@ -1018,50 +1089,84 @@ class DictionaryLearning(BaseTransformer):
1018
1089
  )
1019
1090
  return output_df
1020
1091
 
1092
+
1093
+
1094
+ def to_sklearn(self) -> Any:
1095
+ """Get sklearn.decomposition.DictionaryLearning object.
1096
+ """
1097
+ if self._sklearn_object is None:
1098
+ self._sklearn_object = self._create_sklearn_object()
1099
+ return self._sklearn_object
1100
+
1101
+ def to_xgboost(self) -> Any:
1102
+ raise exceptions.SnowflakeMLException(
1103
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1104
+ original_exception=AttributeError(
1105
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1106
+ "to_xgboost()",
1107
+ "to_sklearn()"
1108
+ )
1109
+ ),
1110
+ )
1021
1111
 
1022
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1112
+ def to_lightgbm(self) -> Any:
1113
+ raise exceptions.SnowflakeMLException(
1114
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1115
+ original_exception=AttributeError(
1116
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1117
+ "to_lightgbm()",
1118
+ "to_sklearn()"
1119
+ )
1120
+ ),
1121
+ )
1122
+
1123
+ def _get_dependencies(self) -> List[str]:
1124
+ return self._deps
1125
+
1126
+
1127
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1023
1128
  self._model_signature_dict = dict()
1024
1129
 
1025
1130
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1026
1131
 
1027
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1132
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1028
1133
  outputs: List[BaseFeatureSpec] = []
1029
1134
  if hasattr(self, "predict"):
1030
1135
  # keep mypy happy
1031
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1136
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1032
1137
  # For classifier, the type of predict is the same as the type of label
1033
- if self._sklearn_object._estimator_type == 'classifier':
1034
- # label columns is the desired type for output
1138
+ if self._sklearn_object._estimator_type == "classifier":
1139
+ # label columns is the desired type for output
1035
1140
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1036
1141
  # rename the output columns
1037
1142
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1038
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1143
+ self._model_signature_dict["predict"] = ModelSignature(
1144
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1145
+ )
1041
1146
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1042
1147
  # For outlier models, returns -1 for outliers and 1 for inliers.
1043
- # Clusterer returns int64 cluster labels.
1148
+ # Clusterer returns int64 cluster labels.
1044
1149
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1045
1150
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1046
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1047
- ([] if self._drop_input_cols else inputs)
1048
- + outputs)
1049
-
1151
+ self._model_signature_dict["predict"] = ModelSignature(
1152
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1153
+ )
1154
+
1050
1155
  # For regressor, the type of predict is float64
1051
- elif self._sklearn_object._estimator_type == 'regressor':
1156
+ elif self._sklearn_object._estimator_type == "regressor":
1052
1157
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1053
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1054
- ([] if self._drop_input_cols else inputs)
1055
- + outputs)
1056
-
1158
+ self._model_signature_dict["predict"] = ModelSignature(
1159
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1160
+ )
1161
+
1057
1162
  for prob_func in PROB_FUNCTIONS:
1058
1163
  if hasattr(self, prob_func):
1059
1164
  output_cols_prefix: str = f"{prob_func}_"
1060
1165
  output_column_names = self._get_output_column_names(output_cols_prefix)
1061
1166
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1062
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1063
- ([] if self._drop_input_cols else inputs)
1064
- + outputs)
1167
+ self._model_signature_dict[prob_func] = ModelSignature(
1168
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1169
+ )
1065
1170
 
1066
1171
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1067
1172
  items = list(self._model_signature_dict.items())
@@ -1074,10 +1179,10 @@ class DictionaryLearning(BaseTransformer):
1074
1179
  """Returns model signature of current class.
1075
1180
 
1076
1181
  Raises:
1077
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1182
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1078
1183
 
1079
1184
  Returns:
1080
- Dict[str, ModelSignature]: each method and its input output signature
1185
+ Dict with each method and its input output signature
1081
1186
  """
1082
1187
  if self._model_signature_dict is None:
1083
1188
  raise exceptions.SnowflakeMLException(
@@ -1085,35 +1190,3 @@ class DictionaryLearning(BaseTransformer):
1085
1190
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1086
1191
  )
1087
1192
  return self._model_signature_dict
1088
-
1089
- def to_sklearn(self) -> Any:
1090
- """Get sklearn.decomposition.DictionaryLearning object.
1091
- """
1092
- if self._sklearn_object is None:
1093
- self._sklearn_object = self._create_sklearn_object()
1094
- return self._sklearn_object
1095
-
1096
- def to_xgboost(self) -> Any:
1097
- raise exceptions.SnowflakeMLException(
1098
- error_code=error_codes.METHOD_NOT_ALLOWED,
1099
- original_exception=AttributeError(
1100
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1101
- "to_xgboost()",
1102
- "to_sklearn()"
1103
- )
1104
- ),
1105
- )
1106
-
1107
- def to_lightgbm(self) -> Any:
1108
- raise exceptions.SnowflakeMLException(
1109
- error_code=error_codes.METHOD_NOT_ALLOWED,
1110
- original_exception=AttributeError(
1111
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1112
- "to_lightgbm()",
1113
- "to_sklearn()"
1114
- )
1115
- ),
1116
- )
1117
-
1118
- def _get_dependencies(self) -> List[str]:
1119
- return self._deps