snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class RidgeClassifier(BaseTransformer):
71
64
  r"""Classifier using Ridge regression
72
65
  For more details on this class, see [sklearn.linear_model.RidgeClassifier]
@@ -297,12 +290,7 @@ class RidgeClassifier(BaseTransformer):
297
290
  )
298
291
  return selected_cols
299
292
 
300
- @telemetry.send_api_usage_telemetry(
301
- project=_PROJECT,
302
- subproject=_SUBPROJECT,
303
- custom_tags=dict([("autogen", True)]),
304
- )
305
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifier":
293
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifier":
306
294
  """Fit Ridge classifier model
307
295
  For more details on this function, see [sklearn.linear_model.RidgeClassifier.fit]
308
296
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier.fit)
@@ -329,12 +317,14 @@ class RidgeClassifier(BaseTransformer):
329
317
 
330
318
  self._snowpark_cols = dataset.select(self.input_cols).columns
331
319
 
332
- # If we are already in a stored procedure, no need to kick off another one.
320
+ # If we are already in a stored procedure, no need to kick off another one.
333
321
  if SNOWML_SPROC_ENV in os.environ:
334
322
  statement_params = telemetry.get_function_usage_statement_params(
335
323
  project=_PROJECT,
336
324
  subproject=_SUBPROJECT,
337
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeClassifier.__class__.__name__),
325
+ function_name=telemetry.get_statement_params_full_func_name(
326
+ inspect.currentframe(), RidgeClassifier.__class__.__name__
327
+ ),
338
328
  api_calls=[Session.call],
339
329
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
340
330
  )
@@ -355,27 +345,24 @@ class RidgeClassifier(BaseTransformer):
355
345
  )
356
346
  self._sklearn_object = model_trainer.train()
357
347
  self._is_fitted = True
358
- self._get_model_signatures(dataset)
348
+ self._generate_model_signatures(dataset)
359
349
  return self
360
350
 
361
351
  def _batch_inference_validate_snowpark(
362
352
  self,
363
353
  dataset: DataFrame,
364
354
  inference_method: str,
365
- ) -> List[str]:
366
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
367
- return the available package that exists in the snowflake anaconda channel
355
+ ) -> None:
356
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
368
357
 
369
358
  Args:
370
359
  dataset: snowpark dataframe
371
360
  inference_method: the inference method such as predict, score...
372
-
361
+
373
362
  Raises:
374
363
  SnowflakeMLException: If the estimator is not fitted, raise error
375
364
  SnowflakeMLException: If the session is None, raise error
376
365
 
377
- Returns:
378
- A list of available package that exists in the snowflake anaconda channel
379
366
  """
380
367
  if not self._is_fitted:
381
368
  raise exceptions.SnowflakeMLException(
@@ -393,9 +380,7 @@ class RidgeClassifier(BaseTransformer):
393
380
  "Session must not specified for snowpark dataset."
394
381
  ),
395
382
  )
396
- # Validate that key package version in user workspace are supported in snowflake conda channel
397
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
398
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
383
+
399
384
 
400
385
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
401
386
  @telemetry.send_api_usage_telemetry(
@@ -431,7 +416,9 @@ class RidgeClassifier(BaseTransformer):
431
416
  # when it is classifier, infer the datatype from label columns
432
417
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
433
418
  # Batch inference takes a single expected output column type. Use the first columns type for now.
434
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
419
+ label_cols_signatures = [
420
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
421
+ ]
435
422
  if len(label_cols_signatures) == 0:
436
423
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
437
424
  raise exceptions.SnowflakeMLException(
@@ -439,25 +426,23 @@ class RidgeClassifier(BaseTransformer):
439
426
  original_exception=ValueError(error_str),
440
427
  )
441
428
 
442
- expected_type_inferred = convert_sp_to_sf_type(
443
- label_cols_signatures[0].as_snowpark_type()
444
- )
429
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
445
430
 
446
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
447
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
431
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
432
+ self._deps = self._get_dependencies()
433
+ assert isinstance(
434
+ dataset._session, Session
435
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
448
436
 
449
437
  transform_kwargs = dict(
450
- session = dataset._session,
451
- dependencies = self._deps,
452
- drop_input_cols = self._drop_input_cols,
453
- expected_output_cols_type = expected_type_inferred,
438
+ session=dataset._session,
439
+ dependencies=self._deps,
440
+ drop_input_cols=self._drop_input_cols,
441
+ expected_output_cols_type=expected_type_inferred,
454
442
  )
455
443
 
456
444
  elif isinstance(dataset, pd.DataFrame):
457
- transform_kwargs = dict(
458
- snowpark_input_cols = self._snowpark_cols,
459
- drop_input_cols = self._drop_input_cols
460
- )
445
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
461
446
 
462
447
  transform_handlers = ModelTransformerBuilder.build(
463
448
  dataset=dataset,
@@ -497,7 +482,7 @@ class RidgeClassifier(BaseTransformer):
497
482
  Transformed dataset.
498
483
  """
499
484
  super()._check_dataset_type(dataset)
500
- inference_method="transform"
485
+ inference_method = "transform"
501
486
 
502
487
  # This dictionary contains optional kwargs for batch inference. These kwargs
503
488
  # are specific to the type of dataset used.
@@ -527,24 +512,19 @@ class RidgeClassifier(BaseTransformer):
527
512
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
528
513
  expected_dtype = convert_sp_to_sf_type(output_types[0])
529
514
 
530
- self._deps = self._batch_inference_validate_snowpark(
531
- dataset=dataset,
532
- inference_method=inference_method,
533
- )
515
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
516
+ self._deps = self._get_dependencies()
534
517
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
535
518
 
536
519
  transform_kwargs = dict(
537
- session = dataset._session,
538
- dependencies = self._deps,
539
- drop_input_cols = self._drop_input_cols,
540
- expected_output_cols_type = expected_dtype,
520
+ session=dataset._session,
521
+ dependencies=self._deps,
522
+ drop_input_cols=self._drop_input_cols,
523
+ expected_output_cols_type=expected_dtype,
541
524
  )
542
525
 
543
526
  elif isinstance(dataset, pd.DataFrame):
544
- transform_kwargs = dict(
545
- snowpark_input_cols = self._snowpark_cols,
546
- drop_input_cols = self._drop_input_cols
547
- )
527
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
548
528
 
549
529
  transform_handlers = ModelTransformerBuilder.build(
550
530
  dataset=dataset,
@@ -563,7 +543,11 @@ class RidgeClassifier(BaseTransformer):
563
543
  return output_df
564
544
 
565
545
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
566
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
546
+ def fit_predict(
547
+ self,
548
+ dataset: Union[DataFrame, pd.DataFrame],
549
+ output_cols_prefix: str = "fit_predict_",
550
+ ) -> Union[DataFrame, pd.DataFrame]:
567
551
  """ Method not supported for this class.
568
552
 
569
553
 
@@ -588,22 +572,104 @@ class RidgeClassifier(BaseTransformer):
588
572
  )
589
573
  output_result, fitted_estimator = model_trainer.train_fit_predict(
590
574
  drop_input_cols=self._drop_input_cols,
591
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
575
+ expected_output_cols_list=(
576
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
577
+ ),
592
578
  )
593
579
  self._sklearn_object = fitted_estimator
594
580
  self._is_fitted = True
595
581
  return output_result
596
582
 
583
+
584
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
585
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
586
+ """ Method not supported for this class.
587
+
597
588
 
598
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
599
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
600
- """
589
+ Raises:
590
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
591
+
592
+ Args:
593
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
594
+ Snowpark or Pandas DataFrame.
595
+ output_cols_prefix: Prefix for the response columns
601
596
  Returns:
602
597
  Transformed dataset.
603
598
  """
604
- self.fit(dataset)
605
- assert self._sklearn_object is not None
606
- return self._sklearn_object.embedding_
599
+ self._infer_input_output_cols(dataset)
600
+ super()._check_dataset_type(dataset)
601
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
602
+ estimator=self._sklearn_object,
603
+ dataset=dataset,
604
+ input_cols=self.input_cols,
605
+ label_cols=self.label_cols,
606
+ sample_weight_col=self.sample_weight_col,
607
+ autogenerated=self._autogenerated,
608
+ subproject=_SUBPROJECT,
609
+ )
610
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
611
+ drop_input_cols=self._drop_input_cols,
612
+ expected_output_cols_list=self.output_cols,
613
+ )
614
+ self._sklearn_object = fitted_estimator
615
+ self._is_fitted = True
616
+ return output_result
617
+
618
+
619
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
620
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
621
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
622
+ """
623
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
624
+ # The following condition is introduced for kneighbors methods, and not used in other methods
625
+ if output_cols:
626
+ output_cols = [
627
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
628
+ for c in output_cols
629
+ ]
630
+ elif getattr(self._sklearn_object, "classes_", None) is None:
631
+ output_cols = [output_cols_prefix]
632
+ elif self._sklearn_object is not None:
633
+ classes = self._sklearn_object.classes_
634
+ if isinstance(classes, numpy.ndarray):
635
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
636
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
637
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
638
+ output_cols = []
639
+ for i, cl in enumerate(classes):
640
+ # For binary classification, there is only one output column for each class
641
+ # ndarray as the two classes are complementary.
642
+ if len(cl) == 2:
643
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
644
+ else:
645
+ output_cols.extend([
646
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
647
+ ])
648
+ else:
649
+ output_cols = []
650
+
651
+ # Make sure column names are valid snowflake identifiers.
652
+ assert output_cols is not None # Make MyPy happy
653
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
654
+
655
+ return rv
656
+
657
+ def _align_expected_output_names(
658
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
659
+ ) -> List[str]:
660
+ # in case the inferred output column names dimension is different
661
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
662
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
663
+ output_df_columns = list(output_df_pd.columns)
664
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
665
+ if self.sample_weight_col:
666
+ output_df_columns_set -= set(self.sample_weight_col)
667
+ # if the dimension of inferred output column names is correct; use it
668
+ if len(expected_output_cols_list) == len(output_df_columns_set):
669
+ return expected_output_cols_list
670
+ # otherwise, use the sklearn estimator's output
671
+ else:
672
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
607
673
 
608
674
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
609
675
  @telemetry.send_api_usage_telemetry(
@@ -635,24 +701,26 @@ class RidgeClassifier(BaseTransformer):
635
701
  # are specific to the type of dataset used.
636
702
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
637
703
 
704
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
705
+
638
706
  if isinstance(dataset, DataFrame):
639
- self._deps = self._batch_inference_validate_snowpark(
640
- dataset=dataset,
641
- inference_method=inference_method,
642
- )
643
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
707
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
708
+ self._deps = self._get_dependencies()
709
+ assert isinstance(
710
+ dataset._session, Session
711
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
644
712
  transform_kwargs = dict(
645
713
  session=dataset._session,
646
714
  dependencies=self._deps,
647
- drop_input_cols = self._drop_input_cols,
715
+ drop_input_cols=self._drop_input_cols,
648
716
  expected_output_cols_type="float",
649
717
  )
718
+ expected_output_cols = self._align_expected_output_names(
719
+ inference_method, dataset, expected_output_cols, output_cols_prefix
720
+ )
650
721
 
651
722
  elif isinstance(dataset, pd.DataFrame):
652
- transform_kwargs = dict(
653
- snowpark_input_cols = self._snowpark_cols,
654
- drop_input_cols = self._drop_input_cols
655
- )
723
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
656
724
 
657
725
  transform_handlers = ModelTransformerBuilder.build(
658
726
  dataset=dataset,
@@ -664,7 +732,7 @@ class RidgeClassifier(BaseTransformer):
664
732
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
665
733
  inference_method=inference_method,
666
734
  input_cols=self.input_cols,
667
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
735
+ expected_output_cols=expected_output_cols,
668
736
  **transform_kwargs
669
737
  )
670
738
  return output_df
@@ -694,29 +762,30 @@ class RidgeClassifier(BaseTransformer):
694
762
  Output dataset with log probability of the sample for each class in the model.
695
763
  """
696
764
  super()._check_dataset_type(dataset)
697
- inference_method="predict_log_proba"
765
+ inference_method = "predict_log_proba"
766
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
698
767
 
699
768
  # This dictionary contains optional kwargs for batch inference. These kwargs
700
769
  # are specific to the type of dataset used.
701
770
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
702
771
 
703
772
  if isinstance(dataset, DataFrame):
704
- self._deps = self._batch_inference_validate_snowpark(
705
- dataset=dataset,
706
- inference_method=inference_method,
707
- )
708
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
773
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
774
+ self._deps = self._get_dependencies()
775
+ assert isinstance(
776
+ dataset._session, Session
777
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
709
778
  transform_kwargs = dict(
710
779
  session=dataset._session,
711
780
  dependencies=self._deps,
712
- drop_input_cols = self._drop_input_cols,
781
+ drop_input_cols=self._drop_input_cols,
713
782
  expected_output_cols_type="float",
714
783
  )
784
+ expected_output_cols = self._align_expected_output_names(
785
+ inference_method, dataset, expected_output_cols, output_cols_prefix
786
+ )
715
787
  elif isinstance(dataset, pd.DataFrame):
716
- transform_kwargs = dict(
717
- snowpark_input_cols = self._snowpark_cols,
718
- drop_input_cols = self._drop_input_cols
719
- )
788
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
720
789
 
721
790
  transform_handlers = ModelTransformerBuilder.build(
722
791
  dataset=dataset,
@@ -729,7 +798,7 @@ class RidgeClassifier(BaseTransformer):
729
798
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
730
799
  inference_method=inference_method,
731
800
  input_cols=self.input_cols,
732
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
801
+ expected_output_cols=expected_output_cols,
733
802
  **transform_kwargs
734
803
  )
735
804
  return output_df
@@ -757,30 +826,32 @@ class RidgeClassifier(BaseTransformer):
757
826
  Output dataset with results of the decision function for the samples in input dataset.
758
827
  """
759
828
  super()._check_dataset_type(dataset)
760
- inference_method="decision_function"
829
+ inference_method = "decision_function"
761
830
 
762
831
  # This dictionary contains optional kwargs for batch inference. These kwargs
763
832
  # are specific to the type of dataset used.
764
833
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
765
834
 
835
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
836
+
766
837
  if isinstance(dataset, DataFrame):
767
- self._deps = self._batch_inference_validate_snowpark(
768
- dataset=dataset,
769
- inference_method=inference_method,
770
- )
771
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
838
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
839
+ self._deps = self._get_dependencies()
840
+ assert isinstance(
841
+ dataset._session, Session
842
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
772
843
  transform_kwargs = dict(
773
844
  session=dataset._session,
774
845
  dependencies=self._deps,
775
- drop_input_cols = self._drop_input_cols,
846
+ drop_input_cols=self._drop_input_cols,
776
847
  expected_output_cols_type="float",
777
848
  )
849
+ expected_output_cols = self._align_expected_output_names(
850
+ inference_method, dataset, expected_output_cols, output_cols_prefix
851
+ )
778
852
 
779
853
  elif isinstance(dataset, pd.DataFrame):
780
- transform_kwargs = dict(
781
- snowpark_input_cols = self._snowpark_cols,
782
- drop_input_cols = self._drop_input_cols
783
- )
854
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
784
855
 
785
856
  transform_handlers = ModelTransformerBuilder.build(
786
857
  dataset=dataset,
@@ -793,7 +864,7 @@ class RidgeClassifier(BaseTransformer):
793
864
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
794
865
  inference_method=inference_method,
795
866
  input_cols=self.input_cols,
796
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
867
+ expected_output_cols=expected_output_cols,
797
868
  **transform_kwargs
798
869
  )
799
870
  return output_df
@@ -822,17 +893,17 @@ class RidgeClassifier(BaseTransformer):
822
893
  Output dataset with probability of the sample for each class in the model.
823
894
  """
824
895
  super()._check_dataset_type(dataset)
825
- inference_method="score_samples"
896
+ inference_method = "score_samples"
826
897
 
827
898
  # This dictionary contains optional kwargs for batch inference. These kwargs
828
899
  # are specific to the type of dataset used.
829
900
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
830
901
 
902
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
903
+
831
904
  if isinstance(dataset, DataFrame):
832
- self._deps = self._batch_inference_validate_snowpark(
833
- dataset=dataset,
834
- inference_method=inference_method,
835
- )
905
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
906
+ self._deps = self._get_dependencies()
836
907
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
837
908
  transform_kwargs = dict(
838
909
  session=dataset._session,
@@ -840,6 +911,9 @@ class RidgeClassifier(BaseTransformer):
840
911
  drop_input_cols = self._drop_input_cols,
841
912
  expected_output_cols_type="float",
842
913
  )
914
+ expected_output_cols = self._align_expected_output_names(
915
+ inference_method, dataset, expected_output_cols, output_cols_prefix
916
+ )
843
917
 
844
918
  elif isinstance(dataset, pd.DataFrame):
845
919
  transform_kwargs = dict(
@@ -858,7 +932,7 @@ class RidgeClassifier(BaseTransformer):
858
932
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
859
933
  inference_method=inference_method,
860
934
  input_cols=self.input_cols,
861
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
935
+ expected_output_cols=expected_output_cols,
862
936
  **transform_kwargs
863
937
  )
864
938
  return output_df
@@ -893,17 +967,15 @@ class RidgeClassifier(BaseTransformer):
893
967
  transform_kwargs: ScoreKwargsTypedDict = dict()
894
968
 
895
969
  if isinstance(dataset, DataFrame):
896
- self._deps = self._batch_inference_validate_snowpark(
897
- dataset=dataset,
898
- inference_method="score",
899
- )
970
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
971
+ self._deps = self._get_dependencies()
900
972
  selected_cols = self._get_active_columns()
901
973
  if len(selected_cols) > 0:
902
974
  dataset = dataset.select(selected_cols)
903
975
  assert isinstance(dataset._session, Session) # keep mypy happy
904
976
  transform_kwargs = dict(
905
977
  session=dataset._session,
906
- dependencies=["snowflake-snowpark-python"] + self._deps,
978
+ dependencies=self._deps,
907
979
  score_sproc_imports=['sklearn'],
908
980
  )
909
981
  elif isinstance(dataset, pd.DataFrame):
@@ -968,11 +1040,8 @@ class RidgeClassifier(BaseTransformer):
968
1040
 
969
1041
  if isinstance(dataset, DataFrame):
970
1042
 
971
- self._deps = self._batch_inference_validate_snowpark(
972
- dataset=dataset,
973
- inference_method=inference_method,
974
-
975
- )
1043
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1044
+ self._deps = self._get_dependencies()
976
1045
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
977
1046
  transform_kwargs = dict(
978
1047
  session = dataset._session,
@@ -1005,50 +1074,84 @@ class RidgeClassifier(BaseTransformer):
1005
1074
  )
1006
1075
  return output_df
1007
1076
 
1077
+
1078
+
1079
+ def to_sklearn(self) -> Any:
1080
+ """Get sklearn.linear_model.RidgeClassifier object.
1081
+ """
1082
+ if self._sklearn_object is None:
1083
+ self._sklearn_object = self._create_sklearn_object()
1084
+ return self._sklearn_object
1085
+
1086
+ def to_xgboost(self) -> Any:
1087
+ raise exceptions.SnowflakeMLException(
1088
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1089
+ original_exception=AttributeError(
1090
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1091
+ "to_xgboost()",
1092
+ "to_sklearn()"
1093
+ )
1094
+ ),
1095
+ )
1096
+
1097
+ def to_lightgbm(self) -> Any:
1098
+ raise exceptions.SnowflakeMLException(
1099
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1100
+ original_exception=AttributeError(
1101
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1102
+ "to_lightgbm()",
1103
+ "to_sklearn()"
1104
+ )
1105
+ ),
1106
+ )
1107
+
1108
+ def _get_dependencies(self) -> List[str]:
1109
+ return self._deps
1110
+
1008
1111
 
1009
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1112
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1010
1113
  self._model_signature_dict = dict()
1011
1114
 
1012
1115
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1013
1116
 
1014
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1117
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1015
1118
  outputs: List[BaseFeatureSpec] = []
1016
1119
  if hasattr(self, "predict"):
1017
1120
  # keep mypy happy
1018
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1121
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1019
1122
  # For classifier, the type of predict is the same as the type of label
1020
- if self._sklearn_object._estimator_type == 'classifier':
1021
- # label columns is the desired type for output
1123
+ if self._sklearn_object._estimator_type == "classifier":
1124
+ # label columns is the desired type for output
1022
1125
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1023
1126
  # rename the output columns
1024
1127
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1025
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1026
- ([] if self._drop_input_cols else inputs)
1027
- + outputs)
1128
+ self._model_signature_dict["predict"] = ModelSignature(
1129
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1130
+ )
1028
1131
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1029
1132
  # For outlier models, returns -1 for outliers and 1 for inliers.
1030
- # Clusterer returns int64 cluster labels.
1133
+ # Clusterer returns int64 cluster labels.
1031
1134
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1032
1135
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1033
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1034
- ([] if self._drop_input_cols else inputs)
1035
- + outputs)
1036
-
1136
+ self._model_signature_dict["predict"] = ModelSignature(
1137
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1138
+ )
1139
+
1037
1140
  # For regressor, the type of predict is float64
1038
- elif self._sklearn_object._estimator_type == 'regressor':
1141
+ elif self._sklearn_object._estimator_type == "regressor":
1039
1142
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1040
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1041
- ([] if self._drop_input_cols else inputs)
1042
- + outputs)
1043
-
1143
+ self._model_signature_dict["predict"] = ModelSignature(
1144
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1145
+ )
1146
+
1044
1147
  for prob_func in PROB_FUNCTIONS:
1045
1148
  if hasattr(self, prob_func):
1046
1149
  output_cols_prefix: str = f"{prob_func}_"
1047
1150
  output_column_names = self._get_output_column_names(output_cols_prefix)
1048
1151
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1049
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1050
- ([] if self._drop_input_cols else inputs)
1051
- + outputs)
1152
+ self._model_signature_dict[prob_func] = ModelSignature(
1153
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1154
+ )
1052
1155
 
1053
1156
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1054
1157
  items = list(self._model_signature_dict.items())
@@ -1061,10 +1164,10 @@ class RidgeClassifier(BaseTransformer):
1061
1164
  """Returns model signature of current class.
1062
1165
 
1063
1166
  Raises:
1064
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1167
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1065
1168
 
1066
1169
  Returns:
1067
- Dict[str, ModelSignature]: each method and its input output signature
1170
+ Dict with each method and its input output signature
1068
1171
  """
1069
1172
  if self._model_signature_dict is None:
1070
1173
  raise exceptions.SnowflakeMLException(
@@ -1072,35 +1175,3 @@ class RidgeClassifier(BaseTransformer):
1072
1175
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1073
1176
  )
1074
1177
  return self._model_signature_dict
1075
-
1076
- def to_sklearn(self) -> Any:
1077
- """Get sklearn.linear_model.RidgeClassifier object.
1078
- """
1079
- if self._sklearn_object is None:
1080
- self._sklearn_object = self._create_sklearn_object()
1081
- return self._sklearn_object
1082
-
1083
- def to_xgboost(self) -> Any:
1084
- raise exceptions.SnowflakeMLException(
1085
- error_code=error_codes.METHOD_NOT_ALLOWED,
1086
- original_exception=AttributeError(
1087
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1088
- "to_xgboost()",
1089
- "to_sklearn()"
1090
- )
1091
- ),
1092
- )
1093
-
1094
- def to_lightgbm(self) -> Any:
1095
- raise exceptions.SnowflakeMLException(
1096
- error_code=error_codes.METHOD_NOT_ALLOWED,
1097
- original_exception=AttributeError(
1098
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1099
- "to_lightgbm()",
1100
- "to_sklearn()"
1101
- )
1102
- ),
1103
- )
1104
-
1105
- def _get_dependencies(self) -> List[str]:
1106
- return self._deps