snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class RidgeClassifier(BaseTransformer):
|
71
64
|
r"""Classifier using Ridge regression
|
72
65
|
For more details on this class, see [sklearn.linear_model.RidgeClassifier]
|
@@ -297,12 +290,7 @@ class RidgeClassifier(BaseTransformer):
|
|
297
290
|
)
|
298
291
|
return selected_cols
|
299
292
|
|
300
|
-
|
301
|
-
project=_PROJECT,
|
302
|
-
subproject=_SUBPROJECT,
|
303
|
-
custom_tags=dict([("autogen", True)]),
|
304
|
-
)
|
305
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifier":
|
293
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifier":
|
306
294
|
"""Fit Ridge classifier model
|
307
295
|
For more details on this function, see [sklearn.linear_model.RidgeClassifier.fit]
|
308
296
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier.fit)
|
@@ -329,12 +317,14 @@ class RidgeClassifier(BaseTransformer):
|
|
329
317
|
|
330
318
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
331
319
|
|
332
|
-
|
320
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
333
321
|
if SNOWML_SPROC_ENV in os.environ:
|
334
322
|
statement_params = telemetry.get_function_usage_statement_params(
|
335
323
|
project=_PROJECT,
|
336
324
|
subproject=_SUBPROJECT,
|
337
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
325
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
326
|
+
inspect.currentframe(), RidgeClassifier.__class__.__name__
|
327
|
+
),
|
338
328
|
api_calls=[Session.call],
|
339
329
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
340
330
|
)
|
@@ -355,27 +345,24 @@ class RidgeClassifier(BaseTransformer):
|
|
355
345
|
)
|
356
346
|
self._sklearn_object = model_trainer.train()
|
357
347
|
self._is_fitted = True
|
358
|
-
self.
|
348
|
+
self._generate_model_signatures(dataset)
|
359
349
|
return self
|
360
350
|
|
361
351
|
def _batch_inference_validate_snowpark(
|
362
352
|
self,
|
363
353
|
dataset: DataFrame,
|
364
354
|
inference_method: str,
|
365
|
-
) ->
|
366
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
367
|
-
return the available package that exists in the snowflake anaconda channel
|
355
|
+
) -> None:
|
356
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
368
357
|
|
369
358
|
Args:
|
370
359
|
dataset: snowpark dataframe
|
371
360
|
inference_method: the inference method such as predict, score...
|
372
|
-
|
361
|
+
|
373
362
|
Raises:
|
374
363
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
375
364
|
SnowflakeMLException: If the session is None, raise error
|
376
365
|
|
377
|
-
Returns:
|
378
|
-
A list of available package that exists in the snowflake anaconda channel
|
379
366
|
"""
|
380
367
|
if not self._is_fitted:
|
381
368
|
raise exceptions.SnowflakeMLException(
|
@@ -393,9 +380,7 @@ class RidgeClassifier(BaseTransformer):
|
|
393
380
|
"Session must not specified for snowpark dataset."
|
394
381
|
),
|
395
382
|
)
|
396
|
-
|
397
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
398
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
383
|
+
|
399
384
|
|
400
385
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
401
386
|
@telemetry.send_api_usage_telemetry(
|
@@ -431,7 +416,9 @@ class RidgeClassifier(BaseTransformer):
|
|
431
416
|
# when it is classifier, infer the datatype from label columns
|
432
417
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
433
418
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
434
|
-
label_cols_signatures = [
|
419
|
+
label_cols_signatures = [
|
420
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
421
|
+
]
|
435
422
|
if len(label_cols_signatures) == 0:
|
436
423
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
437
424
|
raise exceptions.SnowflakeMLException(
|
@@ -439,25 +426,23 @@ class RidgeClassifier(BaseTransformer):
|
|
439
426
|
original_exception=ValueError(error_str),
|
440
427
|
)
|
441
428
|
|
442
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
443
|
-
label_cols_signatures[0].as_snowpark_type()
|
444
|
-
)
|
429
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
445
430
|
|
446
|
-
self.
|
447
|
-
|
431
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
432
|
+
self._deps = self._get_dependencies()
|
433
|
+
assert isinstance(
|
434
|
+
dataset._session, Session
|
435
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
448
436
|
|
449
437
|
transform_kwargs = dict(
|
450
|
-
session
|
451
|
-
dependencies
|
452
|
-
drop_input_cols
|
453
|
-
expected_output_cols_type
|
438
|
+
session=dataset._session,
|
439
|
+
dependencies=self._deps,
|
440
|
+
drop_input_cols=self._drop_input_cols,
|
441
|
+
expected_output_cols_type=expected_type_inferred,
|
454
442
|
)
|
455
443
|
|
456
444
|
elif isinstance(dataset, pd.DataFrame):
|
457
|
-
transform_kwargs = dict(
|
458
|
-
snowpark_input_cols = self._snowpark_cols,
|
459
|
-
drop_input_cols = self._drop_input_cols
|
460
|
-
)
|
445
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
461
446
|
|
462
447
|
transform_handlers = ModelTransformerBuilder.build(
|
463
448
|
dataset=dataset,
|
@@ -497,7 +482,7 @@ class RidgeClassifier(BaseTransformer):
|
|
497
482
|
Transformed dataset.
|
498
483
|
"""
|
499
484
|
super()._check_dataset_type(dataset)
|
500
|
-
inference_method="transform"
|
485
|
+
inference_method = "transform"
|
501
486
|
|
502
487
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
503
488
|
# are specific to the type of dataset used.
|
@@ -527,24 +512,19 @@ class RidgeClassifier(BaseTransformer):
|
|
527
512
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
528
513
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
529
514
|
|
530
|
-
self.
|
531
|
-
|
532
|
-
inference_method=inference_method,
|
533
|
-
)
|
515
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
516
|
+
self._deps = self._get_dependencies()
|
534
517
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
535
518
|
|
536
519
|
transform_kwargs = dict(
|
537
|
-
session
|
538
|
-
dependencies
|
539
|
-
drop_input_cols
|
540
|
-
expected_output_cols_type
|
520
|
+
session=dataset._session,
|
521
|
+
dependencies=self._deps,
|
522
|
+
drop_input_cols=self._drop_input_cols,
|
523
|
+
expected_output_cols_type=expected_dtype,
|
541
524
|
)
|
542
525
|
|
543
526
|
elif isinstance(dataset, pd.DataFrame):
|
544
|
-
transform_kwargs = dict(
|
545
|
-
snowpark_input_cols = self._snowpark_cols,
|
546
|
-
drop_input_cols = self._drop_input_cols
|
547
|
-
)
|
527
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
548
528
|
|
549
529
|
transform_handlers = ModelTransformerBuilder.build(
|
550
530
|
dataset=dataset,
|
@@ -563,7 +543,11 @@ class RidgeClassifier(BaseTransformer):
|
|
563
543
|
return output_df
|
564
544
|
|
565
545
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
566
|
-
def fit_predict(
|
546
|
+
def fit_predict(
|
547
|
+
self,
|
548
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
549
|
+
output_cols_prefix: str = "fit_predict_",
|
550
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
567
551
|
""" Method not supported for this class.
|
568
552
|
|
569
553
|
|
@@ -588,22 +572,104 @@ class RidgeClassifier(BaseTransformer):
|
|
588
572
|
)
|
589
573
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
590
574
|
drop_input_cols=self._drop_input_cols,
|
591
|
-
expected_output_cols_list=
|
575
|
+
expected_output_cols_list=(
|
576
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
577
|
+
),
|
592
578
|
)
|
593
579
|
self._sklearn_object = fitted_estimator
|
594
580
|
self._is_fitted = True
|
595
581
|
return output_result
|
596
582
|
|
583
|
+
|
584
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
585
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
586
|
+
""" Method not supported for this class.
|
587
|
+
|
597
588
|
|
598
|
-
|
599
|
-
|
600
|
-
|
589
|
+
Raises:
|
590
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
591
|
+
|
592
|
+
Args:
|
593
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
594
|
+
Snowpark or Pandas DataFrame.
|
595
|
+
output_cols_prefix: Prefix for the response columns
|
601
596
|
Returns:
|
602
597
|
Transformed dataset.
|
603
598
|
"""
|
604
|
-
self.
|
605
|
-
|
606
|
-
|
599
|
+
self._infer_input_output_cols(dataset)
|
600
|
+
super()._check_dataset_type(dataset)
|
601
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
602
|
+
estimator=self._sklearn_object,
|
603
|
+
dataset=dataset,
|
604
|
+
input_cols=self.input_cols,
|
605
|
+
label_cols=self.label_cols,
|
606
|
+
sample_weight_col=self.sample_weight_col,
|
607
|
+
autogenerated=self._autogenerated,
|
608
|
+
subproject=_SUBPROJECT,
|
609
|
+
)
|
610
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
611
|
+
drop_input_cols=self._drop_input_cols,
|
612
|
+
expected_output_cols_list=self.output_cols,
|
613
|
+
)
|
614
|
+
self._sklearn_object = fitted_estimator
|
615
|
+
self._is_fitted = True
|
616
|
+
return output_result
|
617
|
+
|
618
|
+
|
619
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
620
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
621
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
622
|
+
"""
|
623
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
624
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
625
|
+
if output_cols:
|
626
|
+
output_cols = [
|
627
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
628
|
+
for c in output_cols
|
629
|
+
]
|
630
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
631
|
+
output_cols = [output_cols_prefix]
|
632
|
+
elif self._sklearn_object is not None:
|
633
|
+
classes = self._sklearn_object.classes_
|
634
|
+
if isinstance(classes, numpy.ndarray):
|
635
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
636
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
637
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
638
|
+
output_cols = []
|
639
|
+
for i, cl in enumerate(classes):
|
640
|
+
# For binary classification, there is only one output column for each class
|
641
|
+
# ndarray as the two classes are complementary.
|
642
|
+
if len(cl) == 2:
|
643
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
644
|
+
else:
|
645
|
+
output_cols.extend([
|
646
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
647
|
+
])
|
648
|
+
else:
|
649
|
+
output_cols = []
|
650
|
+
|
651
|
+
# Make sure column names are valid snowflake identifiers.
|
652
|
+
assert output_cols is not None # Make MyPy happy
|
653
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
654
|
+
|
655
|
+
return rv
|
656
|
+
|
657
|
+
def _align_expected_output_names(
|
658
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
659
|
+
) -> List[str]:
|
660
|
+
# in case the inferred output column names dimension is different
|
661
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
662
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
663
|
+
output_df_columns = list(output_df_pd.columns)
|
664
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
665
|
+
if self.sample_weight_col:
|
666
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
667
|
+
# if the dimension of inferred output column names is correct; use it
|
668
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
669
|
+
return expected_output_cols_list
|
670
|
+
# otherwise, use the sklearn estimator's output
|
671
|
+
else:
|
672
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
607
673
|
|
608
674
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
609
675
|
@telemetry.send_api_usage_telemetry(
|
@@ -635,24 +701,26 @@ class RidgeClassifier(BaseTransformer):
|
|
635
701
|
# are specific to the type of dataset used.
|
636
702
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
637
703
|
|
704
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
705
|
+
|
638
706
|
if isinstance(dataset, DataFrame):
|
639
|
-
self.
|
640
|
-
|
641
|
-
|
642
|
-
|
643
|
-
|
707
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
708
|
+
self._deps = self._get_dependencies()
|
709
|
+
assert isinstance(
|
710
|
+
dataset._session, Session
|
711
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
644
712
|
transform_kwargs = dict(
|
645
713
|
session=dataset._session,
|
646
714
|
dependencies=self._deps,
|
647
|
-
drop_input_cols
|
715
|
+
drop_input_cols=self._drop_input_cols,
|
648
716
|
expected_output_cols_type="float",
|
649
717
|
)
|
718
|
+
expected_output_cols = self._align_expected_output_names(
|
719
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
720
|
+
)
|
650
721
|
|
651
722
|
elif isinstance(dataset, pd.DataFrame):
|
652
|
-
transform_kwargs = dict(
|
653
|
-
snowpark_input_cols = self._snowpark_cols,
|
654
|
-
drop_input_cols = self._drop_input_cols
|
655
|
-
)
|
723
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
656
724
|
|
657
725
|
transform_handlers = ModelTransformerBuilder.build(
|
658
726
|
dataset=dataset,
|
@@ -664,7 +732,7 @@ class RidgeClassifier(BaseTransformer):
|
|
664
732
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
665
733
|
inference_method=inference_method,
|
666
734
|
input_cols=self.input_cols,
|
667
|
-
expected_output_cols=
|
735
|
+
expected_output_cols=expected_output_cols,
|
668
736
|
**transform_kwargs
|
669
737
|
)
|
670
738
|
return output_df
|
@@ -694,29 +762,30 @@ class RidgeClassifier(BaseTransformer):
|
|
694
762
|
Output dataset with log probability of the sample for each class in the model.
|
695
763
|
"""
|
696
764
|
super()._check_dataset_type(dataset)
|
697
|
-
inference_method="predict_log_proba"
|
765
|
+
inference_method = "predict_log_proba"
|
766
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
698
767
|
|
699
768
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
700
769
|
# are specific to the type of dataset used.
|
701
770
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
702
771
|
|
703
772
|
if isinstance(dataset, DataFrame):
|
704
|
-
self.
|
705
|
-
|
706
|
-
|
707
|
-
|
708
|
-
|
773
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
774
|
+
self._deps = self._get_dependencies()
|
775
|
+
assert isinstance(
|
776
|
+
dataset._session, Session
|
777
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
709
778
|
transform_kwargs = dict(
|
710
779
|
session=dataset._session,
|
711
780
|
dependencies=self._deps,
|
712
|
-
drop_input_cols
|
781
|
+
drop_input_cols=self._drop_input_cols,
|
713
782
|
expected_output_cols_type="float",
|
714
783
|
)
|
784
|
+
expected_output_cols = self._align_expected_output_names(
|
785
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
786
|
+
)
|
715
787
|
elif isinstance(dataset, pd.DataFrame):
|
716
|
-
transform_kwargs = dict(
|
717
|
-
snowpark_input_cols = self._snowpark_cols,
|
718
|
-
drop_input_cols = self._drop_input_cols
|
719
|
-
)
|
788
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
720
789
|
|
721
790
|
transform_handlers = ModelTransformerBuilder.build(
|
722
791
|
dataset=dataset,
|
@@ -729,7 +798,7 @@ class RidgeClassifier(BaseTransformer):
|
|
729
798
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
730
799
|
inference_method=inference_method,
|
731
800
|
input_cols=self.input_cols,
|
732
|
-
expected_output_cols=
|
801
|
+
expected_output_cols=expected_output_cols,
|
733
802
|
**transform_kwargs
|
734
803
|
)
|
735
804
|
return output_df
|
@@ -757,30 +826,32 @@ class RidgeClassifier(BaseTransformer):
|
|
757
826
|
Output dataset with results of the decision function for the samples in input dataset.
|
758
827
|
"""
|
759
828
|
super()._check_dataset_type(dataset)
|
760
|
-
inference_method="decision_function"
|
829
|
+
inference_method = "decision_function"
|
761
830
|
|
762
831
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
763
832
|
# are specific to the type of dataset used.
|
764
833
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
765
834
|
|
835
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
836
|
+
|
766
837
|
if isinstance(dataset, DataFrame):
|
767
|
-
self.
|
768
|
-
|
769
|
-
|
770
|
-
|
771
|
-
|
838
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
839
|
+
self._deps = self._get_dependencies()
|
840
|
+
assert isinstance(
|
841
|
+
dataset._session, Session
|
842
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
772
843
|
transform_kwargs = dict(
|
773
844
|
session=dataset._session,
|
774
845
|
dependencies=self._deps,
|
775
|
-
drop_input_cols
|
846
|
+
drop_input_cols=self._drop_input_cols,
|
776
847
|
expected_output_cols_type="float",
|
777
848
|
)
|
849
|
+
expected_output_cols = self._align_expected_output_names(
|
850
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
851
|
+
)
|
778
852
|
|
779
853
|
elif isinstance(dataset, pd.DataFrame):
|
780
|
-
transform_kwargs = dict(
|
781
|
-
snowpark_input_cols = self._snowpark_cols,
|
782
|
-
drop_input_cols = self._drop_input_cols
|
783
|
-
)
|
854
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
784
855
|
|
785
856
|
transform_handlers = ModelTransformerBuilder.build(
|
786
857
|
dataset=dataset,
|
@@ -793,7 +864,7 @@ class RidgeClassifier(BaseTransformer):
|
|
793
864
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
794
865
|
inference_method=inference_method,
|
795
866
|
input_cols=self.input_cols,
|
796
|
-
expected_output_cols=
|
867
|
+
expected_output_cols=expected_output_cols,
|
797
868
|
**transform_kwargs
|
798
869
|
)
|
799
870
|
return output_df
|
@@ -822,17 +893,17 @@ class RidgeClassifier(BaseTransformer):
|
|
822
893
|
Output dataset with probability of the sample for each class in the model.
|
823
894
|
"""
|
824
895
|
super()._check_dataset_type(dataset)
|
825
|
-
inference_method="score_samples"
|
896
|
+
inference_method = "score_samples"
|
826
897
|
|
827
898
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
828
899
|
# are specific to the type of dataset used.
|
829
900
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
830
901
|
|
902
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
903
|
+
|
831
904
|
if isinstance(dataset, DataFrame):
|
832
|
-
self.
|
833
|
-
|
834
|
-
inference_method=inference_method,
|
835
|
-
)
|
905
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
906
|
+
self._deps = self._get_dependencies()
|
836
907
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
837
908
|
transform_kwargs = dict(
|
838
909
|
session=dataset._session,
|
@@ -840,6 +911,9 @@ class RidgeClassifier(BaseTransformer):
|
|
840
911
|
drop_input_cols = self._drop_input_cols,
|
841
912
|
expected_output_cols_type="float",
|
842
913
|
)
|
914
|
+
expected_output_cols = self._align_expected_output_names(
|
915
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
916
|
+
)
|
843
917
|
|
844
918
|
elif isinstance(dataset, pd.DataFrame):
|
845
919
|
transform_kwargs = dict(
|
@@ -858,7 +932,7 @@ class RidgeClassifier(BaseTransformer):
|
|
858
932
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
859
933
|
inference_method=inference_method,
|
860
934
|
input_cols=self.input_cols,
|
861
|
-
expected_output_cols=
|
935
|
+
expected_output_cols=expected_output_cols,
|
862
936
|
**transform_kwargs
|
863
937
|
)
|
864
938
|
return output_df
|
@@ -893,17 +967,15 @@ class RidgeClassifier(BaseTransformer):
|
|
893
967
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
894
968
|
|
895
969
|
if isinstance(dataset, DataFrame):
|
896
|
-
self.
|
897
|
-
|
898
|
-
inference_method="score",
|
899
|
-
)
|
970
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
971
|
+
self._deps = self._get_dependencies()
|
900
972
|
selected_cols = self._get_active_columns()
|
901
973
|
if len(selected_cols) > 0:
|
902
974
|
dataset = dataset.select(selected_cols)
|
903
975
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
904
976
|
transform_kwargs = dict(
|
905
977
|
session=dataset._session,
|
906
|
-
dependencies=
|
978
|
+
dependencies=self._deps,
|
907
979
|
score_sproc_imports=['sklearn'],
|
908
980
|
)
|
909
981
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -968,11 +1040,8 @@ class RidgeClassifier(BaseTransformer):
|
|
968
1040
|
|
969
1041
|
if isinstance(dataset, DataFrame):
|
970
1042
|
|
971
|
-
self.
|
972
|
-
|
973
|
-
inference_method=inference_method,
|
974
|
-
|
975
|
-
)
|
1043
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1044
|
+
self._deps = self._get_dependencies()
|
976
1045
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
977
1046
|
transform_kwargs = dict(
|
978
1047
|
session = dataset._session,
|
@@ -1005,50 +1074,84 @@ class RidgeClassifier(BaseTransformer):
|
|
1005
1074
|
)
|
1006
1075
|
return output_df
|
1007
1076
|
|
1077
|
+
|
1078
|
+
|
1079
|
+
def to_sklearn(self) -> Any:
|
1080
|
+
"""Get sklearn.linear_model.RidgeClassifier object.
|
1081
|
+
"""
|
1082
|
+
if self._sklearn_object is None:
|
1083
|
+
self._sklearn_object = self._create_sklearn_object()
|
1084
|
+
return self._sklearn_object
|
1085
|
+
|
1086
|
+
def to_xgboost(self) -> Any:
|
1087
|
+
raise exceptions.SnowflakeMLException(
|
1088
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1089
|
+
original_exception=AttributeError(
|
1090
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1091
|
+
"to_xgboost()",
|
1092
|
+
"to_sklearn()"
|
1093
|
+
)
|
1094
|
+
),
|
1095
|
+
)
|
1096
|
+
|
1097
|
+
def to_lightgbm(self) -> Any:
|
1098
|
+
raise exceptions.SnowflakeMLException(
|
1099
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1100
|
+
original_exception=AttributeError(
|
1101
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1102
|
+
"to_lightgbm()",
|
1103
|
+
"to_sklearn()"
|
1104
|
+
)
|
1105
|
+
),
|
1106
|
+
)
|
1107
|
+
|
1108
|
+
def _get_dependencies(self) -> List[str]:
|
1109
|
+
return self._deps
|
1110
|
+
|
1008
1111
|
|
1009
|
-
def
|
1112
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1010
1113
|
self._model_signature_dict = dict()
|
1011
1114
|
|
1012
1115
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1013
1116
|
|
1014
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1117
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1015
1118
|
outputs: List[BaseFeatureSpec] = []
|
1016
1119
|
if hasattr(self, "predict"):
|
1017
1120
|
# keep mypy happy
|
1018
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1121
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1019
1122
|
# For classifier, the type of predict is the same as the type of label
|
1020
|
-
if self._sklearn_object._estimator_type ==
|
1021
|
-
|
1123
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1124
|
+
# label columns is the desired type for output
|
1022
1125
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1023
1126
|
# rename the output columns
|
1024
1127
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1025
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1026
|
-
|
1027
|
-
|
1128
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1129
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1130
|
+
)
|
1028
1131
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1029
1132
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1030
|
-
# Clusterer returns int64 cluster labels.
|
1133
|
+
# Clusterer returns int64 cluster labels.
|
1031
1134
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1032
1135
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1033
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1034
|
-
|
1035
|
-
|
1036
|
-
|
1136
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1137
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1138
|
+
)
|
1139
|
+
|
1037
1140
|
# For regressor, the type of predict is float64
|
1038
|
-
elif self._sklearn_object._estimator_type ==
|
1141
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1039
1142
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1040
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1041
|
-
|
1042
|
-
|
1043
|
-
|
1143
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1144
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1145
|
+
)
|
1146
|
+
|
1044
1147
|
for prob_func in PROB_FUNCTIONS:
|
1045
1148
|
if hasattr(self, prob_func):
|
1046
1149
|
output_cols_prefix: str = f"{prob_func}_"
|
1047
1150
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1048
1151
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1049
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1050
|
-
|
1051
|
-
|
1152
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1153
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1154
|
+
)
|
1052
1155
|
|
1053
1156
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1054
1157
|
items = list(self._model_signature_dict.items())
|
@@ -1061,10 +1164,10 @@ class RidgeClassifier(BaseTransformer):
|
|
1061
1164
|
"""Returns model signature of current class.
|
1062
1165
|
|
1063
1166
|
Raises:
|
1064
|
-
|
1167
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1065
1168
|
|
1066
1169
|
Returns:
|
1067
|
-
Dict
|
1170
|
+
Dict with each method and its input output signature
|
1068
1171
|
"""
|
1069
1172
|
if self._model_signature_dict is None:
|
1070
1173
|
raise exceptions.SnowflakeMLException(
|
@@ -1072,35 +1175,3 @@ class RidgeClassifier(BaseTransformer):
|
|
1072
1175
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1073
1176
|
)
|
1074
1177
|
return self._model_signature_dict
|
1075
|
-
|
1076
|
-
def to_sklearn(self) -> Any:
|
1077
|
-
"""Get sklearn.linear_model.RidgeClassifier object.
|
1078
|
-
"""
|
1079
|
-
if self._sklearn_object is None:
|
1080
|
-
self._sklearn_object = self._create_sklearn_object()
|
1081
|
-
return self._sklearn_object
|
1082
|
-
|
1083
|
-
def to_xgboost(self) -> Any:
|
1084
|
-
raise exceptions.SnowflakeMLException(
|
1085
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1086
|
-
original_exception=AttributeError(
|
1087
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1088
|
-
"to_xgboost()",
|
1089
|
-
"to_sklearn()"
|
1090
|
-
)
|
1091
|
-
),
|
1092
|
-
)
|
1093
|
-
|
1094
|
-
def to_lightgbm(self) -> Any:
|
1095
|
-
raise exceptions.SnowflakeMLException(
|
1096
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1097
|
-
original_exception=AttributeError(
|
1098
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1099
|
-
"to_lightgbm()",
|
1100
|
-
"to_sklearn()"
|
1101
|
-
)
|
1102
|
-
),
|
1103
|
-
)
|
1104
|
-
|
1105
|
-
def _get_dependencies(self) -> List[str]:
|
1106
|
-
return self._deps
|