snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class RANSACRegressor(BaseTransformer):
57
58
  r"""RANSAC (RANdom SAmple Consensus) algorithm
58
59
  For more details on this class, see [sklearn.linear_model.RANSACRegressor]
@@ -60,6 +61,51 @@ class RANSACRegressor(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
64
+
65
+ input_cols: Optional[Union[str, List[str]]]
66
+ A string or list of strings representing column names that contain features.
67
+ If this parameter is not specified, all columns in the input DataFrame except
68
+ the columns specified by label_cols, sample_weight_col, and passthrough_cols
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
72
+ label_cols: Optional[Union[str, List[str]]]
73
+ A string or list of strings representing column names that contain labels.
74
+ Label columns must be specified with this parameter during initialization
75
+ or with the `set_label_cols` method before fitting.
76
+
77
+ output_cols: Optional[Union[str, List[str]]]
78
+ A string or list of strings representing column names that will store the
79
+ output of predict and transform operations. The length of output_cols must
80
+ match the expected number of output columns from the specific predictor or
81
+ transformer class used.
82
+ If you omit this parameter, output column names are derived by adding an
83
+ OUTPUT_ prefix to the label column names for supervised estimators, or
84
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
85
+ work for predictors, but output_cols must be set explicitly for transformers.
86
+ In general, explicitly specifying output column names is clearer, especially
87
+ if you don’t specify the input column names.
88
+ To transform in place, pass the same names for input_cols and output_cols.
89
+ be set explicitly for transformers. Output columns can also be set after
90
+ initialization with the `set_output_cols` method.
91
+
92
+ sample_weight_col: Optional[str]
93
+ A string representing the column name containing the sample weights.
94
+ This argument is only required when working with weighted datasets. Sample
95
+ weight column can also be set after initialization with the
96
+ `set_sample_weight_col` method.
97
+
98
+ passthrough_cols: Optional[Union[str, List[str]]]
99
+ A string or a list of strings indicating column names to be excluded from any
100
+ operations (such as train, transform, or inference). These specified column(s)
101
+ will remain untouched throughout the process. This option is helpful in scenarios
102
+ requiring automatic input_cols inference, but need to avoid using specific
103
+ columns, like index columns, during training or inference. Passthrough columns
104
+ can also be set after initialization with the `set_passthrough_cols` method.
105
+
106
+ drop_input_cols: Optional[bool], default=False
107
+ If set, the response of predict(), transform() methods will not contain input columns.
108
+
63
109
  estimator: object, default=None
64
110
  Base estimator object which implements the following methods:
65
111
 
@@ -149,42 +195,6 @@ class RANSACRegressor(BaseTransformer):
149
195
  The generator used to initialize the centers.
150
196
  Pass an int for reproducible output across multiple function calls.
151
197
  See :term:`Glossary <random_state>`.
152
-
153
- input_cols: Optional[Union[str, List[str]]]
154
- A string or list of strings representing column names that contain features.
155
- If this parameter is not specified, all columns in the input DataFrame except
156
- the columns specified by label_cols, sample_weight_col, and passthrough_cols
157
- parameters are considered input columns.
158
-
159
- label_cols: Optional[Union[str, List[str]]]
160
- A string or list of strings representing column names that contain labels.
161
- This is a required param for estimators, as there is no way to infer these
162
- columns. If this parameter is not specified, then object is fitted without
163
- labels (like a transformer).
164
-
165
- output_cols: Optional[Union[str, List[str]]]
166
- A string or list of strings representing column names that will store the
167
- output of predict and transform operations. The length of output_cols must
168
- match the expected number of output columns from the specific estimator or
169
- transformer class used.
170
- If this parameter is not specified, output column names are derived by
171
- adding an OUTPUT_ prefix to the label column names. These inferred output
172
- column names work for estimator's predict() method, but output_cols must
173
- be set explicitly for transformers.
174
-
175
- sample_weight_col: Optional[str]
176
- A string representing the column name containing the sample weights.
177
- This argument is only required when working with weighted datasets.
178
-
179
- passthrough_cols: Optional[Union[str, List[str]]]
180
- A string or a list of strings indicating column names to be excluded from any
181
- operations (such as train, transform, or inference). These specified column(s)
182
- will remain untouched throughout the process. This option is helpful in scenarios
183
- requiring automatic input_cols inference, but need to avoid using specific
184
- columns, like index columns, during training or inference.
185
-
186
- drop_input_cols: Optional[bool], default=False
187
- If set, the response of predict(), transform() methods will not contain input columns.
188
198
  """
189
199
 
190
200
  def __init__( # type: ignore[no-untyped-def]
@@ -217,7 +227,7 @@ class RANSACRegressor(BaseTransformer):
217
227
  self.set_passthrough_cols(passthrough_cols)
218
228
  self.set_drop_input_cols(drop_input_cols)
219
229
  self.set_sample_weight_col(sample_weight_col)
220
- deps = set(SklearnWrapperProvider().dependencies)
230
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
221
231
  deps = deps | gather_dependencies(estimator)
222
232
  self._deps = list(deps)
223
233
  estimator = transform_snowml_obj_to_sklearn_obj(estimator)
@@ -237,13 +247,14 @@ class RANSACRegressor(BaseTransformer):
237
247
  args=init_args,
238
248
  klass=sklearn.linear_model.RANSACRegressor
239
249
  )
240
- self._sklearn_object = sklearn.linear_model.RANSACRegressor(
250
+ self._sklearn_object: Any = sklearn.linear_model.RANSACRegressor(
241
251
  **cleaned_up_init_args,
242
252
  )
243
253
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
244
254
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
245
255
  self._snowpark_cols: Optional[List[str]] = self.input_cols
246
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=RANSACRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
256
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=RANSACRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
257
+ self._autogenerated = True
247
258
 
248
259
  def _get_rand_id(self) -> str:
249
260
  """
@@ -299,54 +310,48 @@ class RANSACRegressor(BaseTransformer):
299
310
  self
300
311
  """
301
312
  self._infer_input_output_cols(dataset)
302
- if isinstance(dataset, pd.DataFrame):
303
- assert self._sklearn_object is not None # keep mypy happy
304
- self._sklearn_object = self._handlers.fit_pandas(
305
- dataset,
306
- self._sklearn_object,
307
- self.input_cols,
308
- self.label_cols,
309
- self.sample_weight_col
310
- )
311
- elif isinstance(dataset, DataFrame):
312
- self._fit_snowpark(dataset)
313
- else:
314
- raise TypeError(
315
- f"Unexpected dataset type: {type(dataset)}."
316
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
317
- )
313
+ if isinstance(dataset, DataFrame):
314
+ session = dataset._session
315
+ assert session is not None # keep mypy happy
316
+ # Validate that key package version in user workspace are supported in snowflake conda channel
317
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
318
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
319
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
320
+
321
+ # Specify input columns so column pruning will be enforced
322
+ selected_cols = self._get_active_columns()
323
+ if len(selected_cols) > 0:
324
+ dataset = dataset.select(selected_cols)
325
+
326
+ self._snowpark_cols = dataset.select(self.input_cols).columns
327
+
328
+ # If we are already in a stored procedure, no need to kick off another one.
329
+ if SNOWML_SPROC_ENV in os.environ:
330
+ statement_params = telemetry.get_function_usage_statement_params(
331
+ project=_PROJECT,
332
+ subproject=_SUBPROJECT,
333
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RANSACRegressor.__class__.__name__),
334
+ api_calls=[Session.call],
335
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
336
+ )
337
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
338
+ pd_df.columns = dataset.columns
339
+ dataset = pd_df
340
+
341
+ model_trainer = ModelTrainerBuilder.build(
342
+ estimator=self._sklearn_object,
343
+ dataset=dataset,
344
+ input_cols=self.input_cols,
345
+ label_cols=self.label_cols,
346
+ sample_weight_col=self.sample_weight_col,
347
+ autogenerated=self._autogenerated,
348
+ subproject=_SUBPROJECT
349
+ )
350
+ self._sklearn_object = model_trainer.train()
318
351
  self._is_fitted = True
319
352
  self._get_model_signatures(dataset)
320
353
  return self
321
354
 
322
- def _fit_snowpark(self, dataset: DataFrame) -> None:
323
- session = dataset._session
324
- assert session is not None # keep mypy happy
325
- # Validate that key package version in user workspace are supported in snowflake conda channel
326
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
327
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
328
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
329
-
330
- # Specify input columns so column pruning will be enforced
331
- selected_cols = self._get_active_columns()
332
- if len(selected_cols) > 0:
333
- dataset = dataset.select(selected_cols)
334
-
335
- estimator = self._sklearn_object
336
- assert estimator is not None # Keep mypy happy
337
-
338
- self._snowpark_cols = dataset.select(self.input_cols).columns
339
-
340
- self._sklearn_object = self._handlers.fit_snowpark(
341
- dataset,
342
- session,
343
- estimator,
344
- ["snowflake-snowpark-python"] + self._get_dependencies(),
345
- self.input_cols,
346
- self.label_cols,
347
- self.sample_weight_col,
348
- )
349
-
350
355
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
351
356
  if self._drop_input_cols:
352
357
  return []
@@ -534,11 +539,6 @@ class RANSACRegressor(BaseTransformer):
534
539
  subproject=_SUBPROJECT,
535
540
  custom_tags=dict([("autogen", True)]),
536
541
  )
537
- @telemetry.add_stmt_params_to_df(
538
- project=_PROJECT,
539
- subproject=_SUBPROJECT,
540
- custom_tags=dict([("autogen", True)]),
541
- )
542
542
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
543
543
  """Predict using the estimated model
544
544
  For more details on this function, see [sklearn.linear_model.RANSACRegressor.predict]
@@ -592,11 +592,6 @@ class RANSACRegressor(BaseTransformer):
592
592
  subproject=_SUBPROJECT,
593
593
  custom_tags=dict([("autogen", True)]),
594
594
  )
595
- @telemetry.add_stmt_params_to_df(
596
- project=_PROJECT,
597
- subproject=_SUBPROJECT,
598
- custom_tags=dict([("autogen", True)]),
599
- )
600
595
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
601
596
  """Method not supported for this class.
602
597
 
@@ -653,7 +648,8 @@ class RANSACRegressor(BaseTransformer):
653
648
  if False:
654
649
  self.fit(dataset)
655
650
  assert self._sklearn_object is not None
656
- return self._sklearn_object.labels_
651
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
652
+ return labels
657
653
  else:
658
654
  raise NotImplementedError
659
655
 
@@ -689,6 +685,7 @@ class RANSACRegressor(BaseTransformer):
689
685
  output_cols = []
690
686
 
691
687
  # Make sure column names are valid snowflake identifiers.
688
+ assert output_cols is not None # Make MyPy happy
692
689
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
693
690
 
694
691
  return rv
@@ -699,11 +696,6 @@ class RANSACRegressor(BaseTransformer):
699
696
  subproject=_SUBPROJECT,
700
697
  custom_tags=dict([("autogen", True)]),
701
698
  )
702
- @telemetry.add_stmt_params_to_df(
703
- project=_PROJECT,
704
- subproject=_SUBPROJECT,
705
- custom_tags=dict([("autogen", True)]),
706
- )
707
699
  def predict_proba(
708
700
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
709
701
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -744,11 +736,6 @@ class RANSACRegressor(BaseTransformer):
744
736
  subproject=_SUBPROJECT,
745
737
  custom_tags=dict([("autogen", True)]),
746
738
  )
747
- @telemetry.add_stmt_params_to_df(
748
- project=_PROJECT,
749
- subproject=_SUBPROJECT,
750
- custom_tags=dict([("autogen", True)]),
751
- )
752
739
  def predict_log_proba(
753
740
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
754
741
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -785,16 +772,6 @@ class RANSACRegressor(BaseTransformer):
785
772
  return output_df
786
773
 
787
774
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
788
- @telemetry.send_api_usage_telemetry(
789
- project=_PROJECT,
790
- subproject=_SUBPROJECT,
791
- custom_tags=dict([("autogen", True)]),
792
- )
793
- @telemetry.add_stmt_params_to_df(
794
- project=_PROJECT,
795
- subproject=_SUBPROJECT,
796
- custom_tags=dict([("autogen", True)]),
797
- )
798
775
  def decision_function(
799
776
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
800
777
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -895,11 +872,6 @@ class RANSACRegressor(BaseTransformer):
895
872
  subproject=_SUBPROJECT,
896
873
  custom_tags=dict([("autogen", True)]),
897
874
  )
898
- @telemetry.add_stmt_params_to_df(
899
- project=_PROJECT,
900
- subproject=_SUBPROJECT,
901
- custom_tags=dict([("autogen", True)]),
902
- )
903
875
  def kneighbors(
904
876
  self,
905
877
  dataset: Union[DataFrame, pd.DataFrame],
@@ -959,9 +931,9 @@ class RANSACRegressor(BaseTransformer):
959
931
  # For classifier, the type of predict is the same as the type of label
960
932
  if self._sklearn_object._estimator_type == 'classifier':
961
933
  # label columns is the desired type for output
962
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
934
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
963
935
  # rename the output columns
964
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
936
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
965
937
  self._model_signature_dict["predict"] = ModelSignature(inputs,
966
938
  ([] if self._drop_input_cols else inputs)
967
939
  + outputs)