snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class RANSACRegressor(BaseTransformer):
|
57
58
|
r"""RANSAC (RANdom SAmple Consensus) algorithm
|
58
59
|
For more details on this class, see [sklearn.linear_model.RANSACRegressor]
|
@@ -60,6 +61,51 @@ class RANSACRegressor(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
A string or list of strings representing column names that contain labels.
|
74
|
+
Label columns must be specified with this parameter during initialization
|
75
|
+
or with the `set_label_cols` method before fitting.
|
76
|
+
|
77
|
+
output_cols: Optional[Union[str, List[str]]]
|
78
|
+
A string or list of strings representing column names that will store the
|
79
|
+
output of predict and transform operations. The length of output_cols must
|
80
|
+
match the expected number of output columns from the specific predictor or
|
81
|
+
transformer class used.
|
82
|
+
If you omit this parameter, output column names are derived by adding an
|
83
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
84
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
85
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
86
|
+
In general, explicitly specifying output column names is clearer, especially
|
87
|
+
if you don’t specify the input column names.
|
88
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
89
|
+
be set explicitly for transformers. Output columns can also be set after
|
90
|
+
initialization with the `set_output_cols` method.
|
91
|
+
|
92
|
+
sample_weight_col: Optional[str]
|
93
|
+
A string representing the column name containing the sample weights.
|
94
|
+
This argument is only required when working with weighted datasets. Sample
|
95
|
+
weight column can also be set after initialization with the
|
96
|
+
`set_sample_weight_col` method.
|
97
|
+
|
98
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
99
|
+
A string or a list of strings indicating column names to be excluded from any
|
100
|
+
operations (such as train, transform, or inference). These specified column(s)
|
101
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
102
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
103
|
+
columns, like index columns, during training or inference. Passthrough columns
|
104
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
105
|
+
|
106
|
+
drop_input_cols: Optional[bool], default=False
|
107
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
108
|
+
|
63
109
|
estimator: object, default=None
|
64
110
|
Base estimator object which implements the following methods:
|
65
111
|
|
@@ -149,42 +195,6 @@ class RANSACRegressor(BaseTransformer):
|
|
149
195
|
The generator used to initialize the centers.
|
150
196
|
Pass an int for reproducible output across multiple function calls.
|
151
197
|
See :term:`Glossary <random_state>`.
|
152
|
-
|
153
|
-
input_cols: Optional[Union[str, List[str]]]
|
154
|
-
A string or list of strings representing column names that contain features.
|
155
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
156
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
157
|
-
parameters are considered input columns.
|
158
|
-
|
159
|
-
label_cols: Optional[Union[str, List[str]]]
|
160
|
-
A string or list of strings representing column names that contain labels.
|
161
|
-
This is a required param for estimators, as there is no way to infer these
|
162
|
-
columns. If this parameter is not specified, then object is fitted without
|
163
|
-
labels (like a transformer).
|
164
|
-
|
165
|
-
output_cols: Optional[Union[str, List[str]]]
|
166
|
-
A string or list of strings representing column names that will store the
|
167
|
-
output of predict and transform operations. The length of output_cols must
|
168
|
-
match the expected number of output columns from the specific estimator or
|
169
|
-
transformer class used.
|
170
|
-
If this parameter is not specified, output column names are derived by
|
171
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
172
|
-
column names work for estimator's predict() method, but output_cols must
|
173
|
-
be set explicitly for transformers.
|
174
|
-
|
175
|
-
sample_weight_col: Optional[str]
|
176
|
-
A string representing the column name containing the sample weights.
|
177
|
-
This argument is only required when working with weighted datasets.
|
178
|
-
|
179
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
180
|
-
A string or a list of strings indicating column names to be excluded from any
|
181
|
-
operations (such as train, transform, or inference). These specified column(s)
|
182
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
183
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
184
|
-
columns, like index columns, during training or inference.
|
185
|
-
|
186
|
-
drop_input_cols: Optional[bool], default=False
|
187
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
188
198
|
"""
|
189
199
|
|
190
200
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -217,7 +227,7 @@ class RANSACRegressor(BaseTransformer):
|
|
217
227
|
self.set_passthrough_cols(passthrough_cols)
|
218
228
|
self.set_drop_input_cols(drop_input_cols)
|
219
229
|
self.set_sample_weight_col(sample_weight_col)
|
220
|
-
deps = set(
|
230
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
221
231
|
deps = deps | gather_dependencies(estimator)
|
222
232
|
self._deps = list(deps)
|
223
233
|
estimator = transform_snowml_obj_to_sklearn_obj(estimator)
|
@@ -237,13 +247,14 @@ class RANSACRegressor(BaseTransformer):
|
|
237
247
|
args=init_args,
|
238
248
|
klass=sklearn.linear_model.RANSACRegressor
|
239
249
|
)
|
240
|
-
self._sklearn_object = sklearn.linear_model.RANSACRegressor(
|
250
|
+
self._sklearn_object: Any = sklearn.linear_model.RANSACRegressor(
|
241
251
|
**cleaned_up_init_args,
|
242
252
|
)
|
243
253
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
244
254
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
245
255
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
246
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RANSACRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
256
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=RANSACRegressor.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
257
|
+
self._autogenerated = True
|
247
258
|
|
248
259
|
def _get_rand_id(self) -> str:
|
249
260
|
"""
|
@@ -299,54 +310,48 @@ class RANSACRegressor(BaseTransformer):
|
|
299
310
|
self
|
300
311
|
"""
|
301
312
|
self._infer_input_output_cols(dataset)
|
302
|
-
if isinstance(dataset,
|
303
|
-
|
304
|
-
|
305
|
-
|
306
|
-
|
307
|
-
|
308
|
-
self.
|
309
|
-
|
310
|
-
|
311
|
-
|
312
|
-
|
313
|
-
|
314
|
-
|
315
|
-
|
316
|
-
|
317
|
-
|
313
|
+
if isinstance(dataset, DataFrame):
|
314
|
+
session = dataset._session
|
315
|
+
assert session is not None # keep mypy happy
|
316
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
317
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
318
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
319
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
320
|
+
|
321
|
+
# Specify input columns so column pruning will be enforced
|
322
|
+
selected_cols = self._get_active_columns()
|
323
|
+
if len(selected_cols) > 0:
|
324
|
+
dataset = dataset.select(selected_cols)
|
325
|
+
|
326
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
327
|
+
|
328
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
329
|
+
if SNOWML_SPROC_ENV in os.environ:
|
330
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
331
|
+
project=_PROJECT,
|
332
|
+
subproject=_SUBPROJECT,
|
333
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RANSACRegressor.__class__.__name__),
|
334
|
+
api_calls=[Session.call],
|
335
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
336
|
+
)
|
337
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
338
|
+
pd_df.columns = dataset.columns
|
339
|
+
dataset = pd_df
|
340
|
+
|
341
|
+
model_trainer = ModelTrainerBuilder.build(
|
342
|
+
estimator=self._sklearn_object,
|
343
|
+
dataset=dataset,
|
344
|
+
input_cols=self.input_cols,
|
345
|
+
label_cols=self.label_cols,
|
346
|
+
sample_weight_col=self.sample_weight_col,
|
347
|
+
autogenerated=self._autogenerated,
|
348
|
+
subproject=_SUBPROJECT
|
349
|
+
)
|
350
|
+
self._sklearn_object = model_trainer.train()
|
318
351
|
self._is_fitted = True
|
319
352
|
self._get_model_signatures(dataset)
|
320
353
|
return self
|
321
354
|
|
322
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
323
|
-
session = dataset._session
|
324
|
-
assert session is not None # keep mypy happy
|
325
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
326
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
327
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
328
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
329
|
-
|
330
|
-
# Specify input columns so column pruning will be enforced
|
331
|
-
selected_cols = self._get_active_columns()
|
332
|
-
if len(selected_cols) > 0:
|
333
|
-
dataset = dataset.select(selected_cols)
|
334
|
-
|
335
|
-
estimator = self._sklearn_object
|
336
|
-
assert estimator is not None # Keep mypy happy
|
337
|
-
|
338
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
339
|
-
|
340
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
341
|
-
dataset,
|
342
|
-
session,
|
343
|
-
estimator,
|
344
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
345
|
-
self.input_cols,
|
346
|
-
self.label_cols,
|
347
|
-
self.sample_weight_col,
|
348
|
-
)
|
349
|
-
|
350
355
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
351
356
|
if self._drop_input_cols:
|
352
357
|
return []
|
@@ -534,11 +539,6 @@ class RANSACRegressor(BaseTransformer):
|
|
534
539
|
subproject=_SUBPROJECT,
|
535
540
|
custom_tags=dict([("autogen", True)]),
|
536
541
|
)
|
537
|
-
@telemetry.add_stmt_params_to_df(
|
538
|
-
project=_PROJECT,
|
539
|
-
subproject=_SUBPROJECT,
|
540
|
-
custom_tags=dict([("autogen", True)]),
|
541
|
-
)
|
542
542
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
543
543
|
"""Predict using the estimated model
|
544
544
|
For more details on this function, see [sklearn.linear_model.RANSACRegressor.predict]
|
@@ -592,11 +592,6 @@ class RANSACRegressor(BaseTransformer):
|
|
592
592
|
subproject=_SUBPROJECT,
|
593
593
|
custom_tags=dict([("autogen", True)]),
|
594
594
|
)
|
595
|
-
@telemetry.add_stmt_params_to_df(
|
596
|
-
project=_PROJECT,
|
597
|
-
subproject=_SUBPROJECT,
|
598
|
-
custom_tags=dict([("autogen", True)]),
|
599
|
-
)
|
600
595
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
601
596
|
"""Method not supported for this class.
|
602
597
|
|
@@ -653,7 +648,8 @@ class RANSACRegressor(BaseTransformer):
|
|
653
648
|
if False:
|
654
649
|
self.fit(dataset)
|
655
650
|
assert self._sklearn_object is not None
|
656
|
-
|
651
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
652
|
+
return labels
|
657
653
|
else:
|
658
654
|
raise NotImplementedError
|
659
655
|
|
@@ -689,6 +685,7 @@ class RANSACRegressor(BaseTransformer):
|
|
689
685
|
output_cols = []
|
690
686
|
|
691
687
|
# Make sure column names are valid snowflake identifiers.
|
688
|
+
assert output_cols is not None # Make MyPy happy
|
692
689
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
693
690
|
|
694
691
|
return rv
|
@@ -699,11 +696,6 @@ class RANSACRegressor(BaseTransformer):
|
|
699
696
|
subproject=_SUBPROJECT,
|
700
697
|
custom_tags=dict([("autogen", True)]),
|
701
698
|
)
|
702
|
-
@telemetry.add_stmt_params_to_df(
|
703
|
-
project=_PROJECT,
|
704
|
-
subproject=_SUBPROJECT,
|
705
|
-
custom_tags=dict([("autogen", True)]),
|
706
|
-
)
|
707
699
|
def predict_proba(
|
708
700
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
709
701
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -744,11 +736,6 @@ class RANSACRegressor(BaseTransformer):
|
|
744
736
|
subproject=_SUBPROJECT,
|
745
737
|
custom_tags=dict([("autogen", True)]),
|
746
738
|
)
|
747
|
-
@telemetry.add_stmt_params_to_df(
|
748
|
-
project=_PROJECT,
|
749
|
-
subproject=_SUBPROJECT,
|
750
|
-
custom_tags=dict([("autogen", True)]),
|
751
|
-
)
|
752
739
|
def predict_log_proba(
|
753
740
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
754
741
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -785,16 +772,6 @@ class RANSACRegressor(BaseTransformer):
|
|
785
772
|
return output_df
|
786
773
|
|
787
774
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
788
|
-
@telemetry.send_api_usage_telemetry(
|
789
|
-
project=_PROJECT,
|
790
|
-
subproject=_SUBPROJECT,
|
791
|
-
custom_tags=dict([("autogen", True)]),
|
792
|
-
)
|
793
|
-
@telemetry.add_stmt_params_to_df(
|
794
|
-
project=_PROJECT,
|
795
|
-
subproject=_SUBPROJECT,
|
796
|
-
custom_tags=dict([("autogen", True)]),
|
797
|
-
)
|
798
775
|
def decision_function(
|
799
776
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
800
777
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -895,11 +872,6 @@ class RANSACRegressor(BaseTransformer):
|
|
895
872
|
subproject=_SUBPROJECT,
|
896
873
|
custom_tags=dict([("autogen", True)]),
|
897
874
|
)
|
898
|
-
@telemetry.add_stmt_params_to_df(
|
899
|
-
project=_PROJECT,
|
900
|
-
subproject=_SUBPROJECT,
|
901
|
-
custom_tags=dict([("autogen", True)]),
|
902
|
-
)
|
903
875
|
def kneighbors(
|
904
876
|
self,
|
905
877
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -959,9 +931,9 @@ class RANSACRegressor(BaseTransformer):
|
|
959
931
|
# For classifier, the type of predict is the same as the type of label
|
960
932
|
if self._sklearn_object._estimator_type == 'classifier':
|
961
933
|
# label columns is the desired type for output
|
962
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
934
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
963
935
|
# rename the output columns
|
964
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
936
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
965
937
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
966
938
|
([] if self._drop_input_cols else inputs)
|
967
939
|
+ outputs)
|