snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (224) hide show
  1. snowflake/cortex/_complete.py +1 -1
  2. snowflake/cortex/_extract_answer.py +1 -1
  3. snowflake/cortex/_sentiment.py +1 -1
  4. snowflake/cortex/_summarize.py +1 -1
  5. snowflake/cortex/_translate.py +1 -1
  6. snowflake/ml/_internal/env_utils.py +68 -6
  7. snowflake/ml/_internal/file_utils.py +34 -4
  8. snowflake/ml/_internal/telemetry.py +79 -91
  9. snowflake/ml/_internal/utils/retryable_http.py +16 -4
  10. snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
  11. snowflake/ml/dataset/dataset.py +1 -1
  12. snowflake/ml/model/_api.py +21 -14
  13. snowflake/ml/model/_client/model/model_impl.py +176 -0
  14. snowflake/ml/model/_client/model/model_method_info.py +19 -0
  15. snowflake/ml/model/_client/model/model_version_impl.py +291 -0
  16. snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
  17. snowflake/ml/model/_client/ops/model_ops.py +308 -0
  18. snowflake/ml/model/_client/sql/model.py +75 -0
  19. snowflake/ml/model/_client/sql/model_version.py +213 -0
  20. snowflake/ml/model/_client/sql/stage.py +40 -0
  21. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
  22. snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
  23. snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
  24. snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
  25. snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
  26. snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
  27. snowflake/ml/model/_model_composer/model_composer.py +31 -9
  28. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
  29. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
  30. snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
  31. snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
  32. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
  33. snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
  34. snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
  35. snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
  36. snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
  37. snowflake/ml/model/model_signature.py +108 -53
  38. snowflake/ml/model/type_hints.py +1 -0
  39. snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
  40. snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
  41. snowflake/ml/modeling/_internal/model_specifications.py +146 -0
  42. snowflake/ml/modeling/_internal/model_trainer.py +13 -0
  43. snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
  44. snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
  45. snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
  46. snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
  47. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
  48. snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
  49. snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
  50. snowflake/ml/modeling/cluster/birch.py +94 -124
  51. snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
  52. snowflake/ml/modeling/cluster/dbscan.py +94 -124
  53. snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
  54. snowflake/ml/modeling/cluster/k_means.py +93 -124
  55. snowflake/ml/modeling/cluster/mean_shift.py +94 -124
  56. snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
  57. snowflake/ml/modeling/cluster/optics.py +94 -124
  58. snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
  59. snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
  60. snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
  61. snowflake/ml/modeling/compose/column_transformer.py +94 -124
  62. snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
  63. snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
  64. snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
  65. snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
  66. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
  67. snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
  68. snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
  69. snowflake/ml/modeling/covariance/oas.py +80 -110
  70. snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
  71. snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
  72. snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
  73. snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
  74. snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
  75. snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
  76. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
  77. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
  78. snowflake/ml/modeling/decomposition/pca.py +94 -124
  79. snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
  80. snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
  81. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
  82. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
  83. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
  84. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
  85. snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
  86. snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
  87. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
  88. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
  89. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
  90. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
  91. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
  92. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
  93. snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
  94. snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
  95. snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
  96. snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
  97. snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
  98. snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
  99. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
  100. snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
  101. snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
  102. snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
  103. snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
  104. snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
  105. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
  106. snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
  107. snowflake/ml/modeling/framework/base.py +2 -2
  108. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
  109. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
  110. snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
  111. snowflake/ml/modeling/impute/knn_imputer.py +94 -124
  112. snowflake/ml/modeling/impute/missing_indicator.py +94 -124
  113. snowflake/ml/modeling/impute/simple_imputer.py +1 -1
  114. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
  115. snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
  116. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
  117. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
  118. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
  119. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
  120. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
  121. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
  122. snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
  123. snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
  124. snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
  125. snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
  126. snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
  127. snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
  128. snowflake/ml/modeling/linear_model/lars.py +96 -124
  129. snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
  130. snowflake/ml/modeling/linear_model/lasso.py +96 -124
  131. snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
  132. snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
  133. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
  134. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
  135. snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
  136. snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
  137. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
  138. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
  139. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
  140. snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
  141. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
  142. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
  143. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
  144. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
  145. snowflake/ml/modeling/linear_model/perceptron.py +95 -124
  146. snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
  147. snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
  148. snowflake/ml/modeling/linear_model/ridge.py +96 -124
  149. snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
  150. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
  151. snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
  152. snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
  153. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
  154. snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
  155. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
  156. snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
  157. snowflake/ml/modeling/manifold/isomap.py +94 -124
  158. snowflake/ml/modeling/manifold/mds.py +94 -124
  159. snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
  160. snowflake/ml/modeling/manifold/tsne.py +94 -124
  161. snowflake/ml/modeling/metrics/classification.py +187 -52
  162. snowflake/ml/modeling/metrics/correlation.py +4 -2
  163. snowflake/ml/modeling/metrics/covariance.py +7 -4
  164. snowflake/ml/modeling/metrics/ranking.py +32 -16
  165. snowflake/ml/modeling/metrics/regression.py +60 -32
  166. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
  167. snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
  168. snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
  169. snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
  170. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
  171. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
  172. snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
  173. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
  174. snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
  175. snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
  176. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
  177. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
  178. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
  179. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
  180. snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
  181. snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
  182. snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
  183. snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
  184. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
  185. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
  186. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
  187. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
  188. snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
  189. snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
  190. snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
  191. snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
  192. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
  193. snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
  194. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
  195. snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
  196. snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
  197. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
  198. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
  199. snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
  200. snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
  201. snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
  202. snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
  203. snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
  204. snowflake/ml/modeling/svm/linear_svc.py +96 -124
  205. snowflake/ml/modeling/svm/linear_svr.py +96 -124
  206. snowflake/ml/modeling/svm/nu_svc.py +96 -124
  207. snowflake/ml/modeling/svm/nu_svr.py +96 -124
  208. snowflake/ml/modeling/svm/svc.py +96 -124
  209. snowflake/ml/modeling/svm/svr.py +96 -124
  210. snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
  211. snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
  212. snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
  213. snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
  214. snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
  215. snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
  216. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
  217. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
  218. snowflake/ml/registry/model_registry.py +2 -0
  219. snowflake/ml/registry/registry.py +215 -0
  220. snowflake/ml/version.py +1 -1
  221. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
  222. snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
  223. snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
  224. {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
22
22
  from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
23
23
  from snowflake.ml._internal import telemetry
24
24
  from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
25
+ from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
25
26
  from snowflake.ml._internal.utils import pkg_version_utils, identifier
26
- from snowflake.snowpark import DataFrame
27
+ from snowflake.snowpark import DataFrame, Session
27
28
  from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
28
29
  from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
30
+ from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
31
+ from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
29
32
  from snowflake.ml.modeling._internal.estimator_utils import (
30
33
  gather_dependencies,
31
34
  original_estimator_has_callable,
32
35
  transform_snowml_obj_to_sklearn_obj,
33
36
  validate_sklearn_args,
34
37
  )
35
- from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
36
38
  from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
37
39
 
38
40
  from snowflake.ml.model.model_signature import (
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
52
54
  _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("sklearn.", "").split("_")])
53
55
 
54
56
 
55
-
56
57
  class ShrunkCovariance(BaseTransformer):
57
58
  r"""Covariance estimator with shrinkage
58
59
  For more details on this class, see [sklearn.covariance.ShrunkCovariance]
@@ -60,54 +61,61 @@ class ShrunkCovariance(BaseTransformer):
60
61
 
61
62
  Parameters
62
63
  ----------
63
- store_precision: bool, default=True
64
- Specify if the estimated precision is stored.
65
-
66
- assume_centered: bool, default=False
67
- If True, data will not be centered before computation.
68
- Useful when working with data whose mean is almost, but not exactly
69
- zero.
70
- If False, data will be centered before computation.
71
-
72
- shrinkage: float, default=0.1
73
- Coefficient in the convex combination used for the computation
74
- of the shrunk estimate. Range is [0, 1].
75
64
 
76
65
  input_cols: Optional[Union[str, List[str]]]
77
66
  A string or list of strings representing column names that contain features.
78
67
  If this parameter is not specified, all columns in the input DataFrame except
79
68
  the columns specified by label_cols, sample_weight_col, and passthrough_cols
80
- parameters are considered input columns.
81
-
69
+ parameters are considered input columns. Input columns can also be set after
70
+ initialization with the `set_input_cols` method.
71
+
82
72
  label_cols: Optional[Union[str, List[str]]]
83
- A string or list of strings representing column names that contain labels.
84
- This is a required param for estimators, as there is no way to infer these
85
- columns. If this parameter is not specified, then object is fitted without
86
- labels (like a transformer).
87
-
73
+ This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
74
+
88
75
  output_cols: Optional[Union[str, List[str]]]
89
76
  A string or list of strings representing column names that will store the
90
77
  output of predict and transform operations. The length of output_cols must
91
- match the expected number of output columns from the specific estimator or
78
+ match the expected number of output columns from the specific predictor or
92
79
  transformer class used.
93
- If this parameter is not specified, output column names are derived by
94
- adding an OUTPUT_ prefix to the label column names. These inferred output
95
- column names work for estimator's predict() method, but output_cols must
96
- be set explicitly for transformers.
80
+ If you omit this parameter, output column names are derived by adding an
81
+ OUTPUT_ prefix to the label column names for supervised estimators, or
82
+ OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
83
+ work for predictors, but output_cols must be set explicitly for transformers.
84
+ In general, explicitly specifying output column names is clearer, especially
85
+ if you don’t specify the input column names.
86
+ To transform in place, pass the same names for input_cols and output_cols.
87
+ be set explicitly for transformers. Output columns can also be set after
88
+ initialization with the `set_output_cols` method.
97
89
 
98
90
  sample_weight_col: Optional[str]
99
91
  A string representing the column name containing the sample weights.
100
- This argument is only required when working with weighted datasets.
92
+ This argument is only required when working with weighted datasets. Sample
93
+ weight column can also be set after initialization with the
94
+ `set_sample_weight_col` method.
101
95
 
102
96
  passthrough_cols: Optional[Union[str, List[str]]]
103
97
  A string or a list of strings indicating column names to be excluded from any
104
98
  operations (such as train, transform, or inference). These specified column(s)
105
99
  will remain untouched throughout the process. This option is helpful in scenarios
106
100
  requiring automatic input_cols inference, but need to avoid using specific
107
- columns, like index columns, during training or inference.
101
+ columns, like index columns, during training or inference. Passthrough columns
102
+ can also be set after initialization with the `set_passthrough_cols` method.
108
103
 
109
104
  drop_input_cols: Optional[bool], default=False
110
105
  If set, the response of predict(), transform() methods will not contain input columns.
106
+
107
+ store_precision: bool, default=True
108
+ Specify if the estimated precision is stored.
109
+
110
+ assume_centered: bool, default=False
111
+ If True, data will not be centered before computation.
112
+ Useful when working with data whose mean is almost, but not exactly
113
+ zero.
114
+ If False, data will be centered before computation.
115
+
116
+ shrinkage: float, default=0.1
117
+ Coefficient in the convex combination used for the computation
118
+ of the shrunk estimate. Range is [0, 1].
111
119
  """
112
120
 
113
121
  def __init__( # type: ignore[no-untyped-def]
@@ -131,7 +139,7 @@ class ShrunkCovariance(BaseTransformer):
131
139
  self.set_passthrough_cols(passthrough_cols)
132
140
  self.set_drop_input_cols(drop_input_cols)
133
141
  self.set_sample_weight_col(sample_weight_col)
134
- deps = set(SklearnWrapperProvider().dependencies)
142
+ deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
135
143
 
136
144
  self._deps = list(deps)
137
145
 
@@ -142,13 +150,14 @@ class ShrunkCovariance(BaseTransformer):
142
150
  args=init_args,
143
151
  klass=sklearn.covariance.ShrunkCovariance
144
152
  )
145
- self._sklearn_object = sklearn.covariance.ShrunkCovariance(
153
+ self._sklearn_object: Any = sklearn.covariance.ShrunkCovariance(
146
154
  **cleaned_up_init_args,
147
155
  )
148
156
  self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
149
157
  # If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
150
158
  self._snowpark_cols: Optional[List[str]] = self.input_cols
151
- self._handlers: FitPredictHandlers = HandlersImpl(class_name=ShrunkCovariance.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True, wrapper_provider=SklearnWrapperProvider())
159
+ self._handlers: FitPredictHandlers = HandlersImpl(class_name=ShrunkCovariance.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
160
+ self._autogenerated = True
152
161
 
153
162
  def _get_rand_id(self) -> str:
154
163
  """
@@ -204,54 +213,48 @@ class ShrunkCovariance(BaseTransformer):
204
213
  self
205
214
  """
206
215
  self._infer_input_output_cols(dataset)
207
- if isinstance(dataset, pd.DataFrame):
208
- assert self._sklearn_object is not None # keep mypy happy
209
- self._sklearn_object = self._handlers.fit_pandas(
210
- dataset,
211
- self._sklearn_object,
212
- self.input_cols,
213
- self.label_cols,
214
- self.sample_weight_col
215
- )
216
- elif isinstance(dataset, DataFrame):
217
- self._fit_snowpark(dataset)
218
- else:
219
- raise TypeError(
220
- f"Unexpected dataset type: {type(dataset)}."
221
- "Supported dataset types: snowpark.DataFrame, pandas.DataFrame."
222
- )
216
+ if isinstance(dataset, DataFrame):
217
+ session = dataset._session
218
+ assert session is not None # keep mypy happy
219
+ # Validate that key package version in user workspace are supported in snowflake conda channel
220
+ # If customer doesn't have package in conda channel, replace the ones have the closest versions
221
+ self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
222
+ pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
223
+
224
+ # Specify input columns so column pruning will be enforced
225
+ selected_cols = self._get_active_columns()
226
+ if len(selected_cols) > 0:
227
+ dataset = dataset.select(selected_cols)
228
+
229
+ self._snowpark_cols = dataset.select(self.input_cols).columns
230
+
231
+ # If we are already in a stored procedure, no need to kick off another one.
232
+ if SNOWML_SPROC_ENV in os.environ:
233
+ statement_params = telemetry.get_function_usage_statement_params(
234
+ project=_PROJECT,
235
+ subproject=_SUBPROJECT,
236
+ function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ShrunkCovariance.__class__.__name__),
237
+ api_calls=[Session.call],
238
+ custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
239
+ )
240
+ pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
241
+ pd_df.columns = dataset.columns
242
+ dataset = pd_df
243
+
244
+ model_trainer = ModelTrainerBuilder.build(
245
+ estimator=self._sklearn_object,
246
+ dataset=dataset,
247
+ input_cols=self.input_cols,
248
+ label_cols=self.label_cols,
249
+ sample_weight_col=self.sample_weight_col,
250
+ autogenerated=self._autogenerated,
251
+ subproject=_SUBPROJECT
252
+ )
253
+ self._sklearn_object = model_trainer.train()
223
254
  self._is_fitted = True
224
255
  self._get_model_signatures(dataset)
225
256
  return self
226
257
 
227
- def _fit_snowpark(self, dataset: DataFrame) -> None:
228
- session = dataset._session
229
- assert session is not None # keep mypy happy
230
- # Validate that key package version in user workspace are supported in snowflake conda channel
231
- # If customer doesn't have package in conda channel, replace the ones have the closest versions
232
- self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
233
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
234
-
235
- # Specify input columns so column pruning will be enforced
236
- selected_cols = self._get_active_columns()
237
- if len(selected_cols) > 0:
238
- dataset = dataset.select(selected_cols)
239
-
240
- estimator = self._sklearn_object
241
- assert estimator is not None # Keep mypy happy
242
-
243
- self._snowpark_cols = dataset.select(self.input_cols).columns
244
-
245
- self._sklearn_object = self._handlers.fit_snowpark(
246
- dataset,
247
- session,
248
- estimator,
249
- ["snowflake-snowpark-python"] + self._get_dependencies(),
250
- self.input_cols,
251
- self.label_cols,
252
- self.sample_weight_col,
253
- )
254
-
255
258
  def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
256
259
  if self._drop_input_cols:
257
260
  return []
@@ -439,11 +442,6 @@ class ShrunkCovariance(BaseTransformer):
439
442
  subproject=_SUBPROJECT,
440
443
  custom_tags=dict([("autogen", True)]),
441
444
  )
442
- @telemetry.add_stmt_params_to_df(
443
- project=_PROJECT,
444
- subproject=_SUBPROJECT,
445
- custom_tags=dict([("autogen", True)]),
446
- )
447
445
  def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
448
446
  """Method not supported for this class.
449
447
 
@@ -495,11 +493,6 @@ class ShrunkCovariance(BaseTransformer):
495
493
  subproject=_SUBPROJECT,
496
494
  custom_tags=dict([("autogen", True)]),
497
495
  )
498
- @telemetry.add_stmt_params_to_df(
499
- project=_PROJECT,
500
- subproject=_SUBPROJECT,
501
- custom_tags=dict([("autogen", True)]),
502
- )
503
496
  def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
504
497
  """Method not supported for this class.
505
498
 
@@ -556,7 +549,8 @@ class ShrunkCovariance(BaseTransformer):
556
549
  if False:
557
550
  self.fit(dataset)
558
551
  assert self._sklearn_object is not None
559
- return self._sklearn_object.labels_
552
+ labels : npt.NDArray[Any] = self._sklearn_object.labels_
553
+ return labels
560
554
  else:
561
555
  raise NotImplementedError
562
556
 
@@ -592,6 +586,7 @@ class ShrunkCovariance(BaseTransformer):
592
586
  output_cols = []
593
587
 
594
588
  # Make sure column names are valid snowflake identifiers.
589
+ assert output_cols is not None # Make MyPy happy
595
590
  rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
596
591
 
597
592
  return rv
@@ -602,11 +597,6 @@ class ShrunkCovariance(BaseTransformer):
602
597
  subproject=_SUBPROJECT,
603
598
  custom_tags=dict([("autogen", True)]),
604
599
  )
605
- @telemetry.add_stmt_params_to_df(
606
- project=_PROJECT,
607
- subproject=_SUBPROJECT,
608
- custom_tags=dict([("autogen", True)]),
609
- )
610
600
  def predict_proba(
611
601
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
612
602
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -647,11 +637,6 @@ class ShrunkCovariance(BaseTransformer):
647
637
  subproject=_SUBPROJECT,
648
638
  custom_tags=dict([("autogen", True)]),
649
639
  )
650
- @telemetry.add_stmt_params_to_df(
651
- project=_PROJECT,
652
- subproject=_SUBPROJECT,
653
- custom_tags=dict([("autogen", True)]),
654
- )
655
640
  def predict_log_proba(
656
641
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
657
642
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -688,16 +673,6 @@ class ShrunkCovariance(BaseTransformer):
688
673
  return output_df
689
674
 
690
675
  @available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
691
- @telemetry.send_api_usage_telemetry(
692
- project=_PROJECT,
693
- subproject=_SUBPROJECT,
694
- custom_tags=dict([("autogen", True)]),
695
- )
696
- @telemetry.add_stmt_params_to_df(
697
- project=_PROJECT,
698
- subproject=_SUBPROJECT,
699
- custom_tags=dict([("autogen", True)]),
700
- )
701
676
  def decision_function(
702
677
  self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
703
678
  ) -> Union[DataFrame, pd.DataFrame]:
@@ -798,11 +773,6 @@ class ShrunkCovariance(BaseTransformer):
798
773
  subproject=_SUBPROJECT,
799
774
  custom_tags=dict([("autogen", True)]),
800
775
  )
801
- @telemetry.add_stmt_params_to_df(
802
- project=_PROJECT,
803
- subproject=_SUBPROJECT,
804
- custom_tags=dict([("autogen", True)]),
805
- )
806
776
  def kneighbors(
807
777
  self,
808
778
  dataset: Union[DataFrame, pd.DataFrame],
@@ -862,9 +832,9 @@ class ShrunkCovariance(BaseTransformer):
862
832
  # For classifier, the type of predict is the same as the type of label
863
833
  if self._sklearn_object._estimator_type == 'classifier':
864
834
  # label columns is the desired type for output
865
- outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
835
+ outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
866
836
  # rename the output columns
867
- outputs = model_signature_utils.rename_features(outputs, self.output_cols)
837
+ outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
868
838
  self._model_signature_dict["predict"] = ModelSignature(inputs,
869
839
  ([] if self._drop_input_cols else inputs)
870
840
  + outputs)