snowflake-ml-python 1.1.1__py3-none-any.whl → 1.1.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/cortex/_complete.py +1 -1
- snowflake/cortex/_extract_answer.py +1 -1
- snowflake/cortex/_sentiment.py +1 -1
- snowflake/cortex/_summarize.py +1 -1
- snowflake/cortex/_translate.py +1 -1
- snowflake/ml/_internal/env_utils.py +68 -6
- snowflake/ml/_internal/file_utils.py +34 -4
- snowflake/ml/_internal/telemetry.py +79 -91
- snowflake/ml/_internal/utils/retryable_http.py +16 -4
- snowflake/ml/_internal/utils/spcs_attribution_utils.py +122 -0
- snowflake/ml/dataset/dataset.py +1 -1
- snowflake/ml/model/_api.py +21 -14
- snowflake/ml/model/_client/model/model_impl.py +176 -0
- snowflake/ml/model/_client/model/model_method_info.py +19 -0
- snowflake/ml/model/_client/model/model_version_impl.py +291 -0
- snowflake/ml/model/_client/ops/metadata_ops.py +107 -0
- snowflake/ml/model/_client/ops/model_ops.py +308 -0
- snowflake/ml/model/_client/sql/model.py +75 -0
- snowflake/ml/model/_client/sql/model_version.py +213 -0
- snowflake/ml/model/_client/sql/stage.py +40 -0
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +3 -4
- snowflake/ml/model/_deploy_client/image_builds/templates/image_build_job_spec_template +24 -8
- snowflake/ml/model/_deploy_client/image_builds/templates/kaniko_shell_script_template +23 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +14 -2
- snowflake/ml/model/_deploy_client/utils/constants.py +1 -0
- snowflake/ml/model/_deploy_client/warehouse/deploy.py +2 -2
- snowflake/ml/model/_model_composer/model_composer.py +31 -9
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +25 -10
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +2 -2
- snowflake/ml/model/_model_composer/model_method/infer_function.py_template +2 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +34 -3
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +1 -1
- snowflake/ml/model/_packager/model_handlers/huggingface_pipeline.py +3 -1
- snowflake/ml/model/_packager/model_handlers/snowmlmodel.py +10 -28
- snowflake/ml/model/_packager/model_meta/model_meta.py +18 -16
- snowflake/ml/model/_signatures/snowpark_handler.py +1 -1
- snowflake/ml/model/model_signature.py +108 -53
- snowflake/ml/model/type_hints.py +1 -0
- snowflake/ml/modeling/_internal/distributed_hpo_trainer.py +554 -0
- snowflake/ml/modeling/_internal/estimator_protocols.py +1 -60
- snowflake/ml/modeling/_internal/model_specifications.py +146 -0
- snowflake/ml/modeling/_internal/model_trainer.py +13 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +78 -0
- snowflake/ml/modeling/_internal/pandas_trainer.py +54 -0
- snowflake/ml/modeling/_internal/snowpark_handlers.py +6 -760
- snowflake/ml/modeling/_internal/snowpark_trainer.py +331 -0
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +96 -124
- snowflake/ml/modeling/cluster/affinity_propagation.py +94 -124
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +94 -124
- snowflake/ml/modeling/cluster/birch.py +94 -124
- snowflake/ml/modeling/cluster/bisecting_k_means.py +94 -124
- snowflake/ml/modeling/cluster/dbscan.py +94 -124
- snowflake/ml/modeling/cluster/feature_agglomeration.py +94 -124
- snowflake/ml/modeling/cluster/k_means.py +93 -124
- snowflake/ml/modeling/cluster/mean_shift.py +94 -124
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +93 -124
- snowflake/ml/modeling/cluster/optics.py +94 -124
- snowflake/ml/modeling/cluster/spectral_biclustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_clustering.py +94 -124
- snowflake/ml/modeling/cluster/spectral_coclustering.py +94 -124
- snowflake/ml/modeling/compose/column_transformer.py +94 -124
- snowflake/ml/modeling/compose/transformed_target_regressor.py +96 -124
- snowflake/ml/modeling/covariance/elliptic_envelope.py +94 -124
- snowflake/ml/modeling/covariance/empirical_covariance.py +80 -110
- snowflake/ml/modeling/covariance/graphical_lasso.py +94 -124
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +94 -124
- snowflake/ml/modeling/covariance/ledoit_wolf.py +85 -115
- snowflake/ml/modeling/covariance/min_cov_det.py +94 -124
- snowflake/ml/modeling/covariance/oas.py +80 -110
- snowflake/ml/modeling/covariance/shrunk_covariance.py +84 -114
- snowflake/ml/modeling/decomposition/dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/factor_analysis.py +94 -124
- snowflake/ml/modeling/decomposition/fast_ica.py +94 -124
- snowflake/ml/modeling/decomposition/incremental_pca.py +94 -124
- snowflake/ml/modeling/decomposition/kernel_pca.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +94 -124
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/pca.py +94 -124
- snowflake/ml/modeling/decomposition/sparse_pca.py +94 -124
- snowflake/ml/modeling/decomposition/truncated_svd.py +94 -124
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +96 -124
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +91 -119
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/bagging_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/isolation_forest.py +94 -124
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/stacking_regressor.py +96 -124
- snowflake/ml/modeling/ensemble/voting_classifier.py +96 -124
- snowflake/ml/modeling/ensemble/voting_regressor.py +91 -119
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +82 -110
- snowflake/ml/modeling/feature_selection/select_fdr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fpr.py +80 -108
- snowflake/ml/modeling/feature_selection/select_fwe.py +80 -108
- snowflake/ml/modeling/feature_selection/select_k_best.py +81 -109
- snowflake/ml/modeling/feature_selection/select_percentile.py +80 -108
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +94 -124
- snowflake/ml/modeling/feature_selection/variance_threshold.py +76 -106
- snowflake/ml/modeling/framework/base.py +2 -2
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +96 -124
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +96 -124
- snowflake/ml/modeling/impute/iterative_imputer.py +94 -124
- snowflake/ml/modeling/impute/knn_imputer.py +94 -124
- snowflake/ml/modeling/impute/missing_indicator.py +94 -124
- snowflake/ml/modeling/impute/simple_imputer.py +1 -1
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +77 -107
- snowflake/ml/modeling/kernel_approximation/nystroem.py +94 -124
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +94 -124
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +86 -116
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +84 -114
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +96 -124
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +71 -100
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +71 -100
- snowflake/ml/modeling/linear_model/ard_regression.py +96 -124
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/gamma_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/huber_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/lars.py +96 -124
- snowflake/ml/modeling/linear_model/lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +96 -124
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +96 -124
- snowflake/ml/modeling/linear_model/linear_regression.py +91 -119
- snowflake/ml/modeling/linear_model/logistic_regression.py +96 -124
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +96 -124
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +96 -124
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +95 -124
- snowflake/ml/modeling/linear_model/perceptron.py +95 -124
- snowflake/ml/modeling/linear_model/poisson_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ransac_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/ridge.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +96 -124
- snowflake/ml/modeling/linear_model/ridge_cv.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_classifier.py +96 -124
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +94 -124
- snowflake/ml/modeling/linear_model/sgd_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +96 -124
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +96 -124
- snowflake/ml/modeling/manifold/isomap.py +94 -124
- snowflake/ml/modeling/manifold/mds.py +94 -124
- snowflake/ml/modeling/manifold/spectral_embedding.py +94 -124
- snowflake/ml/modeling/manifold/tsne.py +94 -124
- snowflake/ml/modeling/metrics/classification.py +187 -52
- snowflake/ml/modeling/metrics/correlation.py +4 -2
- snowflake/ml/modeling/metrics/covariance.py +7 -4
- snowflake/ml/modeling/metrics/ranking.py +32 -16
- snowflake/ml/modeling/metrics/regression.py +60 -32
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +94 -124
- snowflake/ml/modeling/mixture/gaussian_mixture.py +94 -124
- snowflake/ml/modeling/model_selection/grid_search_cv.py +88 -138
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +90 -144
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +86 -114
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +93 -121
- snowflake/ml/modeling/multiclass/output_code_classifier.py +94 -122
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +96 -124
- snowflake/ml/modeling/naive_bayes/complement_nb.py +92 -120
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +79 -107
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +88 -116
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neighbors/kernel_density.py +94 -124
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +94 -124
- snowflake/ml/modeling/neighbors/nearest_centroid.py +89 -117
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +94 -124
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +96 -124
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +96 -124
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +94 -124
- snowflake/ml/modeling/neural_network/mlp_classifier.py +96 -124
- snowflake/ml/modeling/neural_network/mlp_regressor.py +96 -124
- snowflake/ml/modeling/parameters/disable_distributed_hpo.py +2 -6
- snowflake/ml/modeling/preprocessing/binarizer.py +14 -9
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +0 -4
- snowflake/ml/modeling/preprocessing/label_encoder.py +21 -13
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +20 -14
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +35 -19
- snowflake/ml/modeling/preprocessing/normalizer.py +6 -9
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +20 -13
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +25 -13
- snowflake/ml/modeling/preprocessing/polynomial_features.py +94 -124
- snowflake/ml/modeling/preprocessing/robust_scaler.py +28 -14
- snowflake/ml/modeling/preprocessing/standard_scaler.py +25 -13
- snowflake/ml/modeling/semi_supervised/label_propagation.py +96 -124
- snowflake/ml/modeling/semi_supervised/label_spreading.py +96 -124
- snowflake/ml/modeling/svm/linear_svc.py +96 -124
- snowflake/ml/modeling/svm/linear_svr.py +96 -124
- snowflake/ml/modeling/svm/nu_svc.py +96 -124
- snowflake/ml/modeling/svm/nu_svr.py +96 -124
- snowflake/ml/modeling/svm/svc.py +96 -124
- snowflake/ml/modeling/svm/svr.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/decision_tree_regressor.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_classifier.py +96 -124
- snowflake/ml/modeling/tree/extra_tree_regressor.py +96 -124
- snowflake/ml/modeling/xgboost/xgb_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgb_regressor.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +96 -125
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +96 -125
- snowflake/ml/registry/model_registry.py +2 -0
- snowflake/ml/registry/registry.py +215 -0
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/METADATA +21 -3
- snowflake_ml_python-1.1.2.dist-info/RECORD +347 -0
- snowflake_ml_python-1.1.1.dist-info/RECORD +0 -331
- {snowflake_ml_python-1.1.1.dist-info → snowflake_ml_python-1.1.2.dist-info}/WHEEL +0 -0
@@ -22,17 +22,19 @@ from sklearn.utils.metaestimators import available_if
|
|
22
22
|
from snowflake.ml.modeling.framework.base import BaseTransformer, _process_cols
|
23
23
|
from snowflake.ml._internal import telemetry
|
24
24
|
from snowflake.ml._internal.exceptions import error_codes, exceptions, modeling_error_messages
|
25
|
+
from snowflake.ml._internal.env_utils import SNOWML_SPROC_ENV
|
25
26
|
from snowflake.ml._internal.utils import pkg_version_utils, identifier
|
26
|
-
from snowflake.snowpark import DataFrame
|
27
|
+
from snowflake.snowpark import DataFrame, Session
|
27
28
|
from snowflake.snowpark._internal.type_utils import convert_sp_to_sf_type
|
28
29
|
from snowflake.ml.modeling._internal.snowpark_handlers import SnowparkHandlers as HandlersImpl
|
30
|
+
from snowflake.ml.modeling._internal.model_trainer_builder import ModelTrainerBuilder
|
31
|
+
from snowflake.ml.modeling._internal.model_trainer import ModelTrainer
|
29
32
|
from snowflake.ml.modeling._internal.estimator_utils import (
|
30
33
|
gather_dependencies,
|
31
34
|
original_estimator_has_callable,
|
32
35
|
transform_snowml_obj_to_sklearn_obj,
|
33
36
|
validate_sklearn_args,
|
34
37
|
)
|
35
|
-
from snowflake.ml.modeling._internal.snowpark_handlers import SklearnWrapperProvider
|
36
38
|
from snowflake.ml.modeling._internal.estimator_protocols import FitPredictHandlers
|
37
39
|
|
38
40
|
from snowflake.ml.model.model_signature import (
|
@@ -52,7 +54,6 @@ _PROJECT = "ModelDevelopment"
|
|
52
54
|
_SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("sklearn.", "").split("_")])
|
53
55
|
|
54
56
|
|
55
|
-
|
56
57
|
class MiniBatchDictionaryLearning(BaseTransformer):
|
57
58
|
r"""Mini-batch dictionary learning
|
58
59
|
For more details on this class, see [sklearn.decomposition.MiniBatchDictionaryLearning]
|
@@ -60,6 +61,49 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
60
61
|
|
61
62
|
Parameters
|
62
63
|
----------
|
64
|
+
|
65
|
+
input_cols: Optional[Union[str, List[str]]]
|
66
|
+
A string or list of strings representing column names that contain features.
|
67
|
+
If this parameter is not specified, all columns in the input DataFrame except
|
68
|
+
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
69
|
+
parameters are considered input columns. Input columns can also be set after
|
70
|
+
initialization with the `set_input_cols` method.
|
71
|
+
|
72
|
+
label_cols: Optional[Union[str, List[str]]]
|
73
|
+
This parameter is optional and will be ignored during fit. It is present here for API consistency by convention.
|
74
|
+
|
75
|
+
output_cols: Optional[Union[str, List[str]]]
|
76
|
+
A string or list of strings representing column names that will store the
|
77
|
+
output of predict and transform operations. The length of output_cols must
|
78
|
+
match the expected number of output columns from the specific predictor or
|
79
|
+
transformer class used.
|
80
|
+
If you omit this parameter, output column names are derived by adding an
|
81
|
+
OUTPUT_ prefix to the label column names for supervised estimators, or
|
82
|
+
OUTPUT_<IDX>for unsupervised estimators. These inferred output column names
|
83
|
+
work for predictors, but output_cols must be set explicitly for transformers.
|
84
|
+
In general, explicitly specifying output column names is clearer, especially
|
85
|
+
if you don’t specify the input column names.
|
86
|
+
To transform in place, pass the same names for input_cols and output_cols.
|
87
|
+
be set explicitly for transformers. Output columns can also be set after
|
88
|
+
initialization with the `set_output_cols` method.
|
89
|
+
|
90
|
+
sample_weight_col: Optional[str]
|
91
|
+
A string representing the column name containing the sample weights.
|
92
|
+
This argument is only required when working with weighted datasets. Sample
|
93
|
+
weight column can also be set after initialization with the
|
94
|
+
`set_sample_weight_col` method.
|
95
|
+
|
96
|
+
passthrough_cols: Optional[Union[str, List[str]]]
|
97
|
+
A string or a list of strings indicating column names to be excluded from any
|
98
|
+
operations (such as train, transform, or inference). These specified column(s)
|
99
|
+
will remain untouched throughout the process. This option is helpful in scenarios
|
100
|
+
requiring automatic input_cols inference, but need to avoid using specific
|
101
|
+
columns, like index columns, during training or inference. Passthrough columns
|
102
|
+
can also be set after initialization with the `set_passthrough_cols` method.
|
103
|
+
|
104
|
+
drop_input_cols: Optional[bool], default=False
|
105
|
+
If set, the response of predict(), transform() methods will not contain input columns.
|
106
|
+
|
63
107
|
n_components: int, default=None
|
64
108
|
Number of dictionary elements to extract.
|
65
109
|
|
@@ -167,42 +211,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
167
211
|
|
168
212
|
To disable convergence detection based on cost function, set
|
169
213
|
`max_no_improvement` to None.
|
170
|
-
|
171
|
-
input_cols: Optional[Union[str, List[str]]]
|
172
|
-
A string or list of strings representing column names that contain features.
|
173
|
-
If this parameter is not specified, all columns in the input DataFrame except
|
174
|
-
the columns specified by label_cols, sample_weight_col, and passthrough_cols
|
175
|
-
parameters are considered input columns.
|
176
|
-
|
177
|
-
label_cols: Optional[Union[str, List[str]]]
|
178
|
-
A string or list of strings representing column names that contain labels.
|
179
|
-
This is a required param for estimators, as there is no way to infer these
|
180
|
-
columns. If this parameter is not specified, then object is fitted without
|
181
|
-
labels (like a transformer).
|
182
|
-
|
183
|
-
output_cols: Optional[Union[str, List[str]]]
|
184
|
-
A string or list of strings representing column names that will store the
|
185
|
-
output of predict and transform operations. The length of output_cols must
|
186
|
-
match the expected number of output columns from the specific estimator or
|
187
|
-
transformer class used.
|
188
|
-
If this parameter is not specified, output column names are derived by
|
189
|
-
adding an OUTPUT_ prefix to the label column names. These inferred output
|
190
|
-
column names work for estimator's predict() method, but output_cols must
|
191
|
-
be set explicitly for transformers.
|
192
|
-
|
193
|
-
sample_weight_col: Optional[str]
|
194
|
-
A string representing the column name containing the sample weights.
|
195
|
-
This argument is only required when working with weighted datasets.
|
196
|
-
|
197
|
-
passthrough_cols: Optional[Union[str, List[str]]]
|
198
|
-
A string or a list of strings indicating column names to be excluded from any
|
199
|
-
operations (such as train, transform, or inference). These specified column(s)
|
200
|
-
will remain untouched throughout the process. This option is helpful in scenarios
|
201
|
-
requiring automatic input_cols inference, but need to avoid using specific
|
202
|
-
columns, like index columns, during training or inference.
|
203
|
-
|
204
|
-
drop_input_cols: Optional[bool], default=False
|
205
|
-
If set, the response of predict(), transform() methods will not contain input columns.
|
206
214
|
"""
|
207
215
|
|
208
216
|
def __init__( # type: ignore[no-untyped-def]
|
@@ -244,7 +252,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
244
252
|
self.set_passthrough_cols(passthrough_cols)
|
245
253
|
self.set_drop_input_cols(drop_input_cols)
|
246
254
|
self.set_sample_weight_col(sample_weight_col)
|
247
|
-
deps = set(
|
255
|
+
deps: Set[str] = set([f'numpy=={np.__version__}', f'scikit-learn=={sklearn.__version__}', f'cloudpickle=={cp.__version__}'])
|
248
256
|
|
249
257
|
self._deps = list(deps)
|
250
258
|
|
@@ -273,13 +281,14 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
273
281
|
args=init_args,
|
274
282
|
klass=sklearn.decomposition.MiniBatchDictionaryLearning
|
275
283
|
)
|
276
|
-
self._sklearn_object = sklearn.decomposition.MiniBatchDictionaryLearning(
|
284
|
+
self._sklearn_object: Any = sklearn.decomposition.MiniBatchDictionaryLearning(
|
277
285
|
**cleaned_up_init_args,
|
278
286
|
)
|
279
287
|
self._model_signature_dict: Optional[Dict[str, ModelSignature]] = None
|
280
288
|
# If user used snowpark dataframe during fit, here it stores the snowpark input_cols, otherwise the processed input_cols
|
281
289
|
self._snowpark_cols: Optional[List[str]] = self.input_cols
|
282
|
-
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchDictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True
|
290
|
+
self._handlers: FitPredictHandlers = HandlersImpl(class_name=MiniBatchDictionaryLearning.__class__.__name__, subproject=_SUBPROJECT, autogenerated=True)
|
291
|
+
self._autogenerated = True
|
283
292
|
|
284
293
|
def _get_rand_id(self) -> str:
|
285
294
|
"""
|
@@ -335,54 +344,48 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
335
344
|
self
|
336
345
|
"""
|
337
346
|
self._infer_input_output_cols(dataset)
|
338
|
-
if isinstance(dataset,
|
339
|
-
|
340
|
-
|
341
|
-
|
342
|
-
|
343
|
-
|
344
|
-
self.
|
345
|
-
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
347
|
+
if isinstance(dataset, DataFrame):
|
348
|
+
session = dataset._session
|
349
|
+
assert session is not None # keep mypy happy
|
350
|
+
# Validate that key package version in user workspace are supported in snowflake conda channel
|
351
|
+
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
352
|
+
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
353
|
+
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
354
|
+
|
355
|
+
# Specify input columns so column pruning will be enforced
|
356
|
+
selected_cols = self._get_active_columns()
|
357
|
+
if len(selected_cols) > 0:
|
358
|
+
dataset = dataset.select(selected_cols)
|
359
|
+
|
360
|
+
self._snowpark_cols = dataset.select(self.input_cols).columns
|
361
|
+
|
362
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
363
|
+
if SNOWML_SPROC_ENV in os.environ:
|
364
|
+
statement_params = telemetry.get_function_usage_statement_params(
|
365
|
+
project=_PROJECT,
|
366
|
+
subproject=_SUBPROJECT,
|
367
|
+
function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__),
|
368
|
+
api_calls=[Session.call],
|
369
|
+
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
370
|
+
)
|
371
|
+
pd_df: pd.DataFrame = dataset.to_pandas(statement_params=statement_params)
|
372
|
+
pd_df.columns = dataset.columns
|
373
|
+
dataset = pd_df
|
374
|
+
|
375
|
+
model_trainer = ModelTrainerBuilder.build(
|
376
|
+
estimator=self._sklearn_object,
|
377
|
+
dataset=dataset,
|
378
|
+
input_cols=self.input_cols,
|
379
|
+
label_cols=self.label_cols,
|
380
|
+
sample_weight_col=self.sample_weight_col,
|
381
|
+
autogenerated=self._autogenerated,
|
382
|
+
subproject=_SUBPROJECT
|
383
|
+
)
|
384
|
+
self._sklearn_object = model_trainer.train()
|
354
385
|
self._is_fitted = True
|
355
386
|
self._get_model_signatures(dataset)
|
356
387
|
return self
|
357
388
|
|
358
|
-
def _fit_snowpark(self, dataset: DataFrame) -> None:
|
359
|
-
session = dataset._session
|
360
|
-
assert session is not None # keep mypy happy
|
361
|
-
# Validate that key package version in user workspace are supported in snowflake conda channel
|
362
|
-
# If customer doesn't have package in conda channel, replace the ones have the closest versions
|
363
|
-
self._deps = pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
364
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
365
|
-
|
366
|
-
# Specify input columns so column pruning will be enforced
|
367
|
-
selected_cols = self._get_active_columns()
|
368
|
-
if len(selected_cols) > 0:
|
369
|
-
dataset = dataset.select(selected_cols)
|
370
|
-
|
371
|
-
estimator = self._sklearn_object
|
372
|
-
assert estimator is not None # Keep mypy happy
|
373
|
-
|
374
|
-
self._snowpark_cols = dataset.select(self.input_cols).columns
|
375
|
-
|
376
|
-
self._sklearn_object = self._handlers.fit_snowpark(
|
377
|
-
dataset,
|
378
|
-
session,
|
379
|
-
estimator,
|
380
|
-
["snowflake-snowpark-python"] + self._get_dependencies(),
|
381
|
-
self.input_cols,
|
382
|
-
self.label_cols,
|
383
|
-
self.sample_weight_col,
|
384
|
-
)
|
385
|
-
|
386
389
|
def _get_pass_through_columns(self, dataset: DataFrame) -> List[str]:
|
387
390
|
if self._drop_input_cols:
|
388
391
|
return []
|
@@ -570,11 +573,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
570
573
|
subproject=_SUBPROJECT,
|
571
574
|
custom_tags=dict([("autogen", True)]),
|
572
575
|
)
|
573
|
-
@telemetry.add_stmt_params_to_df(
|
574
|
-
project=_PROJECT,
|
575
|
-
subproject=_SUBPROJECT,
|
576
|
-
custom_tags=dict([("autogen", True)]),
|
577
|
-
)
|
578
576
|
def predict(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
579
577
|
"""Method not supported for this class.
|
580
578
|
|
@@ -626,11 +624,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
626
624
|
subproject=_SUBPROJECT,
|
627
625
|
custom_tags=dict([("autogen", True)]),
|
628
626
|
)
|
629
|
-
@telemetry.add_stmt_params_to_df(
|
630
|
-
project=_PROJECT,
|
631
|
-
subproject=_SUBPROJECT,
|
632
|
-
custom_tags=dict([("autogen", True)]),
|
633
|
-
)
|
634
627
|
def transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[DataFrame, pd.DataFrame]:
|
635
628
|
"""Encode the data as a sparse combination of the dictionary atoms
|
636
629
|
For more details on this function, see [sklearn.decomposition.MiniBatchDictionaryLearning.transform]
|
@@ -689,7 +682,8 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
689
682
|
if False:
|
690
683
|
self.fit(dataset)
|
691
684
|
assert self._sklearn_object is not None
|
692
|
-
|
685
|
+
labels : npt.NDArray[Any] = self._sklearn_object.labels_
|
686
|
+
return labels
|
693
687
|
else:
|
694
688
|
raise NotImplementedError
|
695
689
|
|
@@ -725,6 +719,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
725
719
|
output_cols = []
|
726
720
|
|
727
721
|
# Make sure column names are valid snowflake identifiers.
|
722
|
+
assert output_cols is not None # Make MyPy happy
|
728
723
|
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
729
724
|
|
730
725
|
return rv
|
@@ -735,11 +730,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
735
730
|
subproject=_SUBPROJECT,
|
736
731
|
custom_tags=dict([("autogen", True)]),
|
737
732
|
)
|
738
|
-
@telemetry.add_stmt_params_to_df(
|
739
|
-
project=_PROJECT,
|
740
|
-
subproject=_SUBPROJECT,
|
741
|
-
custom_tags=dict([("autogen", True)]),
|
742
|
-
)
|
743
733
|
def predict_proba(
|
744
734
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_proba_"
|
745
735
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -780,11 +770,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
780
770
|
subproject=_SUBPROJECT,
|
781
771
|
custom_tags=dict([("autogen", True)]),
|
782
772
|
)
|
783
|
-
@telemetry.add_stmt_params_to_df(
|
784
|
-
project=_PROJECT,
|
785
|
-
subproject=_SUBPROJECT,
|
786
|
-
custom_tags=dict([("autogen", True)]),
|
787
|
-
)
|
788
773
|
def predict_log_proba(
|
789
774
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "predict_log_proba_"
|
790
775
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -821,16 +806,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
821
806
|
return output_df
|
822
807
|
|
823
808
|
@available_if(original_estimator_has_callable("decision_function")) # type: ignore[misc]
|
824
|
-
@telemetry.send_api_usage_telemetry(
|
825
|
-
project=_PROJECT,
|
826
|
-
subproject=_SUBPROJECT,
|
827
|
-
custom_tags=dict([("autogen", True)]),
|
828
|
-
)
|
829
|
-
@telemetry.add_stmt_params_to_df(
|
830
|
-
project=_PROJECT,
|
831
|
-
subproject=_SUBPROJECT,
|
832
|
-
custom_tags=dict([("autogen", True)]),
|
833
|
-
)
|
834
809
|
def decision_function(
|
835
810
|
self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "decision_function_"
|
836
811
|
) -> Union[DataFrame, pd.DataFrame]:
|
@@ -929,11 +904,6 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
929
904
|
subproject=_SUBPROJECT,
|
930
905
|
custom_tags=dict([("autogen", True)]),
|
931
906
|
)
|
932
|
-
@telemetry.add_stmt_params_to_df(
|
933
|
-
project=_PROJECT,
|
934
|
-
subproject=_SUBPROJECT,
|
935
|
-
custom_tags=dict([("autogen", True)]),
|
936
|
-
)
|
937
907
|
def kneighbors(
|
938
908
|
self,
|
939
909
|
dataset: Union[DataFrame, pd.DataFrame],
|
@@ -993,9 +963,9 @@ class MiniBatchDictionaryLearning(BaseTransformer):
|
|
993
963
|
# For classifier, the type of predict is the same as the type of label
|
994
964
|
if self._sklearn_object._estimator_type == 'classifier':
|
995
965
|
# label columns is the desired type for output
|
996
|
-
outputs = _infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True)
|
966
|
+
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
997
967
|
# rename the output columns
|
998
|
-
outputs = model_signature_utils.rename_features(outputs, self.output_cols)
|
968
|
+
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
999
969
|
self._model_signature_dict["predict"] = ModelSignature(inputs,
|
1000
970
|
([] if self._drop_input_cols else inputs)
|
1001
971
|
+ outputs)
|